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Abstract

Word sense disambiguation (WSD) is a key
task in natural language processing and lexical
semantics. Pre-trained language models with
contextualized word embeddings have signifi-
cantly improved performance in regular WSD
tasks. However, these models still struggle
with recognizing semantic boundaries and of-
ten misclassify homonyms in adversarial con-
text. Therefore, we propose FOOL: FOur-fold
Obscure Lexical, a new coarse-grained WSD
dataset, which includes four different test sets
designed to assess the robustness of language
models in WSD tasks. Two sets feature typical
WSD scenarios, while the other two include
sentences with opposing contexts to challenge
the models further.

We tested two types of models on the proposed
dataset: models with encoders, such as the
BERT and T5 series of varying sizes by prob-
ing their embeddings, and state-of-the-art large
decoder models like GPT-4o and the Llama3
family, using zero shot prompting. Across dif-
ferent state-of-the-art language models, we ob-
served a decrease in performance in the latter
two sets compared to the first two, with some
models being affected more than others. We
show interesting findings where small models
like T5-large and BERT-large performed better
than GPT-4o on Set 3 of the dataset. This in-
dicates that, despite excelling in regular WSD
tasks, these models still struggle to correctly
disambiguate homonyms in artificial (Set 3) or
realistic adversarial contexts (Set 4).

1 Introduction

The task of word sense disambiguation (WSD) is
a fundamental challenge in natural language pro-
cessing (NLP). Homonyms, which are formally
identical words with completely independent mean-
ings (Kempson, 1977, p. 80), present a challenge in

*These authors contributed equally to this work

tasks like machine translation, text annotation, and
question answering (Agirre and Edmonds, 2007).
In order to comprehend the intended meaning of
homonyms, it is necessary to consider the context,
in which they are used. Consequently, the accurate
disambiguation of homonyms provides evidence of
the model’s comprehension of the context and, in
turn, of language.

Contextualized language models, such as BERT
(Devlin et al., 2019), produce word embeddings
that reflect the word’s meaning based on its con-
text (Wiedemann et al., 2019). This has led to
significant improvements in WSD performance in
both fine-grained or coarse-grained WSD (Wiede-
mann et al., 2019; Reif et al., 2019; Loureiro et al.,
2021). While fine-grained WSD addresses the
nuanced senses a word can have, coarse-grained
WSD focuses on broader, unrelated word mean-
ings (Haber and Poesio, 2024). The emergence
of context-based language models suggests that
the challenge of regular WSD has largely been
resolved. However, it is still unclear if these mod-
els can understand context well enough to disam-
biguate homonyms effectively. Let us consider the
following sentence:

"I eat an apple while holding my iPhone."

For a human it is clear that "apple" refers to the
fruit, and not the technology company. The ques-
tion remains whether today’s language models can
differentiate these senses in this adversarial con-
text.

Even though there are many existing WSD
benchmarks, such as the Unified Evaluation Frame-
work by Raganato et al. (2017) or CoarseWSD-20
by Loureiro et al. (2021), none of them considers
the distinction between different types of context
nor the use of opposing context in the sentences.
For this purpose we introduce FOOL, a coarse-
grained WSD dataset that differentiates between
four distinct categories of context changes. The
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Senses Example Sentence for apple
Train Set apple_apple_inc "the ipod is first introduced by apple."

apple_fruit "the surrounding area produces 20% of patagonia’s apple and 28% of its pear .
Set 1 apple_apple_inc "I downloaded the latest app from the Apple App Store."

apple_fruit "An apple is a refreshing snack on a hot summer day."
Set 2 apple_apple_inc "I downloaded the latest app from the innovative Apple App Store."

apple_fruit "A crisp apple is a refreshing snack on a hot summer day."
Set 3 apple_apple_inc "I downloaded the latest app from the crisp Apple App Store."

apple_fruit "An innovative apple is a refreshing snack on a hot summer day."
Set 4 apple_apple_inc "The cafeteria at Apple Headquarters serves delicious pie."

apple_fruit "Holding an apple, I scrolled through news about rival tech companies."

Table 1: Example sentences from the dataset for the word apple.

dataset includes one training set and four test sets
as illustrated in Table 1.* The first two test sets
provide sentences for regular WSD, while the other
two contain sentences with additional context that
opposes the anticipated meaning of the homonym.
This structure allows for the testing of state-of-
the-art (SOTA) language models in both regular
homonym disambiguation settings and adversarial
context settings. Therefore, this dataset can be used
to investigate the robustness of language models to
different context changes.

We investigated two types of language models:
models with encoders, from which we probed their
embeddings using kNN algorithm, and state-of-the-
art models that we prompted to classify the target
word into one of two possible meanings. Our find-
ings indicate that current SOTA models struggle to
accurately disambiguate coarse-grained homonyms
when adversarial contexts are added. We observed
a performance decrease across all models when
comparing results from Set 1 with those from Sets
3 and 4.

In models containing encoders, this effect is
most significant in smaller models like BERT-base
and T5-base, and less significant in larger mod-
els like T5-FLAN-xxl. Conversely, advanced and
larger language models such as GPT-3.5 Turbo and
Llama3-70b show a dramatic performance decline
when faced with adversarial context changes, with
performance drops of 25.6% and 10.4%, respec-
tively in Set 4 compared to Set 1. However, models
like GPT-4o exhibit more robustness against re-
alistic opposing context examples (Set 4), with a
performance drop of only around 4%, but more
vulnerability for adding adversarial adjective (Set
3). Additionally, our findings suggest that models
that contain encoder, such as those from the BERT

*The full dataset can be downloaded from:
https://drive.google.com/file/d/1WOUml_
GGUrUXvKMt3ywBjK-lI_lsEydi/view?usp=sharing

or T5 family, tend to perform better in these tasks,
specifically in Set 3. For instance, the BERT-large
model with 340 million parameters outperformed
the Llama3-8b model, which has around 8 billion
parameters on both adversarial tasks (Set 3 and 4).
In addition, T5-large and BERT-large performed
better than GPT-4o on Set 3 of the dataset. To
conclude, our contributions can be summarized as
follows:

• We introduce FOOL, a new coarse-grained
WSD dataset that features various test sets
with added adversarial context to assess the
robustness of pre-trained language models

• We perform an extensive analysis on various
SOTA language models in WSD with experi-
ments on our proposed dataset

• We show that current state-of-the-art language
models are prone to misclassification when
faced with adversarial and opposing realistic
context

2 Related Work

Word Sense Disambiguation (WSD) is a well-
studied task in natural language processing, focus-
ing on fine-grained polysemy disambiguation. The
majority of standard WSD benchmarks, such as the
Unified Evaluation Framework by Raganato et al.
(2017), heavily rely on WordNet (Miller, 1994).
This dependence on WordNet, known for its fine-
grained classification, poses a challenge even for
humans to distinguish all possible senses. To tackle
this issue, Loureiro et al. (2021) introduced the
dataset "CoarseWSD-20", which extracts sentences
from Wikipedia articles to create a coarse-grained
sense inventory WSD dataset.

The performance of pre-trained language models
has been tested on both fine-grained and coarse-
grained datasets. Especially, BERT (Devlin et al.,
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2019) achieved overall good results with over 94%
accuracy in coarse-grained WSD (Loureiro et al.,
2021). For example, Du et al. (2019) fine-tuned
BERT on a WSD task and tested it on a variety of
different fine-grained WSD benchmarks (Edmonds
and Cotton, 2001; Moro and Navigli, 2015; Nav-
igli et al., 2013; Pradhan et al., 2007; Snyder and
Palmer, 2004), achieving promising results with
accuracies ranging from 74% to 78%.

Additionally, without fine-tuning Wiedemann
et al. (2019) and Reif et al. (2019) showed that
BERT can effectively perform fine-grained WSD
by combining its contextualized word embeddings
with a kNN classification algorithm. Moreover,
Loureiro et al. (2021) employed a kNN BERT
classifier and reported human-like performance
on their coarse-grained noun WSD dataset, with
over 94% accuracy. More recently, Proietti et al.
(2024) tested different BERT-based models, in-
cluding BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) on coarse-grained WSD. They
clustered WordNet senses to match coarse-grained
homonym sense distinction and found that BERT’s
accuracy is as high as 95%.

In our work, we conduct an extensive analysis
on two types of models. On the one hand, we tested
models that include encoder, such as the BERT and
T5 family (Raffel et al., 2020), by probing their
word embeddings. On the other hand, we analyzed
state-of-the-art language models including GPT-
3.5 Turbo (OpenAI, 2022), GPT-4 Turbo (OpenAI,
2023) , and GPT-4o (OpenAI, 2024), Llama3-8b,
Llama3-70b (Meta, 2024) and Mixtral-8x7b (Jiang
et al., 2024) using prompts in zero shot settings.
While Kocoń et al. (2023) investigated GPT-3.5’s
performance on WSD among other tasks, our work
significantly differs in that we have created a new
coarse-grained adversarial dataset and tested var-
ious models from different families. To the best
of our knowledge, this paper is the first to con-
duct an extensive analysis comparing models like
BERT and T5 with models like GPT and Llama on
adversarial WSD tasks.

Furthermore, it is evident that there is no existing
dataset that aligns with the one proposed in this pa-
per. Despite this, there have been some attempts to
test models on adversarial sentences. For example,
Emelin et al. (2020) considered adversarial attacks
in WSD. They changed adjectives in sentences in
front of homonyms and checked the performance
in a machine translation task. These changes lead
to translation errors in LSTM (Luong et al., 2015),

Transformer (Vaswani et al., 2017) and ConvS2S
(Gehring et al., 2017). Inspired by Emelin et al.
(2020) approach, we adopted the idea of modifying
adjectives in order to test the resilience of more
recent pre-trained language models based on their
contextualized word embeddings.

Moreover, Reif et al. (2019) incorporated oppos-
ing context words in their study. In their paper, the
authors analyzed the performance of pre-trained
language models, primarily BERT, on SemCor
(Miller et al., 1993), a fine-grained sense dataset.
While they succeeded in this task, they also com-
bined two sentences with distinct meanings of a
homonym to create sentences with opposing con-
texts. Thereby they found a higher number of clas-
sification errors than in normal conditions. This
test was done using fine-grained senses of words.
Although this represents a promising initial step,
there is a need to further extend this idea. We
analyze coarse-grained WSD performances of dif-
ferent state-of-the-art models beyond BERT and
have developed an entire human-made test set to
evaluate our approach.

3 Dataset

In this section, we introduce our dataset FOOL,
a coarse-grained WSD dataset that is designed to
differentiate between four different categories of
context changes. This design allows us to test both
regular homonym disambiguation settings and ad-
versarial context settings. Therefore, this dataset
serves as a tool to evaluate the robustness of large
language models against different context changes
and their ability to discern between various coarse-
grained homonym senses.

3.1 Dataset Split

In order to assess the efficacy of distinct pre-trained
models across different levels of contextual com-
plexity, four different sets of sentences were cre-
ated, with an additional set designated as the train-
ing set. Each set is associated with a specific con-
text and serves a unique purpose. Examples from
these sets are illustrated in Table 1.

• Train Set: The training dataset consists of
sentences that use the homonym in its antici-
pated context. This ensures a solid foundation
for fitting the classification algorithm.

• Set 1: Similar to the training set, the homon-
nyms are used in its anticipated context. This
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set serves as the baseline for testing regular
WSD performances.

• Set 2: This set extends the sentences from
Set 1 by adding an adjective directly before
the homonym, which aligns with the antici-
pated meaning of the homonym in that sen-
tence.

• Set 3: This set modifies the sentences from
Set 2 by changing the adjectives preceding the
homonyms. The new adjectives are typically
associated with the opposite meaning of the
homonym, introducing an artificial adversarial
context.

• Set 4: This set includes sentences that have
been specifically crafted with realistic con-
text that opposes the anticipated meaning of
the homonym, further challenging the models’
disambiguation capabilities.

While the context provided in Sets 1 and 2 is
designed to facilitate the models’ ability to distin-
guish between homonym senses, Sets 3 and 4 in-
clude adversarial examples to challenge the models.
The goal of Set 3, which uses artificial adversarial
context, is to simulate an adversarial attack that
does not have to be realistic but could still fool
or confuse the language model. To achieve this,
we employed a simple approach that adds an ad-
jective (distractor) typically used in the opposite
context and studied its effect. On the other hand,
the goal of Set 4, which uses realistic adversarial
context, is to simulate a normal sentence that might
be used in daily conversations but could still be con-
sidered adversarial due to its wording (e.g., "fruit
apple" and "iPhone" in the same sentence). Overall,
the dataset allows testing models in regular WSD
with coarse-grained homonym senses and assess-
ing their response to adversarial examples. This
dual approach tests not only basic disambiguation
capabilities but also the resilience of models under
more complex and potentially confusing linguistic
scenarios.

3.2 Statistics

Table 2 shows an overview of all words used in the
dataset, which comprises 20 homonyms in total.
Each homonym is confined to exactly two broad
word senses that are unrelated to each other. It is
crucial that in both senses, the word remains a noun,
which is essential for the application of adjectives

in Sets 2 and 3. The distribution of sentences per
word sense is well balanced across each set. In
Sets 1 to 3 the number of sentences ranges from
40 to 60 sentences per word sense in each set. Set
4 consists of 25 to 30 sentences per word sense,
reflecting the higher complexity and cost associ-
ated with creating these sentences. The training
data includes 20 to 40 sentences per word sense.
This structured approach ensures that each sense is
adequately represented and tested throughout the
dataset. Table 5 in the Appendix shows the full
statistics of the dataset with the number of sen-
tences for every word sense in each set is shown.

3.3 Data Collection
The construction of the dataset is mostly done by
manually creating and revising sentences that are
suitable for the desired sense of the homonym. No-
tably, Set 4 is entirely crafted by hand to include
homonyms in their anticipated use along with op-
posing context—a task that cannot be automated
using tools like ChatGPT or sourced from existing
literature. This manual approach ensures that the
sentences are fluent and meaningful, fulfilling their
intended purpose in the dataset.

There are nine common words (popular
homonyms) between FOOL and CoarseWSD-20
by Loureiro et al. (2021), while the other eleven
words are specific to our dataset. For the nine
common words, we used some of the sentences
from the CoarseWSD-20 dataset for the training
set and our Set 1. However, for words not covered
by CoarseWSD-20, we sourced example sentences
from platforms like Word Hippo (Kat IP Pty Ltd)
and YourDictionary (LoveToKnow Media), which
were then adapted to meet our criteria. Addition-
ally, Set 1 was generated using both examples from
these platforms and sentences created with Chat-
GPT (OpenAI, 2022) and GPT 4 (OpenAI, 2023).
Nevertheless, the adjectives in Set 2 and 3 are man-
ually added by humans to ensure a diverse and
contextually appropriate use of adjectives, tailored
to our specific needs. Furthermore, all labels for
the above mentioned sentences were generated by
human annotators. To summarize the difference be-
tween our dataset “FOOL” and “CoarseWSD-20”,
only the training set and a small subset of Set 1
sentences containing the common words (9 words)
were adopted from CoarseWSD-20, and everything
else is specific to our dataset.

The dataset was developed by three contributors
to this study, comprising two doctoral candidates
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Word Senses
apple apple_inc

apple_fruit
bank bank_bank

bank_river
bat bat_mammal

bat_equipment
cell cell_prison

cell_biology
crane crane_machine

crane_bird

Word Senses
date date_fruit

date_romantic
digit digit_number

digit_anatomy
gum gum_bubblegum

gum_mouth
java java_program

java_island
letter letter_alphabet

letter_mail

Word Senses
match match_sports

match_lighter
nail nail_metal

nail_finger
pitcher pitcher_jug

pitcher_sports
pupil pupil_student

pupil_eye
ring ring_arena

ring_jewelry

Word Senses
rock rock_music

rock_stone
ruler ruler_governor

ruler_measure
seal seal_animal

seal_close
spring spring_season

spring_device
trunk trunk_botany

trunk_car

Table 2: All homonyms used in the dataset listed with their senses.

and one undergraduate student from the Depart-
ment of Cognitive Science. It is noteworthy that
English is not the first language of any of the re-
searchers. The workload was evenly distributed
between one doctoral candidate and the undergrad-
uate student, with each responsible for creating
ten words for the dataset. Each researcher cross-
verified the work of their peers, and the final dataset
was subsequently reviewed by the third doctoral
candidate.

4 Word Embeddings Classification

4.1 Contextualized Language Models

For our evaluation we selected a variety of known
language models that are proven to be efficient in
WSD tasks. Besides well tested BERT-based mod-
els like BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), Distil-BERT and Distil-RoBERTa
(Sanh et al., 2020), we included T5 (Raffel et al.,
2020) and FLAN-T5 (Chung et al., 2022).

The T5-based models have an encoder-decoder
architecture which proved to be useful in different
benchmark tasks (Raffel et al., 2020). T5 models
have been pre-trained on 750GB of cleaned data,
significantly more than the 16GB and 160GB used
for BERT and RoBERTa, respectively.

To get a comprehensive overview of all models,
we tested different sizes from small to xxl in T5
and FLAN-T5 and distil, base and large in BERT
and RoBERTa. The parameters and embedding
vector sizes are detailed in Table 3. All models are
utilized in their original, unmodified form from the
HuggingFace library (Wolf et al., 2019) and were
not specifically fine-tuned for this purpose.

4.2 Experimental Settings

To evaluate the performance of all models on the
introduced dataset, a binary classification task is
employed. All of the following is performed for

each model in each set. For each sentence in a
set, all words are converted to lower case, and the
embedding vector for the homonym is extracted.
To ensure the best results, it is recommended to
sum and average the word embeddings from the
final four layers of the encoder in BERT (Loureiro
et al., 2021). This approach is also adopted for T5
and FLAN-T5 to ensure better comparability. We
visualized the word embeddings of the homonym
"crane" produced by BERT-base (first row) and
T5-base (second row) in Figure 1 for every test
set, with embeddings color-coded by their correct
label. We include in the Appendix more visualiza-
tions of different words and models (figs. 2 to 7)
The averaged word embeddings are categorized
into one of the designated labels using k-nearest
neighbor (kNN) algorithm (Cover and Hart, 1967),
which uses our training data as a basis for classi-
fication. This algorithm takes a plurality vote of
a sample’s nearest labeled neighbors, in our case
k = 3, and decide based on the 3 nearest neigh-
bors which sense to assign the homonym to. Tests
varying k showed no significant differences on the
outcome, which is consistent with the findings of
Wiedemann et al. (2019). Cosine similarity was
used as the distance measure, and the macro F1-
score as the performance measure. The kNN model
was trained on the averaged embeddings produced
by the corresponding model for the Train Set of
our dataset. Accordingly, the k-nearest neighbor
(kNN) algorithm is employed to classify the data
from the four test sets. For each word in a set, the
F1-score is calculated and then averaged over all
words in a set, resulting in four different F1-scores
for each model

4.3 Results

All results are listed in the Table 3 together with
the corresponding number of parameters and the
embedding vector size of each model. In general,
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Figure 1: The visualization depicts the word embeddings of the word "crane" produced by BERT-base (first row)
and T5-base (second row) for different sentences in each Set 1 to 4. Orange depicts all embeddings with the label
"crane_bird" and blue all the ones labeled "crane_machine". We used tSNE (Van der Maaten and Hinton, 2008) for
dimensionality reduction. One can see that the models are able to cluster the different senses in Set 1 and 2, while
they struggle to differentiate them in Set 3 and 4.

all models show good performances in Set 1 and
Set 2. Almost all models score higher than 90% in
the first two settings and some T5-based models
even up to 99%. The T5-based models score in
general higher than the BERT-based models with
the same size.

Model Size In almost all cases, it is noticeable
that as model size increases, so do the performance
across all four sets. While T5-small achieves only
87.7%, T5-xxl shows results as good as 99.3%.
This effect is seen in all models except in FLAN-
T5-large and FLAN-T5-xl which show worse re-
sults in settings 1, and 3 than FLAN-T5-base.

Settings As previously stated, all models demon-
strate a good performance on Sets 1 and 2. How-
ever, the performance of the models declines when
evaluated on Sets 3 and 4. A comparison of the
results observed in Set 1 with those in Set 3 re-
veals a decline in the F1-Score from 6% to up to
11%, even though only one additional adjective is
introduced in this setting. Nevertheless, the per-
formance drops from Set 1 to Set 4 are even more
severe, with a decrease ranging from 20% to 33%.
The most significant effect is observed in smaller
model sizes, while in larger models, the difference

between Set 1 and Set 4 is smaller, with approxi-
mately 20%. Overall the best performance is shown
in FLAN-T5-xxl which has the best performance
in all four settings and one of the smallest perfor-
mance drop to Set 4.

5 Prompt-based Classification

5.1 Experimental Settings

We evaluate FOOL, using state-of-the-art large
language models including GPT-3.5 Turbo (Ope-
nAI, 2022), GPT-4 Turbo (OpenAI, 2023) , and
GPT-4o (OpenAI, 2024), Llama3-8b, Llama3-70b
(Meta, 2024) and Mixtral-8x7b (Jiang et al., 2024).
Since these models are decoder models, we utilized
prompt-based classification for testing. We input
each sentence from the set and ask the model to
classify the target word by providing two choices.
For example, to classify the meaning of the word
"apple" the prompt for GPT-4o would be:

"In this sentence: ‘She used iCloud to store photos
from her visit to the apple orchard, ensuring she
never lost a memory’, classify the occurrence of

the word ‘apple’ for fruit or for a company.
Answer only by one of these options: fruit or

company."

5047



Models #Parameter VecSize Set 1 Set 2 Set 3 Set 4
distil-BERT 66M 768 0.945 0.948 0.867 0.617
BERT-base 110M 768 0.962 0.976 0.869 0.662
BERT-large 340M 1024 0.97 0.978 0.874 0.689
distil-RoBERTa 82M 768 0.920 0.950 0.856 0.634
RoBERTa-base 125M 768 0.945 0.969 0.888 0.715
T5-small 60M 512 0.877 0.916 0.768 0.609
T5-base 220M 768 0.978 0.982 0.866 0.611
T5-large 770M 1024 0.984 0.987 0.896 0.691
T5-xl 3B 1024 0.991 0.992 0.907 0.71
T5-xxl 11B 1024 0.993 0.995 0.910 0.786
FLAN-T5-small 80M 512 0.906 0.938 0.803 0.575
FLAN-T5-base 250M 768 0.980 0.987 0.907 0.621
FLAN-T5-large 780M 1024 0.948 0.953 0.852 0.663
FLAN-T5-xl 3B 1024 0.955 0.958 0.881 0.718
FLAN-T5-xxl 11B 1024 0.994 0.996 0.932 0.778

Table 3: Results (F1-Scores) for all encoder models, including their parameters and embedding sizes, are presented

The outputs were manually evaluated because,
although models like GPT-4 and GPT-4 Turbo
strictly adhere to instructions by outputting only
"fruit" or "company" other models such as GPT-3.5
Turbo occasionally respond with explanations that
include both categories, such as “It is obviously not
apple the fruit that is meant, but the company” com-
plicating the extraction of the correct answer. Such
responses were considered correct if the classifica-
tion was accurate. However, outputs that included
both classes, such as “The word apple could mean
company or fruit in this sentence,” were marked
as incorrect. This manual process was adopted to
address the inherent tendency of models like GPT-
3.5 Turbo, Mixtral, and Llama 3-8b not to strictly
adhere to instructions—a factor unrelated to our
paper’s objective. We conducted initial testing with
multiple runs for the same sentences and observed
little variance; therefore, the reported results are
from a single run for each word with each model.
The manual validation was performed by two of
the authors, who cross-validated each other’s work.

5.2 Results

The results in Table 4 show that state-of-the-art
models can distinguish perfectly between two
homonyms in a regular context. All models
score above 98%, indicating no difficulty in dis-
tinguishing homonyms. Adding an adjective to the
homonym makes the performance even better for
all models to score almost perfectly with an accu-
racy around 99.9% for models like GPT-4o. How-

Model Set 1 Set 2 Set 3 Set 4
GPT-3.5 Turbo 0.981 0.990 0.786 0.725
GPT-4 Turbo 0.998 0.999 0.907 0.922
GPT-4o 0.998 0.999 0.860 0.956
Llama3 8b 0.986 0.990 0.790 0.687
Llama3 70b 0.994 0.998 0.907 0.890
Mixtral-7bx8 0.987 0.993 0.820 0.714

Table 4: F1-Scores showing the performance of large
decoder models on FOOL using prompt-based classifi-
cation

ever, results from Set 3, where only one adversarial
adjective is added to the sentences of Set 1, could
fool the models and affect their performance. For
example, the score of GPT4-o drops from 99.8% to
around 87% showing vulnerability to a simple ad-
versarial context change. However, GPT-4o shows
more robustness to a realistic opposing context test
in Set 4 with F1-score of 95.6%. In addition, mod-
els like GPT-3.5 Turbo, Llama3-8b and Mixtral-
7bx8 experience significant performance drops in
Set 4 with F1-score around 70%.

6 Discussion

In the following we discuss the main findings and
open questions that remain after our analysis.

Set 1/2 vs. Set 3/4 One of the main findings from
the analysis above is that there is a major perfor-
mance gap between Set 1 and Set 2 compared to
Set 3 or Set 4. The significant decline in perfor-
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mance observed between Set 1 and Set 3 in the
WSD test, despite the only change being the re-
placement of one adjective, appears to be out of
proportion. Also the performance decrease in Set 4
is disproportionate. Adding opposing yet realistic
context while still remaining the overall meaning
of the homonym can lead to a decrease in the F1-
score to up to 30% even for advanced models like
Llama3-8b and GPT-3.5 Turbo. One explanation
for the changing results could be that contextu-
alised language models do not pay attention to se-
mantic boundaries like Reif et al. (2019) mentioned
in their paper about BERT. This could be extended
by the findings of Tang et al. (2018) who state that
language models do not learn which context words
are useful and pay attention mostly to the homonym
itself. Unimportant context words, which humans
can successfully sort out, have a major impact on
the word embedding produced by language models.
This could be one factor language models have to
improve in order to achieve human-like results also
in smaller model sizes.

Model Size Another finding is the correlation be-
tween model sizes and WSD performance in all
four sets. The results indicate a positive correlation
between model size and F1-score. Larger mod-
els with more parameters store more training data
information and have bigger embedding vectors
that capture extensive contextual details, improving
disambiguation. Furthermore, a decline in perfor-
mance is observed in Sets 3 and 4, with smaller
models experiencing a larger drop than larger mod-
els. This supports the hypothesis that larger models
are more robust to adversarial attacks. This robust-
ness is likely due to larger models’ ability to recall
more information and recognize different contexts.

T5 vs. BERT The best overall performance is
seen in the encoder of FLAN-T5-xxl. In general,
the T5-based models show the best overall results
not least because of the bigger model sizes. Even
in the base size FLAN-T5 surpasses BERT-large
which has more model parameters than FLAN-T5.
This may suggest that T5-based language models
are an optimal choice for the task of word sense
disambiguation. One potential explanation for the
enhanced performance is that T5 employs a dis-
tinct masking approach distinct from BERT. While
BERT can only mask one word at a time, T5 masks
multiple words at the same time. Additionally, T5
was trained on a larger data corpus than BERT
which could also improve the performance in WSD

since more knowledge about words in different us-
ages is collected.

Embeddings vs. Prompt-based Classification
In this paper, we tested the performance of two
types of models: those that include an encoder,
which provides bi-directional context of the sen-
tence and thus reflects it in their embeddings, and
large decoder models known for their ability when
prompted. It is evident that having bi-directional
context is an advantage, as reflected in the results
when comparing models by size. We can see that
even state-of-the-art models like Llama3-8b, which
is trained on around 15 trillion tokens, perform
worse than T5-large, which is trained on around
1 trillion tokens and has approximately ten times
fewer parameters than Llama3-8b. Furthermore,
we believe that the bi-directional context ability
of T5 and BERT family models makes them less
vulnerable to simple adversarial context changes,
such as altering one adjective in a sentence. This
is evidenced by the less significant performance
drop in Set 3 compared to decoder models like
Llama3-8b or even GPT4-o. For example, GPT-
4o’s performance drops by about 12% from Set 1 to
Set 3, whereas even a simple BERT-base model’s
performance drops only by about 9%. Additionally,
the performance of GPT-4o in Set 3 is comparable
to that of T5-base and lower than T5-large, which
have approximately 220 million and 770 million
parameters, respectively. While the types of mod-
els were tested differently, one could argue that
encoder models are better suited to these types of
tasks. On the other hand, both GPT4o and GPT-4
Turbo models show greater robustness in realistic
opposing contexts when tested on Set 4. In this
scenario, we believe that the set involves more rea-
soning abilities, which some claim these types of
models possess, and smaller models like T5-base
and BERT are less equipped for.

Error Analysis In this section, we analyze the
mistakes made by the models and identify specific
words that the models struggled to disambiguate
in Set 4. There are many factors that affect model
performance, but we will discuss a few key ones.
Firstly, there are words that are predominantly used
in one meaning and less so in another, such as
"digit". We observed that performance for these
types of words is generally lower. Another category
of challenging words includes those that share sim-
ilar contexts across different meanings, like "gum"
and "letter". For instance, "gum" in both mean-
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ings involves the context of the mouth and chewing,
making it more difficult for the model to distinguish
between them. Similarly, "letter" involves writing
in both contexts. Conversely, for words like "Java"
where we intended two meanings—Java the pro-
gramming language and Java the island—the mod-
els performed well. Even though "Java the island"
is not widely used, the contexts of the two mean-
ings are completely different, making it harder to
create sentences that fool the models. Additionally,
some models exhibit a bias towards a particular
meaning; for example, Mixtral-7bx8 shows a bias
towards interpreting "pitcher" as a container and
"rock" as stone. The performance of the models on
each word in Set 3, and 4 is detailed in figures 8
and 9 in Appendix A.3.

7 Conclusion

In this paper, we introduce FOOL, a new coarse-
grained WSD dataset featuring various types of
contexts, which serves as both a benchmark for
assessing model performance on WSD tasks and a
tool for evaluating context comprehension by mod-
els. Our experiments using this dataset demonstrate
that SOTA language models still struggle to under-
stand context and disambiguate homonyms in the
presence of opposing contexts, compared to their
performance in regular WSD tasks. This effect is
most prominent not only in smaller models like
BERT-base and T5-base but also in larger models
like Llama3 and GPT-3.5 Turbo. Among the series
of models that include an encoder, our results show
that T5, especially FLAN-T5 is a better alterna-
tive to BERT-based models. With more than 99%
score in Set 1, FLAN-T5-xxl shows human-like
disambiguation skills. Furthermore, we showed
that models incorporating an encoder are less vul-
nerable to adversarial addition of context (Set 3)
with the best performing model being FLAN-T5-
xxl, which outperforms GPT-4o and GPT-4 Turbo.
Interestingly, small models like BERT-large and
FLAN-T5-base outperform GPT-4o on the same
set. However, these small models struggle with
Set 4, which includes realistic opposing context
usage of words, which we believe requires a deeper
understanding of language and some degree of rea-
soning abilities. In the future, we plan to extend
the FOOL dataset to include sentences with fine-
grained homonyms to investigate how language
models perform on them. Additional adversarial
settings could also be added to further challenge

the models, potentially exposing new weaknesses
in their contextual understanding and disambigua-
tion capabilities. This will provide further insights
into the limitations of current language models and
guide the development of more robust systems.

8 Limitations

While our study presents significant findings in the
field of Natural Language Processing, several lim-
itations should be acknowledged to contextualize
the results.

Our approach deals with homonymous nouns
in a coarse-grained manner, which may oversim-
plify the complexities of word sense disambigua-
tion. Our coarse-grained homonym resolution does
not consider the nuanced differences between the
various meanings of a word that are closely related
to each other; instead, it focuses on only two dis-
tinct senses. This limitation might affect the preci-
sion of our models’ understanding and processing
of the context. Moreover, the exclusive focus on
nouns, while ignoring other word types, such as
verbs, adjectives, or adverbs, may result in limited
generalizability.

Furthermore, one limitation of this paper is that
part of a subset of the dataset (Set 1) was generated
using ChatGPT and then used to evaluate the same
data. This approach introduces a bias that may
distort the evaluation results. However, this issue is
limited to one of the four sets and affects only one
of the 21 models tested in this study.
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A Appendix

A.1 Word Definitions and Dataset Statistics
Table 5 lists the number of examples in each subset and Table 6 shows definitions for the 20 homonyms in
the FOOL dataset (cmp. Table 2 in the main text).

Words Senses Set Train Set 1 - 3 Set 4
apple apple_apple_inc 40 55 25

apple_fruit 40 51 25
bank bank_bank 40 57 25

bank_river 41 54 25
bat bat_mammal 30 56 25

bat_equipment 30 55 25
cell cell_prison 40 40 25

cell_biology 40 40 25
crane crane_machine 40 47 25

crane_bird 40 41 25
date date_fruit 40 40 25

date_romantic 40 40 25
digit digit_number 40 45 30

digit_anatomy 29 45 30
gum gum_bubblegum 40 40 25

gum_mouth 40 40 25
java java_program 40 40 30

java_island 40 41 29
letter letter_alphabet 40 40 25

letter_mail 40 40 25
match match_sports 40 40 25

match_lighter 40 40 25
nail nail_metal 40 40 25

nail_finger 40 40 25
pitcher pitcher_jug 40 40 25

pitcher_sports 41 40 25
pupil pupil_student 40 52 25

pupil_eye 40 52 25
ring ring_arena 40 40 25

ring_jewelry 40 40 25
rock rock_music 20 60 25

rock_stone 30 60 25
ruler ruler_governor 40 40 25

ruler_measure 40 40 25
seal seal_animal 40 50 25

seal_close 40 50 25
spring spring_season 40 56 25

spring_device 40 42 25
trunk trunk_botany 40 40 25

trunk_car 40 41 25

Table 5: Number of sentences for every word sense in each set.
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Words Senses Definitions
apple apple_apple_inc "Apple Inc. (formerly Apple Computer, Inc.) is an American multinational corporation and

technology company headquartered in Cupertino, California, in Silicon Valley."
apple_fruit “the round fruit of a tree of the rose family, which typically has thin green or red skin and

crisp flesh.”
bank bank_bank "a financial establishment that uses money deposited by customers for investment, pays it out

when required, makes loans at interest, and exchanges currency.."
bank_river "the land alongside or sloping down to a river or lake.."

bat bat_mammal "a mainly nocturnal mammal capable of sustained flight, with membranous wings that extend
between the fingers and limbs.."

bat_equipment "an implement with a handle and a solid surface, typically of wood, used for hitting the ball in
games such as cricket, baseball, and table tennis.."

cell cell_prison "a small room in which a prisoner is locked up or in which a monk or nun sleeps."
cell_biology "the smallest structural and functional unit of an organism, which is typically microscopic and

consists of cytoplasm and a nucleus enclosed in a membrane.
crane crane_machine "a large machine that moves heavy things by lifting them in the air"

crane_bird "a kind of large bird with a long neck and long legs."
date date_fruit "the sweet fruit of various types of palm tree"

date_romantic "a social meeting planned before it happens, especially one between two people who have or
might have a romantic relationship"

digit digit_number "any one of the numbers 0 through 9"
digit_anatomy "one of the fingers or toes"

gum gum_bubblegum "short for chewing gum or bubblegum."
gum_mouth "the firm area of flesh around the roots of the teeth in the upper or lower jaw."

java java_program "a general-purpose computer programming language designed to produce programs that will
run on any computer system."

java_island "a large island that forms part of Indonesia"
letter letter_alphabet "a character representing one or more of the sounds used in speech; any of the symbols of an

alphabet."
letter_mail "a written, typed, or printed communication, sent in an envelope by post or messenger."

match match_sports "a contest in which people or teams compete against each other in a particular sport."
match_lighter "a short, thin piece of wood or cardboard used to light a fire, being tipped with a composition

that ignites when rubbed against a rough surface."
nail nail_metal "a small metal spike with a broadened flat head, driven into wood to join things together or to

serve as a hook."
nail_finger "a horny covering on the upper surface of the tip of the finger and toe in humans and other

primates."
pitcher pitcher_jug "a large, round container for liquids that has a flat base, a handle, and a very narrow raised

opening at the top for pouring"
pitcher_sports "the player who delivers the ball to the batter."

pupil pupil_student "a person who is taught by another, especially a schoolchild or student in relation to a teacher."
pupil_eye "the dark circular opening in the centre of the iris of the eye, which varies in size to regulate

the amount of light reaching the retina."
ring ring_arena "an enclosed space, surrounded by seating for spectators, in which a sport, performance, or

show takes place."
ring_jewelry "a small circular band, typically of precious metal and often set with one or more gemstones,

worn on a finger as an ornament or a token of marriage, engagement, or authority."
rock rock_music "a type of popular music with a strong, loud beat that is usually played with electric guitars

and drums"
rock_stone "the dry solid part of the earth’s surface, or any large piece of this that sticks up out of the

ground or the sea"
ruler ruler_governor "the leader of a country; a person who is in charge of a country"

ruler_measure "a straight strip or cylinder of plastic, wood, metal, or other rigid material, typically marked at
regular intervals and used to draw straight lines or measure distances."

seal seal_animal "a large mammal that eats fish and lives partly in the sea and partly on land or ice"
seal_close "something fixed around the edge of an opening to prevent liquid or gas flowing through it"

spring spring_season "the season after winter and before summer, in which vegetation begins to appear, in the
northern hemisphere from March to May and in the southern hemisphere from September to
November."

spring_device "an elastic device, typically a helical metal coil, that can be pressed or pulled but returns to its
former shape when released, used chiefly to exert constant tension or absorb movement."

trunk trunk_botany "the main woody stem of a tree as distinct from its branches and roots."
trunk_car "an enclosed space at the back of a car for carrying luggage and other goods; a boot."

Table 6: Definitions for all word senses used in our dataset. The definitions are adopted from the Oxford Dictionary.
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A.2 Words Embeddings
Figures 2, 3, and 4 complement Figure 1 from the main text by showing the distribution of embeddings
for the word “crane” for the other models studied in our experiments. Additionally, Figures 5, 6 and 7
show the same distribution for the word “bank” to supplement our findings.
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Figure 2: The embeddings for the word "crane" from BERT in sizes base and large.
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Figure 3: The embeddings for the word "crane" from T5 in sizes small, base and large.
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Figure 4: The embeddings for the word "crane" from FLAN-T5 in sizes small, base and large.
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Figure 5: The embeddings for the word "bank" from BERT in sizes base and large.
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Figure 6: The embeddings for the word "bank" from T5 in sizes small, base and large.
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Figure 7: The embeddings for the word "bank" from FLAN-T5 in sizes small, base and large.
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A.3 Performance on Individual Words
In this section, the performance of different LLMs is shown. Figure 8 shows the perfomance of the LLMs
on each word in Test Set 3, while Figure 9 shows the performance of the same LLMs on each word in
Test Set 4.

E
rr

or
Pe

rc
en

ta
ge

GPT3.5 Turbo on Set 3

E
rr

or
Pe

rc
en

ta
ge

GPT4 Turbo on Set 3

E
rr

or
Pe

rc
en

ta
ge

GPT4-o on Set 3

E
rr

or
Pe

rc
en

ta
ge

Mixtral on Set 3

E
rr

or
Pe

rc
en

ta
ge

Llama3 70b on Set 3

E
rr

or
Pe

rc
en

ta
ge

Llama3 8b on Set 3

Figure 8: The figures show the error percentages of the different LLMs on each word in Test Set 3.
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Figure 9: The figures show the error percentages of the different LLMs on each word in Test Set 4.
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