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Abstract

Instruction tuning, or supervised finetuning on
extensive task-specific data, is necessary for
Large Vision-Language Models (LVLMs) to
generalize well across a broad range of vision-
language (VL) tasks. However, training on
large VL datasets can become prohibitively ex-
pensive. In this work, we introduce COIN-
CIDE, an effective and scalable data selection
technique that uses a small model as a reference
model to select visual instruction tuning data
for efficient finetuning of a target LVLM, fo-
cusing on diversity and transferability. Specifi-
cally, we cluster the training data using internal
activations from a small model, which iden-
tifies VL concept-skill compositions needed
by a target LVLM. We then sample data from
these diverse clusters by considering their den-
sity and transferability, or the ability to trans-
fer well to other concept-skill compositions.
This approach ensures the diversity of these
compositions, which is vital for LVLM gener-
alization. Extensive experiments demonstrate
that COINCIDE achieves superior performance
and data selection efficiency against 8 strong
baselines on two distinct datasets: LLaVA-
1.5 and Vision-Flan. Using only 20% of the
LLaVA-1.5 dataset, COINCIDE achieves per-
formance comparable to the LVLM finetuned
on the whole dataset, with 70% reduction of
the wall-clock running time. On the Vision-
Flan dataset, our method achieves superior
results with only 16.7% of the training data.
Our code is available at https://github.com/G-
JWLee/COINCIDE_code.

1 Introduction

Large Vision-Language Models (LVLMs) (Zhu
et al., 2023; Dai et al., 2023; Radford et al., 2021;
Zhai et al., 2023) are often built by (1) pretrain-
ing on paired image-caption datasets and (2) sub-
sequent finetuning on image-instruction data on
diverse vision-language (VL) tasks. The second
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Figure 1: Different VL tasks in LLaVA-1.5 (Liu et al.,
2023a) exhibit different score distributions. Thus, select-
ing data based on a single score metric like EL2N (Paul
et al., 2021) or Self-Filter (Chen et al., 2024a) results
in a biased coreset (red), substantially decreasing the
diversity within the coreset.

step, referred to as visual instruction tuning (VIT),
substantially enhances multimodal instruction-
following capabilities. To achieve broad general-
ization, recent works (Cha et al., 2023; Dong et al.,
2024; Chen et al., 2024b; Li et al., 2024) integrate
an increasing number of VL tasks into VIT.

However, training on extensive VIT data incurs
significant computational cost, making the process
infeasible for small academic labs and individual
researchers. Additionally, it is not clear if all the
VIT data are necessary for good generalization, as
different VL tasks have different abilities to transfer
to downstream tasks (Tiong et al., 2024; Xi et al.,
2023; Ostapenko et al., 2024).

In this paper, we investigate the selection of a
coreset, a subset that approximates the performance
of the full dataset, from large VIT datasets. Conven-
tional coreset selection approaches (Marion et al.,
2023; Zhou et al., 2023; Chen et al., 2023a) usu-
ally utilize a score metric to select training data. As
VIT datasets are highly diverse and feature multiple
data modes (Figure 1), data selection using any sin-
gle metric would produce a coreset dominated by
a few tasks. Figure 1 indicates that, selecting 20%
of data from any part of the metric distribution of
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Figure 2: Different VL tasks (e.g., VQAv2 and GQA,
LLaVA-Conv and LLaVA-Reason) share VL concept-
skill compositions.

EL2N (Paul et al., 2021) or Self-Filter (Chen et al.,
2024a) would exclude many data modes, which
severely reduces the diversity of the selected core-
set and harms generalization. As our experiments
show (Table 1), this type of coreset selection de-
grades LVLM performance.

Our solution to the multitude of data modes is
straightforward: we explicitly identify the modes
by clustering the VIT data points using features
from multiple layers in a small LVLM. Interest-
ingly, we observe that the clusters thus identified
roughly coincide with compositions of VL con-
cepts and skills. For example, a concept could be
street signs or trains on a railroad, while a skill
could be OCR, recognizing color, or reasoning.
Upon close inspection, we find that different VL
tasks contain overlap over these concept-skill com-
positions. As exemplified in Figure 2, LLaVA-
Conv and LLaVA-Reason contain questions about
the risks of snowboard jumps, despite their sepa-
rate focuses on multi-turn conversations and rea-
soning. This suggests sampling over the clusters
would be more effective in enhancing the diversity
of VL concept-skill compositions than sampling
over datasets or tasks.

To this end, we introduce COre INstruction
Concept-skIll Data Election (COINCIDE), which
identifies VL concept-skill compositions through
data clustering using activations from an off-the-
shelf, small LVLM (Figure 3 Left). From each
cluster, COINCIDE selects training data for a target

LVLM by considering transferability (i.e., how well
knowledge from each cluster can facilitate LVLM’s
learning in other clusters) and internal density of
clusters (Figure 3 Right). Empirically, we find that
transferability correlates well with cosine similarity
among clusters. Based on the findings, we select
more data points from more transferable clusters.
Further, we sample fewer data points from denser
clusters, as data points in dense clusters are likely
redundant.

Another major challenge of coreset selection is
its high computational cost. Existing techniques
often require expensive steps like additional train-
ing (Du et al., 2023; Mekala et al., 2024; Chen
et al., 2024a), gradient calculation (Xia et al., 2024;
Liu et al., 2024), or the use of bigger and more
advanced models (Chen et al., 2023a; Liu et al.,
2023c). The time complexity and the assumption
of larger models contradict the primary goal of
coreset selection, which is to reduce the develop-
ment cost of new models larger than existing ones.
In comparison, COINCIDE assumes only a VLM
(2B) smaller than the target LVLM (7B, 13B) and
does not require any backward pass.

We validate the effectiveness of COINCIDE
across a wide range of coreset selection scenarios
using two distinct VIT datasets, LLaVA-1.5 (Liu
et al., 2023a) and Vision-Flan (Xu et al., 2024). The
experimental results demonstrate that our method
achieves performance competitive with that of the
LVLM finetuned with the full dataset, with 30% of
time cost including the data selection and training.
Our approach also achieves superior performance
and efficiency compared to 8 strong baselines.

In summary, our contributions are as follows:

• We introduce COINCIDE, an efficient coreset
selection pipeline for a target LVLM using an
existing small reference model to cluster train-
ing data. Training on 16.7-20% data selected
by COINCIDE achieves comparable perfor-
mance to whole-dataset finetuning, leading to
70% wall-clock time reduction.

• We propose an efficient transferability calcula-
tion among clusters based on our novel obser-
vation of a positive correlation between cluster
centroid similarity and cluster transferability.

• To enhance training efficacy, we prioritize
samples from clusters with high transferabil-
ity and low density, while still selecting a few
samples from other clusters for diversity.
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2 Related Work

Coreset Selection Coreset selection attempts to
extract a subset of training data that functions com-
parably to the full training set. This technique
is adopted for problems like active learning (Wei
et al., 2015; Sener and Savarese, 2018), continual
learning (Rebuffi et al., 2017; Aljundi et al., 2019),
and data pruning (Pleiss et al., 2020; Paul et al.,
2021). Recent works (Zhou et al., 2023; Xia et al.,
2024) investigate coreset selection for instruction
tuning of LLMs. Alpagasus (Chen et al., 2023a)
uses ChatGPT (OpenAI, 2022) to rate the quality of
instruction samples. S2L (Yang et al., 2024) lever-
ages the training loss trajectory of smaller models
to find optimal samples for training larger LLMs.
DiverseEvol (Wu et al., 2023) utilizes the target
model itself to iteratively choose beneficial data for
the current training episode.

Coreset Selection for Visual Instruction Tuning
Several very recent papers address the coreset se-
lection problem for visual instruction tuning (Wei
et al., 2023; Chen et al., 2024a; Liu et al., 2024).
Self-Filter (Chen et al., 2024a) scores VIT data us-
ing a score-net trained along with the target LVLM.
The concurrent work TIVE (Liu et al., 2024) em-
ploys gradient information from the target LVLM
to compute task- and sample-level importance. Al-
though effective, it demands considerable mem-
ory to store the high-dimensional gradient vectors.
Moreover, these methods require backward passes,
which are expensive due to the large training set.
Both also overlook the diversity of selected data,
which is vital for generalization. In contrast, our
approach reduces wall-clock running time and con-
siders both transferability and diversity.

VL Concept and Skill Discovery Concept dis-
covery in neural networks is a key topic in inter-
pretability research (Kim et al. 2018; FEL et al.
2023; Manning et al. 2020). Notably, Kowal et al.
(2024) performs hierarchical clustering in layer-
wise activation space. Tiong et al. (2024) attempts
to identify latent skills underlying VL datasets.
Michaud et al. (2023) performs spectral clustering
to discover LLMs skills. Though these works pro-
vide inspiration, they are orthogonal to our work,
whose main objective is to sample from data clus-
ters rather than understanding existing neural net-
works. The only application of concept discovery
we are aware of is by Gupta et al. (2017), showing
consistent VL concepts improve transfer learning.

3 Method

We start by introducing the framework that utilizes
neuron activations from a small LVLM to group
VIT data into clusters, where each cluster com-
prises samples exhibiting a similar concept-skill
composition (Section 3.2). Next, we conduct exper-
iments to examine the correlation between the simi-
larity of a cluster centroid to other centroids and the
transferability of that cluster to others (Section 3.3).
Based on our findings, we describe our data selec-
tion strategy, which performs cluster-wise sample
selection by selecting different numbers of samples
from clusters depending on their transferability and
diversity (Section 3.4). The overall framework of
our approach is illustrated in Figure 3.

3.1 Preliminaries
A modern LVLM typically consists of a visual en-
coder and an LLM, which are connected by inter-
mediate network layers. The visual information is
fed to the LLM as input (Dai et al. 2023; Liu et al.
2023b), or guides cross-attention (Alayrac et al.
2022). Here we focus on a transformer-based LLM
that receives visual information as input tokens.

The l-th transformer layer receives the visual
tokens xv

l ∈ RNv×D and text tokens xt
l ∈ RNt×D,

where Nv and Nt are the numbers of tokens, and D
is the hidden dimension size. A transformer layer
contains a multi-head self-attention (MSA) and a
feed-forward network (FFN). For the purpose of
this paper, we describe only MSA formally:

[zv
l , z

t
l ] = MSAl

(
LNl

(
[xv

l ,x
t
l ]
))

+ [xv
l ,x

t
l ], (1)

where [·, ·] denotes concatenation, LNl denotes layer
normalization, and zv

l and zt
l are output visual and

text features from the l-th layer MSA, respectively.

3.2 Discovering Concept-Skill Compositions
An LVLM aims to learn about a large variety of
visual-linguistic concepts and skills. Hence, it is
important to automatically sort training data into
concepts and skills, so that the coreset can pro-
vide sufficient coverage of these. Recent stud-
ies (Schwettmann et al., 2023; Pan et al., 2023;
Gandelsman et al., 2024) reveal that the internal
activations at various layers of LVLMs may encode
different visual concepts.

To figure out which layer of the LVLM provides
the best feature representation for visual concept
and skill discovery, we perform a preliminary vi-
sualization study of TinyLLaVA-2B (Zhou et al.,

5062



Train on railroad / Counting

All Data

Small
LVLM

Clusters of
Concepts / Skills

Street sign / OCR

Q: What is the 
name of the 

street?

Q: What city is 
at the next left?

Target
LVLM

Instruction 
Tuning of

K-
Means

Transferability 𝑺 ൌ
Cosine of Centroids

Cluster Density 𝑫 ൌ
Avg. Pairwise Dist.

# of samples 
per cluster

∝  

𝑺𝟏 / 𝑫𝟏
𝑺𝟐 / 𝑫𝟐

⋮
𝑺𝑲 / 𝑫𝑲

  

Coreset

Intra-
Cluster

Sampling

Q: How many 
rail cars are 

there?

Q: How many 
cars are on the 

train?

Figure 3: Illustration of COINCIDE. Our method utilizes a small LVLM to cluster visual instruction tuning data
based on concept-skill compositions. We then assess the cluster transferability as the mean cosine similarity to other
cluster centroids. We further compute the cluster density as the mean Gaussian kernel distance among all data pairs
within the cluster. Using cluster transferability and density, COINCIDE determines the number of data to sample
from each cluster and performs intra-cluster sampling. Finally, it combines all the selected samples from all the
clusters to compose the final coreset.

2024). Given an image and a textual question, we
visualize the image patches that contribute the most
to the generation of the ground-truth answer. Using
features from different layers highlights different
image patches. Ideally, we can compare the visu-
alization with human intuition and select the layer
that agrees with human intuition the most. We pro-
vide detailed experimental procedures with some
visualization results in Appendix B.

Perhaps surprisingly, we find that the best layer
varies substantially according to the input. That is,
the VL concepts and skills are distributed across dif-
ferent layers. Hence, for the clustering, we choose
five layers spanning from the initial to top layers
of the model to cover a wide range of concepts and
skills and use the concatenation of their output as
the feature vector of each data point.

We cluster VIT training data points using their
feature vector from multiple layers of a small
LVLM, called a reference model. We extract the
features right after the MSA of the l-th layer (Eq. 1)
and process them into unit-length vectors:

uv
l = L2-Normalize(MeanPool(tanh(zv

l ))),

ut
l = L2-Normalize(MeanPool(tanh(zt

l ))),
(2)

where the mean-pooling is performed across the
number of visual and text tokens, respectively. The
hyperbolic tangent function, tanh, is necessary to
reduce the impact of a few extreme activations,
which are described by Sun et al. (2024). Without
this step, these large values would dominate the
feature vector and skew the clustering. After that,

we concatenate features from the small LVLM’s
layers:

um = [uv
l1 , u

t
l1 , . . . , u

v
lM

, ut
lM

] /
√
2M, (3)

where M denotes the number of layers where we
extract the features, and the subscripts l1, . . . lM
are the layer indices. The resultant um ∈ R2M∗D

is the final multimodal feature of the data point.
Then, we perform spherical k-means clustering

on um, yielding K clusters. To ensure the purity
of clusters, we set K to a large number, such as
10, 000. Despite its simplicity, the k-means pro-
cedure runs in O(NK) time for N data points,
which is advantageous when both N and K are
large. Other clustering techniques such as spectral
clustering or affinity propagation are much more
expensive. Qualitative analysis indicates the clus-
ters coincide with concept-skill compositions. We
provide visualization of the clusters in Appendix C.

3.3 Measuring Cluster Transferability

Empirical evidence shows that datasets differ in
their ability to generalize to other datasets (Zamir
et al., 2018; Achille et al., 2020). We hypothesize
that (1) data clusters also have varying levels of
transferability and (2) clusters close together in fea-
ture space transfer well to each other. If (1) is true,
it would be beneficial to select data from highly
transferable clusters. If (2) is true, we can use dis-
tance among clusters as a proxy for transferability.

We design an experiment to verify the hypothe-
ses. Following Chen et al. (2023b), to measure
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Figure 4: Correlation between cluster centroid similarity
and transferability. We examine the correlations in the
LLaVA 1.5 (Liu et al., 2023a) and Vision-Flan (Xu et al.,
2024) datasets, with each point representing a source
cluster. We report the Pearson correlation coefficient (r)
and p-value.

transferability from cluster Ci to cluster Cj , we
run two training sessions. In the first, we finetune
an LVLM on the same number of samples, Nc,
drawn from Ci and Cj respectively. In the second,
we finetune on Nc samples from Cj only. After
finetuning, both models are tested on unseen sam-
ples from Cj , yielding test losses Li,j→j and Lj→j .
The difference Lj→j − Li,j→j can be seen as the
degree by which Ci facilitates the learning of Cj .
We aggregate over target clusters to compute the
transferability of the source cluster Ci:

Ti =
1

Ktgt

Ktgt∑

j=1

(Lj→j − Li,j→j), (4)

where Ktgt is the number of target clusters. Then,
we compute the cosine similarity of the source clus-
ter with the target clusters and average:

Si =
1

Ktgt

Ktgt∑

j=1

cos(ei, ej), (5)

where ei is the cluster centroid of cluster Ci.
We compute the correlation between transfer-

ability Ti and average cosine similarity Si over all
possible pairings between 50 random source clus-
ters and 50 random target clusters, and plot the
results in Figure 4. We find that (1) clusters differ
significantly in transfer power, and (2) Si and Ti

have a strong positive correlation (0.66-0.72), in-
dicating that the cosine similarity among clusters
can serve as an effective and inexpensive proxy for
transferability. For K clusters, the time complexity

of all cosine similarities is O(K2). Further studies
of transferability are available in Appendix D.

3.4 Data Selection Criteria
In addition to transferability Ti and its proxy Si,
we consider the density of a cluster during the sam-
pling process, as selecting too many data points
from a dense cluster that contains many similar
samples would create redundancy. Hence, we in-
troduce a density measure Di:

Di =
1

|Ci|(|Ci| − 1)

∑

p,q∈Ci,p ̸=q

d(p, q), (6)

where p and q are two distinct data points from
cluster Ci, and d(p, q) = exp(−∥um

p − um
q ∥2) is

the Gaussian kernel function with um
p and um

q be-
ing the multimodal neuron activations (Eq. 3) of
data points p and q, respectively. The small Di

value indicates that the cluster Ci is highly diverse.
In order to create a coreset of Ncore samples,

we select from cluster Ci exactly NcorePi samples.
Here, Pi ∝ exp(Si/(τDi)) is a categorical dis-
tribution and τ is a temperature hyperparameter.
This approach enables us to select more samples
from more transferable and less dense clusters to
enhance training efficacy, while still selecting a
few samples from other clusters to ensure diverse
concept-skill compositions in the coreset.

From cluster Ci, we aim to select NcorePi sam-
ples that are representative of the original data dis-
tribution of Ci. We compute the distance between
the original cluster Ci and the set of sampled data
points C ′

i as MMD2, the squared maximum mean
discrepancy, which is defined as:

MMD2=A(Ci, Ci)+A(C ′
i, C

′
i)−2A(Ci, C

′
i),

A(Ci, Cj)=
1

|Ci||Cj |
∑

p∈Ci,q∈Cj

d(p, q). (7)

We iteratively add samples from the cluster Ci to
the sampled cluster C ′

i that minimizes MMD2 us-
ing greedy search (Kim et al., 2016). In the end, we
combine all the selected samples from all the clus-
ters to compose the final VIT coreset. The complete
data selection algorithm is shown in Appendix G.

4 Experiments

4.1 Setup
Visual Instruction Tuning Datasets We con-
duct coreset selection on two distinct VIT datasets:
LLaVA-1.5 (Liu et al., 2023a) and Vision-Flan (Xu
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Table 1: Comparison of coreset selection techniques on the LLaVA-1.5 dataset. We finetune the models using
coresets with a 20% sampling ratio and estimate performance on various multimodal evaluation benchmarks. The
best and the second best results are in bold and underlined, respectively.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA- Rel. (%)
en cn Bench

Full-Finetune 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9 100

Random 75.7 58.9 44.3 68.5 55.3 84.7 1483.0 62.2 54.8 65.0 95.8
CLIP-Score 73.4 51.4 43.0 65.0 54.7 85.3 1331.6 55.2 52.0 66.2 91.2
EL2N 76.2 58.7 43.7 65.5 53.0 84.3 1439.5 53.2 47.4 64.9 92.0
Perplexity 75.8 57.0 47.8 65.1 52.8 82.6 1341.4 52.0 45.8 68.3 91.6
SemDeDup 74.2 54.5 46.9 65.8 55.5 84.7 1376.9 52.2 48.5 70.0 92.6
D2-Pruning 73.0 58.4 41.9 69.3 51.8 85.7 1391.2 65.7 57.6 63.9 94.8
Self-Sup 74.9 59.5 46.0 67.8 49.3 83.5 1335.9 61.4 53.8 63.3 93.4
Self-Filter 73.7 58.3 53.2 61.4 52.9 83.8 1306.2 48.8 45.3 64.9 90.9
COINCIDE (Ours) 76.5 59.8 46.8 69.2 55.6 86.1 1495.6 63.1 54.5 67.3 97.4

et al., 2024). The LLaVA-1.5 dataset contains 665k
VIT data from 12 different VL tasks. The Vision-
Flan dataset comprises 191 VL tasks, each with ap-
proximately 1k expert-annotated VIT data points,
totaling 186k samples.

Models for Training and Data Selection For
the target LVLMs, we use the pre-trained LLaVA-
1.5 model (Liu et al., 2023a) with a default size of
7B parameters unless otherwise specified. In all
experiments, we train the models using LoRA (Hu
et al., 2022) for one epoch, following the official
finetuning hyperparameters specified in LLaVA-
1.5. As a reference model, we use the TinyLLaVA-
2B (Zhou et al., 2024), a small LVLM finetuned on
the target VIT dataset, for efficient coreset selection
for all methods unless otherwise specified. All
experiments are conducted using 4 V100 GPUs.

Evaluation Benchmark To assess the gener-
alization of finetuned LVLMs across diverse vi-
sual instructions, we evaluate the models on sev-
eral widely adopted zero-shot multimodal eval-
uation benchmarks, including 1) visual ques-
tion answering: VQAv2 (Goyal et al., 2017),
GQA (Hudson and Manning, 2019), VizWiz (Gu-
rari et al., 2018); 2) knowledge-grounded QA:
ScienceQA (Lu et al., 2022); 3) Optical Charac-
ter Recognition (OCR): TextVQA (Singh et al.,
2019); 4) hallucination: POPE (Li et al., 2023);
5) multiple-choice: MME (Fu et al., 2023), MM-
Bench (Liu et al., 2023d); 6) free-form generation:
LLaVA-Bench (Liu et al., 2023b), MM-Vet (Yu
et al., 2023). In all experiments, we follow the pro-
tocols outlined in LLaVA-1.5 and Vision-Flan to
select evaluation benchmarks. Further explanations

of these benchmarks are provided in Appendix A.
Since each evaluation benchmark has a different

scale, we compute average relative performance,
denoted as Rel., across benchmarks to assess the
level of generalization. Each relative performance
is derived from the formula: (model performance /
full-finetuned performance) × 100%.

Baselines We compare our method with sev-
eral coreset selection techniques: CLIP-Score,
EL2N (Paul et al., 2021), Perplexity (Mar-
ion et al., 2023), SemDeDup (Abbas et al.,
2023), D2-Pruning (Maharana et al., 2023), Self-
Sup (Sorscher et al., 2022). We also compare
with a recent VIT coreset selection method, Self-
Filter (Chen et al., 2024a). We additionally report
the results of Random, the model finetuned with the
coreset collected by random sampling, and Full-
Finetune, the model finetuned with the full VIT
dataset. The details of the baseline methods are
provided in Appendix A.

4.2 Results and Discussion

COINCIDE surpasses baselines on LLaVA-1.5.
Table 1 presents model performance when we limit
the coreset to 20% of the size of the LLaVA-1.5
VIT dataset. COINCIDE is either the best or a
close second on 7 out of 10 benchmarks, including
VQAv2, GQA, SQA-I, TextVQA, POPE, MME,
and MMBench-en. On average, COINCIDE out-
performs the best baseline by 1.6 percent points
(pp) in relative performance.

Interestingly, all baselines perform worse than
the random sampling on average relative perfor-
mance, suggesting that they may be susceptible
to the selection bias, which is discussed in the in-
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Figure 5: Average relative performances of all coreset
selection techniques at different sampling ratios for the
LLaVA-1.5 dataset.

Table 2: Comparison of coreset selection techniques
on the Vision-Flan dataset. We finetune the models us-
ing coresets with a 16.7% sampling ratio and estimate
performance on various multimodal evaluation bench-
marks. The best and the second best results are in bold
and underlined, respectively.

Method MMBench-en MME MM-Vet POPE SQA-I Rel. (%)

Full-Finetune 53.4 1287.5 25.6 84.2 61.3 100

Random 45.2 1122.3 26.1 82.5 60.9 94.2
CLIP-Score 34.3 687.6 26.6 72.6 61.8 81.7
EL2N 45.3 1082.9 23.9 82.1 60.6 91.7
Perplexity 39.3 1160.9 26.1 83.1 59.2 92.2
SemDeDup 42.1 1146.5 27.2 82.7 56.8 93.0
D2-Pruning 49.1 1052.4 27.0 82.5 64.7 96.5
Self-Sup 42.9 1012.2 23.5 80.8 60.0 88.9
Self-Filter 28.6 923.6 30.0 83.3 59.3 87.6
COINCIDE (Ours) 56.7 1222.2 26.2 81.9 63.8 101.0

troduction and illustrated in Figure 1. In contrast,
COINCIDE considers the diversity of VL concept-
skill compositions, demonstrating high generaliza-
tion across a broad range of visual instructions. We
further analyze the selection bias of the baselines
and effectiveness of COINCIDE in Appendix E.

In Figure 5, we show the performance compari-
son across different coreset sizes as proportions of
the original LLaVA-1.5 dataset. COINCIDE con-
sistently outperforms other baselines across various
sampling ratios, underscoring the effectiveness of
our approach. COINCIDE also performs well on
LLaVA-1.5-13B, as shown in Appendix F.1.

One Sixth of Vision-Flan selected by COIN-
CIDE outperforms full dataset. We further eval-
uate the coreset selection techniques on the Vision-
Flan VIT dataset (Xu et al., 2024) and show the
results in Table 2. COINCIDE exceeds the perfor-
mance of the model finetuned on the whole Vision-
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Figure 6: Average relative performances of all coreset
selection techniques at different sampling ratios for the
Vision-Flan dataset.
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Figure 7: Comparison of coreset selection techniques on
average relative performance and wall-clock time cost.
The wall-clock time cost includes both the data selection
and finetuning of the target LVLM. The time cost is
measured in hours of running time on a computing node
with 4× V100 GPUs.

Flan data by 1.0 pp and the performance of the
best baseline by 4.5 pp, using a selected subset
16.7% (1/6) of its size. Further, as illustrated in Fig-
ure 6, COINCIDE maintains consistently high per-
formance across several sampling rates.

We note that Vision-Flan, with its 191 VL tasks,
is much more diverse than the LLaVA-1.5 dataset
of 12 tasks. The stronger performance of COIN-
CIDE on the Vision-Flan suggests that COINCIDE
algorithm is well adapted to the use case of visual
instruction tuning, which is increasingly performed
on larger and more diverse sets of tasks.

Another curious phenomenon is that several
baselines, including CLIP-Score, Perplexity, and
Self-Filter, experience performance declines as the
sampling ratio increases in Figure 6. A similar
trend is observed in the random baseline in Fig-
ure 5. This underscores the importance of delib-
erate coreset selection, as merely increasing the
dataset size does not guarantee improved LVLM
capabilities.
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Table 3: Ablation studies of COINCIDE. (a) Effect of different reference models. The time cost includes both the
data selection and finetuning of the target LVLM and is measured in hours of running time on a computing node
with 4× V100 GPUs. (b) Ablation on data selection criteria of our approach, transferability (S) and density (D). (c)
The performance of different intra-cluster sampling strategies across various coreset sizes.

(a) Reference Model

Model Time Rel.
(# params) (hours) (%)

CLIP (0.4B) 10.9 94.2
TinyLLaVA (0.9B) 12.2 96.3
TinyLLaVA (2B) 15.3 97.4
LLaVA-1.5 (7B) 20.7 97.1

(b) Key Components

Method S D Rel. (%)

Random − − 95.8

COINCIDE (Ours)

− − 94.4
✓ − 95.9
− ✓ 94.7
✓ ✓ 97.4

(c) Intra-Cluster Sampling methods

Intra-Cluster Sampling Sampling ratio

5% 10% 20% 40% 60%

Random-select 90.1 94.3 97.5 97.7 98.3

Nearest-to-centroid 91.9 94.3 96.7 99.1 98.4

Greedy-MMD2-minimize 90.7 93.8 97.4 98.4 99.4

COINCIDE provides wall-clock training time
reduction and is Pareto superior. In Figure 7,
we plot the wall-clock time cost of the entire
pipeline of data selection and model finetuning ver-
sus the average relative performance (Rel.) on the
LLaVA-1.5 dataset. COINCIDE achieves 97.4%,
98.4%, and 99.4% relative performance with the
wall-clock times of 15.1, 25.1, and 35.1 hours, re-
spectively. In contrast, finetuning on all data takes
50 hours.

We observe that COINCIDE provides Pareto su-
perior solutions to all baselines. This is mainly due
to the excellent time complexity of COINCIDE,
which is linear to the number of training data points.
Moreover, our method discovers the transferability
among clusters at a low computational cost. It re-
quires only cosine similarity calculations, with a
time complexity quadratic to the number of clus-
ters. Hence, COINCIDE provides a scalable data
selection procedure.

COINCIDE also utilizes neuron activations from
intermediate layers of the small reference model
rather than the final outputs, avoiding complete
forward passes like other baselines. Additionally,
COINCIDE does not require training of additional
networks that score data points, like Self-Filter.
Neither does it require backward passes like the
concurrent work TIVE (Liu et al., 2024). The com-
bination of all these factors leads to an efficient
solution to coreset selection.

4.3 Further Analysis and Ablation

Alternative Reference Models We analyze the
effects of different reference models, which are the
models used to extract features for clustering and
cosine similarity. We compare four models, CLIP,
TinyLLaVA-0.9B, TinyLLaVA-2B, and LLaVA-
1.5-7B, and report the time cost of the entire coreset

selection pipeline and average relative performance
in Table 3 (a). We observe that CLIP performs the
worst whereas TinyLLaVA-2B performs the best
with reasonable time cost in data selection. How-
ever, the differences between TinyLLaVA-0.9B,
TinyLLaVA-2B, and LLaVA-1.5-7B are small. We
conclude that a well-trained small model can serve
effectively as a reference model in coreset selection
for a target LVLM. We also examine the robustness
of COINCIDE when the reference model is fine-
tuned on a different VIT dataset, which is detailed
in Appendix F.2.

Ablation on Data Selection Criteria To validate
our coreset selection method, we conduct ablation
studies on the two data selection criteria, transfer-
ability and density, as summarized in Table 3 (b).
In the first ablation, without using either criterion,
we simply select the same number of samples from
each cluster. This results in inferior performance,
which suggests that naive stratified sampling from
the clusters is not sufficient, possibly due to the
heterogeneous nature of the clusters. In the sec-
ond ablation, number of samples from each cluster
is proportional to the transferability of the cluster,
leading to a 1.5 percentage point (pp) increase. The
third ablation selects number of samples inversely
proportional to density, yielding a modest enhance-
ment of 0.3 pp. Finally, combining both transfer-
ability and density provides a sizeable increase of
3.0 pp, demonstrating that the two selection criteria
are complementary to each other.

Intra-cluster Selection Criteria COINCIDE se-
lects samples within a cluster by minimizing
MMD2. We examine the effects of two alternative
techniques, random selection and selecting samples
closest to the centroids. As shown in Table 3 (c),
in small coresets, samples closest to the centroids,
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which are probably not outliers or hard samples,
lead to high performance. In contrast, under high
sampling ratios (i.e., large coresets), selecting di-
verse data using the MMD2 metric leads to high
performance. This is reminiscent of the finding
of Sorscher et al. (2022) that easy samples are ben-
eficial when the sampling ratio is small, whereas
hard samples are advantageous when the sampling
ratio is large. Overall, COINCIDE is robust to the
choice of intra-cluster sampling, but adapting the
intra-cluster sampling method to the sampling ratio
can enhance the effectiveness of our approach.

5 Conclusion

In this paper, we introduce COINCIDE, a cluster-
level data selection technique for efficient visual in-
struction tuning of Large Vision-Language Models.
We demonstrate that clustering based on internal
activations from a small model can represent visual-
linguistic concept-skill compositions shared among
diverse tasks in visual instruction tuning datasets.
Additionally, our empirical investigation validates
a strong positive correlation between cosine simi-
larity and transferability among clusters. Based on
the transferability and density of clusters, COIN-
CIDE selects more samples from more transferable
and less dense clusters to enhance training efficacy,
while preserving the diversity of concept-skill com-
positions within the coreset to ensure better model
generalization ability. Comprehensive experiments
on the LLaVA-1.5 and Vision-Flan datasets demon-
strate that our method outperforms baselines across
several benchmarks with the lowest data selection
cost, showcasing its effectiveness and efficiency.
The success of COINCIDE suggests redundancy
in popular VIT datasets and underscores the im-
portance of a thorough understanding of data in
training LVLMs.

Limitations

In our experiments, we observe that VL concept-
skill compositions are shared across various VL
tasks and identify VL concept-skill compositions
that transfer well to others. However, after identify-
ing these compositions and performing coreset se-
lection, we finetune the target LVLMs by randomly
selecting samples from the coreset. Recognizing
the growing research attention on the importance
of training order in LLM instruction tuning, we be-
lieve that considering the training order for LVLMs
is crucial to enhance efficiency in visual instruction

tuning. In future research, we aim to develop a
curriculum learning algorithm that automatically
determines the optimal training order based on the
identified VL concept-skill compositions to further
reduce the development cost of a new model.

Additionally, we assess whether the data with
similar concept-skill compositions are concentrated
well on the clusters through human inspection.
Therefore, further investigation should be con-
ducted to quantitatively evaluate the clustering of
data with similar concept-skill compositions, which
may enable accurate identification of VL concept-
skill compositions and accurate quantification of
their transferability.

Ethics Statement

In this work, we use publicly available visual in-
struction tuning datasets for coreset selection to
enable easy replication. However, some data in the
datasets contain erroneous answers about the visual
content or images that do not clearly connect with
the provided answers. Finetuning Large Vision-
Language Models (LVLMs) with such data may
lead to the generation of erroneous interpretations
of images or hallucinations. This may pose an ethi-
cal issue for LVLM deployment in the real world.
However, current coreset selection techniques, in-
cluding ours, do not address hallucination in their
selection processes. This motivates further research
in coreset selection to identify visual instruction
tuning data that minimizes hallucinations, aiming
to build more reliable and trustworthy LVLMs.
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A Details of Experimental Setups

Evaluation Benchmark We provide in-depth
explanations of the multimodal evaluation bench-
marks used in our experiments. (1) VQAv2 (Goyal
et al., 2017) evaluates the ability to understand
and reason about general visual content by an-
swering open-ended questions based on images.
(2) GQA (Hudson and Manning, 2019) assesses
compositional reasoning and understanding skills,
requiring models to understand relationships and
attributes of objects within images. (3) Vizwiz (Gu-
rari et al., 2018) is designed to evaluate the model’s
ability to cope with real-world visual impairments.
(4) ScienceQA-Image (SQA-I) (Lu et al., 2022)
tests the model’s science-related reasoning and vi-
sual understanding of images. (5) TextVQA (Singh
et al., 2019) specifically targets text in images, as-
sessing the Optical Character Recognition (OCR)
ability of models. (6) POPE (Li et al., 2023) mea-
sures object hallucination in models. (7) MME (Fu
et al., 2023) contains binary choice questions de-
signed to evaluate perception and cognition abili-
ties through 14 subtasks. (8) MMBench (Liu et al.,
2023d) evaluates various abilities of models, cov-
ering object detection, text recognition, relation
reasoning, etc., using tests conducted in English
(en) or Chinese (cn). (9) LLaVA-Bench (Liu et al.,
2023a) is specifically designed for evaluating mod-
els on visual instruction-following and chat ability.
(10) MM-Vet (Yu et al., 2023) measures VL capa-
bilities, including recognition, OCR, knowledge,
language generation, spatial awareness, and math.

Baselines In this section, we provide a more de-
tailed explanation of the baselines. The hyperpa-
rameters for baselines in our experiments are sum-
marized in Table 4.

• CLIP-Score utilizes the CLIP (Radford et al.,
2021) model to assess the alignment between
images and their instructions. For our study, we
select VIT data with the highest CLIP scores.

• EL2N (Paul et al., 2021) estimates sample qual-
ity using the Error L2-Norm score, defined as
E[||p(x)− y||2]. Here, p(·) represents the refer-
ence model, x is the input, and y is the ground-
truth label. This metric calculates the average L2
distance between the model’s predictions and the
ground-truth labels for text tokens.

• Perplexity (Marion et al., 2023) measures the
average negative log-likelihood of the next token

Table 4: Hyperparameter configurations.

Method LLaVA-1.5 Vision-Flan

CLIP-Score high score selected high score selected

EL2N medium score selected medium score selected

Perplexity medium score selected medium score selected

SemDeDup K : 10,000 K : 5,000

D2-Pruning k : 5, γr : 0.4, γf : 1.0 k : 5, γr : 0.4, γf : 1.0

Self-Sup K : 10,000 K : 5,000

Self-Filter k : 10, γ : 1 k : 10, γ : 1

COINCIDE (Ours) K : 10,000, τ : 0.1 K : 5,000, τ : 0.1

prediction, defined as exp(−E[log p(x)]). This
metric assesses the uncertainty in the model’s
predictions. For both EL2N and Perplexity, we
select data from the middle score distribution,
as this range has been shown to perform best in
prior research (Marion et al., 2023).

• SemDeDup (Abbas et al., 2023) removes seman-
tically duplicated data by clustering the output
embeddings of the last token from the reference
model’s final layer. This helps in reducing redun-
dancy in the selected coreset.

• D2-Pruning (Maharana et al., 2023) represents
the dataset as a graph where nodes represent
sample difficulty and edges represent distances
between samples. It actively uses the graph to
preserve diversity in the coreset. We use the
AUM (Pleiss et al., 2020) score to indicate diffi-
culty, defined as py(x)−max

i ̸=y
pi(x), where py(x)

is the prediction value for the ground-truth label,
and max

i ̸=y
pi(x) is the highest prediction value

for any non-ground-truth label. For the distances
between samples, we calculate the L2 distance
between averaged output embeddings from the
last layer tokens of the reference model.

• Self-Sup (Sorscher et al., 2022) clusters the data
using the averaged output embeddings from the
last layer tokens of the reference model. It scores
data based on their distance to cluster centroids,
selecting those the most likely to be prototypical.

• Self-Filter (Chen et al., 2024a) is a recent VIT
coreset selection method that was originally ap-
plied to the LLaVA-158k VIT dataset (Liu et al.,
2023b), which consists of only three VL tasks.
It finetunes the score-net along with the target
LVLM on the full dataset to serve as a reference
model for scoring and filtering VIT data. We use
the version that additionally incorporates both
CLIP scores and CLIP features since it ensures
enhanced performance and efficiency.

5072



VQAv2 GQA OKVQA A-OKVQA RefCOCO OCR-VQA VG LLaVA-
Conv

TextCaps LLaVA-
Detail

LLaVA-
Reason

ShareGPT

VL Tasks

0.3
0.4
0.5
0.6

Tr
an

sf
er

ab
ili

ty LLaVA-1.5 Task Transferability

Figure 8: Task-wise transferability. We group the VIT data based on task names and then report the average cluster
transferability of each group.

B Visualizing LVLM Skills with
Relevancy Maps

In our method, we extract neuron activations from
various layers (Eq. 2) to represent the concepts
and skills of each VIT data. In this approach, we
hypothesize that distinct layers represent distinct
concepts and skills of the LVLM. To support this
assumption, we compute relevancy maps (Chefer
et al., 2021) following the approach outlined in Stan
et al. (2024). The relevancy maps help us under-
stand the model’s final output by highlighting the
most contributing parts of the input for each layer.
Given the target output token yt and the attention
map Al ∈ Rh×(Nv+Nl)×(Nv+Nl) of the l-th layer,
where h is the head dimension of the attention, the
relevancy map R is computed as follows:

Āl = Eh[∇Al ⊙Al], ∇Al =
∂yt

∂Al
,

R = R+ Āl ·R, for l ∈ {1, 2, . . . , L},
(8)

where ⊙ denotes the Hadamard product and L is
the total number of layers in the LVLM. In order
to investigate the contribution of each layer to the
final output, we visualize the image regions related
to the output token through the visual relevancy
map computed from each layer. Specifically, we
consider the row of Āl · R corresponding to the
output token. Then, we extract the visual token
parts of the row to yield the visual relevancy map.

For the investigation, we inspect the 4th, 8th,
12th, 16th, and 20th layers of the TinyLLaVA-
2B (Zhou et al., 2024) model and identify the layer
that activates the most relevant visual regions. The
findings in Figure 10 reveal that (1) the most rel-
evant layer varies according to the concept-skill
composition and (2) the most relevant layer is the
same across diverse VIT data when the data shares
a similar concept-skill composition. This supports
our assumption that different layers contribute to
distinct concepts and skills, allowing neuron activa-
tions from various layers to effectively group VIT
data by their concept-skill composition.

C Concept-Skill Clustering Visualization

We visualize the clustering results of the gathered
VIT data. The results are illustrated in Figure 11.
We observe that most clusters contain VIT data that
encode similar concept-skill compositions. For in-
stance, the first group in Figure 11 consists of sam-
ples requiring OCR and counting abilities to solve
visual queries involving images with store signs.
The second group features images of people wait-
ing for public transportation and multiple-choice
questions that require visual recognition and rea-
soning abilities. The third group shows a cluster of
samples with images of people in suits and queries
focusing on object localization and generating cap-
tions for given bounding boxes. Lastly, the bottom
group includes images exhibiting children with an-
imals and requiring the ability to reason about the
educational benefits that the children might gain
from interacting with the animals.

D In-Depth Analysis on Concept-Skill
Composition Transferability

D.1 Task-wise Transferability
To further understand transferability, we calculate
the transferability of LLaVA-1.5 tasks by averaging
the cluster transferability of VIT data. We show the
results in Figure 8. We observe that VQA tasks, in-
cluding VQAv2, GQA, OKVQA, and A-OKVQA,
contain VIT data that transfers well to other data.
In contrast, GPT-generated conversational tasks,
including LLaVA-Conv, LLaVA-Detail, LLaVA-
Rason, and ShareGPT, exhibit low transferability.
This corresponds to the findings of Tiong et al.
(2024) that VQA tasks are effective for finetun-
ing LVLMs. This alignment supports the efficacy
of our approach in discovering the fine-grained
concept-skill compositions and their transferabil-
ity. We hypothesize that the high transferability
of the VQA tasks is because these tasks mostly re-
quire abilities close to the fine-grained VL concepts
and skills that can be shared with other tasks, as
described in Figure 2, unlike more complex tasks.
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Table 5: Transferring to the larger target model. We validate if the coresets selected from TinyLLaVA-2B are
transferable to LLaVA-1.5-13B finetining. We train the LLaVA-1.5-13B using coresets with 20% sampling ratio
and estimate performance on various multimodal benchmarks. The best and the second best results are highlighted
in bold and underline, respectively.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA- Rel. (%)
en cn Wild

Full-Finetune 80.0 63.3 58.9 71.2 60.2 86.7 1541.7 68.5 61.5 69.5 100

Random 76.7 60.5 48.0 68.8 57.7 84.8 1484.9 62.8 55.2 68.6 94.0
CLIP-Score 75.3 52.6 42.2 69.7 57.3 85.4 1426.3 60.4 54.0 68.1 90.7
EL2N 77.2 59.6 54.8 69.9 56.1 84.1 1531.0 59.3 52.3 65.8 93.8
Perplexity 77.0 58.5 48.2 68.7 54.8 83.1 1508.8 57.5 50.3 68.7 91.6
SemDeDup 75.6 57.5 48.3 70.5 57.7 85.3 1397.6 59.0 51.1 68.7 91.9
D2-Pruning 73.9 60.5 49.8 70.4 55.2 84.9 1463.0 67.3 59.9 66.5 94.7
Self-Sup 76.3 60.5 50.0 70.2 52.7 85.4 1463.8 63.7 57.6 64.9 93.6
Self-Filter 75.0 59.8 48.6 69.5 55.8 84.5 1446.9 58.8 51.8 69.1 92.2
COINCIDE (Ours) 77.8 60.4 51.6 70.0 58.6 87.1 1516.8 64.0 57.7 67.4 95.9

D.2 Concept-Skill with High Transferability

In Figure 12, we visualize concept-skill composi-
tions having the highest transferability for various
VL task types. We define the VL task type of a clus-
ter based on the task name associated with most
of the cluster’s data (e.g., VQAv2, GQA). Inter-
estingly, GQA and LLaVA-Conv share a similar
concept-skill composition as their most transfer-
able concept-skill composition. This suggests that
the transferability of VL concept-skill composition
might be consistent across different VL tasks.

D.3 Concept-Skill as Latent Factor of LVLM

We conduct an ablation study to verify if data clus-
ters from different VL task types have high trans-
ferability with each other when they share a similar
concept-skill composition. In this study, we se-
lect two clusters from different VL task types with
a similar concept-skill composition (second and
fourth groups in Figure 12), using the first clus-
ter as the source and the second cluster as the tar-
get. Additionally, we employ 49 randomly selected
source clusters and measure transferability from
the source clusters to the target cluster (Eq. 4). The
source cluster, sharing a similar concept-skill com-
position with the target, ranks in the top 5 of the 50
source clusters in terms of test loss gain, exhibit-
ing high transferability to the target cluster. This
suggests that concept-skill compositions resemble
fine-grained latent factors that constitute LVLM
abilities. Thus, these fine-grained VL concepts and
skills must be considered to effectively reduce data
redundancy and build a well-generalized LVLM.

Table 7: Impact of a reference model training dataset.
We use TinyLLaVA-2B finetuned on the LLaVA-1.5
dataset as a reference model to collect coresets from
the Vision-Flan dataset with 16.7% sampling ratio. The
best and the second best results are highlighted in bold
and underline, respectively.

Method MMBench-en MME MM-Vet POPE SQA-I Rel. (%)

Full-Finetune 53.4 1287.5 25.6 84.2 61.3 100

EL2N 41.8 1082.0 23.9 82.6 61.7 90.9
Perplexity 45.7 1001.7 26.1 81.9 64.8 93.7
SemDeDup 46.8 1129.7 27.2 82.5 64.3 96.9
D2-Pruning 48.1 1143.0 27.0 83.4 63.1 97.3
Self-Sup 47.1 1084.6 23.5 81.7 63.5 93
COINCIDE (Ours) 51.7 1139.0 26.9 84.0 64.5 99.1

E Concept-Skill Diversity within Coresets

Our method selects data from various clusters to
ensure a high diversity of VL concept-skill com-
positions within the coreset. To demonstrate the
efficacy of our method, we compare the diversity
within the coreset by our method with those by
the baseline methods. Specifically, we use the 191
tasks from the Vision-Flan dataset as proxies for
different concept-skill compositions, as there are
no ground-truth compositions. We then count the
number of selected samples for each task. The re-
sults, summarized in Figure 13, indicate that base-
line methods select most data from only a few tasks,
leading to biased selection and undermining LVLM
generalization. This bias explains why most base-
lines perform worse than random sampling in our
experiments. In contrast, our method achieves a
more balanced selection across the various tasks.
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Figure 9: Hyperparameter search. We examine the effect of the temperature
(τ ) and the number of clusters (K).
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Table 6: We investigate the im-
pact of various representations
of multimodal neuron activation.

Neuron Activation Rel. (%)

Boolean 95.7
Last layer 96.5
MSA layers 97.4
FFN layers 96.0

F Additional Experimental Results

F.1 Transfering to Larger Target Model

We evaluate the performance of the larger tar-
get model (LLaVA-1.5-13B) finetuned on coresets
gathered by the small LVLM (TinyLLaVA-2B). Ta-
ble 5 summarizes the performances across various
benchmarks. The results demonstrate the effective-
ness of our method in selecting a coreset that can be
successfully transferred to the larger target model.

F.2 Robustness of Reference Model

We investigate the robustness of our method when
the reference model is finetuned on a VIT dataset
different from a target VIT dataset. To this end, we
use the TinyLLaVA-2B finetuned on the LLaVA-
1.5 VIT dataset, to perform coreset selection from
the Vision-Flan dataset. The results are summa-
rized in Table 7. COINCIDE continues to show
performance comparable to full-finetuning while
outperforming other baseline methods.

F.3 Hyperparameters

We conduct ablation studies on hyperparameters of
our method, which include the number of clusters
(K) and the temperature (τ ). The results, summa-
rized in Figure 9, reveal that a sufficiently large
number of clusters is essential to ensure cluster
purity and diversity of VL concept-skill composi-
tions, ensuring effective representation of the com-
positions and enhancing the generalization ability
of LVLM. Furthermore, we find that setting the
temperature too low leads to a biased coreset selec-
tion, as most samples are then selected from a few
clusters. This undermines the diversity within the
coreset, leading to a decline in overall performance.

F.4 Multimodal Neuron Activation

We further analyze the impact of different multi-
modal neuron activations on the performance of
our method. COINCIDE selects neuron activa-
tions from the MSA blocks across the 4th, 8th,

12th, 16th, and 20th layers of the reference model.
We experiment with different neuron activations
and present the results in Table 6. Transforming
the neuron activations from the MSA blocks into
boolean vectors by mapping negative values to -1
and positive values to 1 causes a significant perfor-
mance drop, likely due to substantial information
loss, yielding inaccurate clustering and transferabil-
ity calculation. Extracting neuron activations only
from the last layer of the reference model causes a
slight performance decrease. As discussed in Sec-
tion 3.2, LVLM abilities stem from various layers.
Hence, relying on the last layer captures only a
small portion of these capabilities, leading to the
performance decline. Finally, utilizing the neuron
activations from the MSA blocks gives superior per-
formance compared to using activations from the
FFN blocks. We believe this is because MSA layers
use self-attention to share multimodal information,
providing richer multimodal understanding.

G The COINCIDE Algorithm

In Algorithm 1, we outline our VIT data selection
procedure, which involves several key stages: clus-
tering the data (lines 1-2), calculating the cluster
categorical distribution (lines 3-5), and selecting
samples from each cluster (lines 6-15).
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Algorithm 1 COINCIDE Data Selection Algorithm

Require: K: the number of clusters, Ncore: target coreset size
1: Extract multimodal neuron activations um from the full dataset. ▷ Eq. 3
2: Cluster um into K clusters to form a set of clusters C={C1, C2, . . . , CK}.
3: Compute cluster transferability Si=Ej (cos(ei, ej)), i∈{1, 2, . . . ,K} ▷ Eq. 5
4: Compute cluster density Di=Ep,q∼Ci (d(p, q)), i∈{1, 2, . . . ,K} ▷ Eq. 6
5: Calculate cluster categorical distribution Pi ∝ exp(Si/(τDi)).
6: for i = 1, 2, . . . ,K do
7: i-th cluster empty coreset C′i.
8: i-th cluster target sample size Ncore,i=NcorePi.
9: while |C′i| < Ncore,i do

10: k=argmin
j∈Ci\C′

i

MMD2 (Ci, C′i ∪ {j}) ▷ Eq. 7

11: C′i ← C′i ∪ {k}
12: end while
13: end for
14: return C′1 ∪ C′2 ∪ . . . ∪ C′K
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Bike near the road & Reasoning – Layer 8
Q: Why is the man on the road wearing a whistle? 
A. crossing guard B. no sidewalk C. street performer D. jaywalking A: A

Q: Why is he riding on the sidewalk? 
A. he's tired B. too slow C. more fun D. he's walking A: B

Q: Why are the men in uniforms standing by the road?
A. doctors B. security C. street workers D. entertainment A: B

Q: Why are all the vehicles on the left not moving? 
A. tired B. red light C. parade D. accident A: D

Tower clock & OCR – Layer 12
Q: What time is it? A: 7:40

Q: What time is it on the clock? A: 11:10

Q: What time is it? A: 2:50

Q: What time is it here? A: 12:15

Objects in bathroom & Position attribute – Layer 12
Q: Is the towel on the left side? A: NoQ: Is the hose on the right side of the photo? A: Yes

Q: Which side is the white napkin on? A: Left Q: On which side is the white toilet? A: Right

Street sign & Common-sense Knowledge – Layer 16, 20

Q: What does the yellow street sign mean? A: Pedestrian cross

Q: What does the street sign mean to drivers? A: Do not enterQ: What are these green signs typically used for? A: Street name

Q: What was that sign meant for? A: Direct

Figure 10: Relevancy maps visualization. We investigate which layer contributes most to the final output of the
LVLM. This is done by visualizing relevancy maps of four samples from the same cluster. For each example, the
left image is the original, while the right image shows the visualized relevancy map, highlighting regions most
relevant to the LVLM output text colored in yellow. The top-left corner of each group explains the VL concept-skill
composition and the layer number with the highest relevancy to the output.
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Q1: What is this place called?
A1: Maxwell street depot
Q2: What number is next to OPEN?
A2: 24
Q3: How many people are in the photo?
A3: 1
Q4: How late is the sandwich shop open?
A4: 24 hours

Q1: Is it sunny?
A1: Yes
Q2: How many people do you see?
A2: 15
Q3: What is the restaurant in the 
background of this photo?
A3: Bar veloce.
Q4: Is there any signal in the picture?
A4: Yes

Q1: How many bikes?
A1: 1
Q2: What color is the road paint?
A2: White
Q3: What does the bus say?
A3: Be purposeful
Q4: What is the name of tattoo parlor?
A4: Flash taco

Q1: What do the written signs say?
A1: El rapido
Q2: Where is the cafeteria sign?
A2: Hanging
Q3: How many signs are shown?
A3: 6
Q4: Are there more than 3 signs?
A4: Yes

Store sign & OCR + Counting 

Q: What is the man by the bags awaiting?
A. skateboarder
B. train
C. delivery
D. cab
Answer with the option’s letter from the 
given choices directly.

A: D

Q: What is the women in yellow waiting for?
A. rain
B. ride
C. check
D. her pet
Answer with the option’s letter from the 
given choices directly.

A: B

Q: What are the people waiting to do?
A. ride train
B. dance
C. eat
D. work
Answer with the option’s letter from the 
given choices directly.

A: A

Q: What do the people do when the fast 
moving thing stops?
A. exercise
B. cook
C. swim
D. board it
Answer with the option’s letter from the 
given choices directly.

A: D

Waiting for public transportation & Scene understanding 

Q1: Please provide a short description for 
this region: [0.84, 0.25, 1.0, 0.83].
A1: Female brown hair black dress facing 
away.
Q2: Please provide the bounding box 
coordinate of the region this sentence 
describes: far right person half.
A2: [0.84, 0.25, 1.0, 0.83]
…

Q1: Please provide the bounding box 
coordinate of the region this sentence 
describes: blond hair.
A1: [0.02, 0.22, 0.3, 0.8]
Q2: Please provide the bounding box 
coordinate of the region this sentence 
describes: man with blue tie.
A2: [0.28, 0.32, 0.6, 0.8]
…

Q1: Please provide a short description for 
this region: [0.0, 0.17, 0.55, 0.82].
A1: Light blue shirt.
Q2: Please provide the bounding box 
coordinate of the region this sentence 
describes: a boy in a blue and white top 
and tie is looking at the boy in blue 
talking.
A2: [0.69, 0.18, 0.98, 0.77]
…

Q1: Please provide the bounding box 
coordinate of the region this sentence 
describes: lleft guy.
A1: [0.1, 0.25, 0.58, 0.82]
Q2: Please provide the bounding box 
coordinate of the region this sentence 
describes: left man.
A2: [0.1, 0.25, 0.58, 0.82]
…

People dressed in the suit & Object localization + Captioning 

Q: What is a possible educational benefit 
for the children in this situation?
A: An educational benefit for the children 
interacting with the sheep is that they are 
learning and understanding more about 
farm animals, their behaviors, and the 
way they are cared for. This hands-on 
experience allows the children to foster a
…

Q: What educational purpose might this 
gathering serve?
A: This gathering, where people are 
observing the process of milking a cow 
while some are being shown how to do it, 
likely serves the purpose of educating 
everyone present about the traditional 
method of obtaining milk. It can be 
particularly informative for the toddler and
…

Q: What potential benefits can this 
interaction provide for the child?
A: The interaction of the young child 
petting the cow with the assistance of a 
father provides several potential benefits. 
It can help the child develop empathy, 
compassion, and a connection with 
animals by interacting with them in a
…

Q: What kind of experience are the two 
people having, and what can this teach 
them?
A: The two people, a woman and a young 
girl, are having an intimate and 
interactive experience with the cows in a 
pen, where they are petting and loving on 
the animals. This experience can teach 
them about the importance of connecting 
…

Child with animals & Reasoning 

Figure 11: Examples of data clusters. We visualize four samples from the same cluster. The top-left corner of each
group explains the VL concept-skill composition.
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Q1: What activity must Lynne enjoy doing?
A1: Reading
Q2: What are the objects on?
A2: Table
Q3: Who is the author of the book?
A3: Bill bryson
Q4: What is the name of the book?
A4: Walk in woods
…

Q1: What is the title of the top book?
A1: A place to stand
Q2: Are these library books?
A2: Yes
Q3: Are these books for a college student?
A3: Yes

Q1: What color is tintin's dog?
A1: White
Q2: How many books are in the volume?
A2: 8
Q3: Could this be a produce market?
A3: No
Q4: What is the name of the books?
A4: Tintin

Q1: Is there a photo of a man?
A1: No
Q2: Is there a clock in the picture?
A2: Yes
Q3: Which book was written by John 
Irving?
A3: Hotel new hampshire

VQAv2 (Books & OCR), Top-1 

Q1: What kind of furniture is it?
A1: Desk
Q2: Which kind of furniture is that?
A2: Desk
Q3: Are there either any black numbers 
or words?
A3: No

Q1: What piece of furniture are the 
glasses on?
A1: Desk
Q2: What is the piece of furniture that the 
glasses are on called?
A2: Desk
Q3: What are the glasses on?
A3: Desk
…

Q1: Which side of the picture is the TV 
on?
A1: Right
Q1: Which kind of furniture is this, a sofa 
or a bed?
A2: Bed
Q3: Is the laptop to the right or to the left 
of the device on the right?
A3: Left
…
Q1: Which color is the floor?
A1: Gray
Q2: Are the books on the right?
A2: No
Q3: What device is to the left of the lady?
A3: Laptop
Q4: Do you see lamps there?
A4: No
…

GQA (Electronic devices & Recognition), Top-1 

Q: What colour is the tie on the far right?
A. red
B. yellow
C. orange
D. pink
Answer with the option's letter from the 
given choices directly.

A: C

Q: The man in the foreground's jacket is 
the same color as what?
A. banana
B. watermelon
C. orange
D. cherry
Answer with the option's letter from the 
given choices directly.

A: A

Q: What color is the scarf wrapped 
around the suitcase pulled on the left?
A. red
B. yellow
C. green
D. blue
Answer with the option's letter from the 
given choices directly.

A: A
Q: What color is the neon sign on the 
second story of this building?
A. pink
B. red
C. violet
D. blue
Answer with the option's letter from the 
given choices directly.

A: B

A-OKVQA (Objects near human & Color Attribute), Top-1 

Q1: What is the woman doing in the 
image?
A1: The woman in the image is sitting at 
a table and using a laptop computer.
Q2: Where is the laptop computer placed?
A2: The laptop computer is placed on top 
of a concrete table.
Q3: Describe the setting where the 
woman is using her laptop.
…
Q1: How many remote controls are in the 
image?
A`: There are two remote controls in the 
image.
Q2: How many balls of yarn can be seen 
in the image?
A2: There is only one ball of yarn in the 
image.
Q3: What color is the ball of yarn?
…

Q1: What are the two main objects on the 
wooden desk?
A1: The two main objects on the wooden 
desk are a laptop and a cup of yogurt.
Q2: Is the yogurt container open or 
closed?
A2: The yogurt container is open.
Q3: What else is there in the yogurt 
container?
…
Q1: What type of game console is in the 
image?
A1: The image features a Nintendo Wii 
game console.
Q2: How many controllers are there in 
the image?
A2: There are two controllers and one 
nunchuck in the image.
Q3: What type of television is the game
…

LLaVA-Conv (Electronic devices & Conversation + Recognition), Top-1 

Figure 12: High transferability cluster sample visualization. We visualize the samples from the most transferable
concept-skill composition for each VL task. The top-left corner of each group explains the VL task type and the VL
concept-skill compositions. The VL task type for the group follows the task name where most of the data from the
group are associated.
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Figure 13: The number of selected samples per VL task in the Vision-Flan VIT dataset. The horizontal axis denotes
the VL task index in the dataset, and the vertical axis denotes the number of samples. Baseline methods result in
biased coresets. In contrast, our method achieves a more balanced sample selection across diverse tasks, leading to
better LVLM generalization.
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