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Abstract

Commercially available models dominate aca-
demic leaderboards. While impressive, this has
concentrated research on creating and adapt-
ing general-purpose models to improve NLP
leaderboard standings for large language mod-
els. However, leaderboards collect many indi-
vidual tasks and general-purpose models often
underperform in specialized domains; domain-
specific or adapted models yield superior re-
sults. This focus on large general-purpose mod-
els excludes many academics and draws atten-
tion away from areas where they can make
important contributions. We advocate for a
renewed focus on developing and evaluating
domain- and task-specific models, and high-
light the unique role of academics in this en-
deavor.

1 Introduction

Natural language processing (NLP) research has
historically produced domain- and task-specific su-
pervised models. The field has shifted course in the
past few years, with a singular focus on general-
purpose generative large language models (LLMs)
that, rather than focusing on a single task or domain,
do well across many tasks (Brown et al., 2020;
Chowdhery et al., 2022; Workshop et al., 2022;
Zhang et al., 2022; Touvron et al., 2023b). By train-
ing on massive amounts of data from many sources,
these models can do well on extremely broad
professional and linguistic examinations (Achiam
et al., 2023; Anil et al., 2023), college-level knowl-
edge questions (Hendrycks et al., 2021; Lai et al.,
2023), and collections of reasoning tasks (Suzgun
et al., 2023).

While the trend to develop a single, general-
purpose generative model is a net positive change
that has resulted in impressive results, it has also
slowed down progress in other areas of NLP. First,
we are less focused on problems that cannot be

*The project was completed during work at Bloomberg.

solved with a chat-like interface. Second, the best-
performing LLMs are often commercial systems,
which are sometimes opaque about training data,
system architecture, and training details. Third,
frequent model updates hinder reproducibility.

The resources required to train large general
language models naturally constrain research to
large organizations, and researchers (or academics)
outside of these organizations have become de-
pendent on closed commercial systems, or open
systems with limited transparency regarding their
training data. This is partly reflected in broader
AI trends: Zhang et al. (2021) found that roughly
30% of papers at AI conferences (including *CL)
have a Fortune 500 tech affiliation. Increased re-
sources contribute to the success of transformer-
based LLMs (Vaswani et al., 2017), with available
hardware (Hooker, 2021) and benchmarks (De-
hghani et al., 2021) both playing a deciding role
in what models end up being developed. By opti-
mizing the average score across hundreds of shal-
low tasks, we are smoothing out any signal that
would be gained from deeply engaging with indi-
vidual tasks. Developing domain-specific models
can help identify model and training choices that
yield improvements on tasks within those domains.

In this paper, we argue for renewed attention to
domain-specific models with rigorous and domain-
expert informed evaluations. Because many aca-
demics are excluded from LLM development due to
resource constraints, attention has been drawn away
from research areas where academics can make
the greatest contributions: deep dives on specific
challenging problems. Thus, we propose several
research questions to reorient the research commu-
nity towards developing domain-specific models
and applications, where academics are uniquely
suited to lead.
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2 LLMs: A Brief History

While modern LMs date back to Jelinek (1976), we
summarize very recent history to describe the cur-
rent environment. In the wake of the popularization
of neural word embeddings by word2vec (Mikolov
et al., 2013), contextualized representations of lan-
guage as features for supervised systems were re-
alized by ELMo (Peters et al., 2018) followed by
BERT (Devlin et al., 2019; Liu et al., 2019). BERT
and subsequent models became the base models
for supervised systems utilizing task-specific fine-
tuning and continued pre-training for new domains
(Gururangan et al., 2020), e.g., for clinical tasks
ELMo (Schumacher and Dredze, 2019) and clini-
calBERT (Huang et al., 2019).

Parallel work utilized transformers for autore-
gressive LLMs, resulting in GPT (Radford et al.,
2018), GPT-2 (Radford et al., 2019), BART (Lewis
et al., 2020a; Liu et al., 2020), CTRL (Keskar et al.,
2019), T5 (Raffel et al., 2020; Xue et al., 2021),
and XGLM (Lin et al., 2021). These models had
some few-shot capabilities, but they could each be
adapted (fine-tuned) for a specific task of interest.
Some models were available to academics, though
training a new model was beyond reach for many.

GPT-3 (Brown et al., 2020) greatly increased
model size and changed our understanding of
LLMs. Impressive in-context (few-shot) learning
pushed the idea that a single large model could
solve a wide range of tasks. While the cost of
resources meant training was restricted to a few
groups, work focused on training bigger models
(Chowdhery et al., 2022; Anil et al., 2023; Zhang
et al., 2022; Touvron et al., 2023a; Rae et al., 2021).

While only a few could train large models, many
studied how best to use them: prompt engineer-
ing (Liu et al., 2023), prompt tuning (Han et al.,
2022; Wei et al., 2022), evaluation (Liang et al.,
2022), among many other topics. Commercial
LLM APIs, and eventually open source models
(Zhang et al., 2022; Workshop et al., 2022; Touvron
et al., 2023a,b; Groeneveld et al., 2024), facilitated
this work. Ignat et al. (2024) noted the massive
research shift to LLMs reflected in Google Scholar
citations. Subsequent work in instruction tuning
(Ouyang et al., 2022) and fine-tuning (Wei et al.,
2022; Chung et al., 2022; Longpre et al., 2023)
have further centralized research around general-
purpose models. Many consider fine-tuning for
specific applications to be obsolete: why would you
tune a model for a specific task when you can tune

a single model to do well on all tasks?1

Despite this view, multiple domain-specific
LLMs have demonstrated that domain-specific data
leads to models that outperform much larger mod-
els (Wu et al., 2023; Taylor et al., 2022). Med-
PaLM has shown that adapting even giant LLMs to
a specific domain leads to vastly increased perfor-
mance (Singhal et al., 2022, 2023).2 Furthermore,
the release of LLaMA (Touvron et al., 2023a) led
quickly to Alpaca (Taori et al., 2023) and a wave
of new fine-tuned versions of LLaMA for specific
tasks. This trend strongly indicates that domain-
specific models, especially for constrained sizes,
are still highly relevant.

To be clear, our concern is not with closed mod-
els, which play an important role in the model
ecosystem. Models range from full to limited to no
access, with some closed models providing incred-
ibly detailed information (Hoffmann et al., 2022;
Rae et al., 2019; Wu et al., 2023) and others pro-
viding none (Achiam et al., 2023). Our lament
over this focus on general models, either open or
closed, is that it draws attention away from work on
task- and domain-specific models and evaluations.
Academics have become product testers, instead
of focusing on tasks where they can play a unique
role. Moreover, existing academic benchmarks in-
creasingly serve a reduced purpose for commercial
models; we are hill-climbing on benchmarks with-
out a way to ensure existing LLMs have not been
trained to excel on these benchmarks (Dodge et al.,
2021). Furthermore, we rely on benchmarks in
place of deep engagement with an application and
its stakeholders.

3 The Need for Domain-Specific LLMs

In general, web data does not reflect the needs of
all NLP systems. Historically, the community has
developed systems for specialized domains such as
finance, law, bio-medicine, and science. Accord-
ingly, there have been efforts to build LLMs for
these domains (Wu et al., 2023; Taylor et al., 2022;
Singhal et al., 2022; Bolton et al., 2023; Luo et al.,
2022; Lehman et al., 2023; García-Ferrero et al.,
2024). We need a deep investment in how best to
develop and evaluate these models in partnership
with domain experts. How should we best integrate

1Distillation for task-specific models remains popular if
smaller models are desired (Hsieh et al., 2023).

2We acknowledge that the biomedical domain is a rapidly
developing area, and GPT-4 without fine-tuning was reported
to surpass MedPaLM 2 (Nori et al., 2023).
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insights gained from the development of general-
purpose models with these efforts? We propose
several research directions.

How can general-purpose models inform
domain-specific models? Building domain-
specific models should benefit from insights and
investments into general-purpose models. There
are several strategies: training domain-specific
models from scratch (Taylor et al., 2022; Bolton
et al., 2023), mixing general and domain-specific
data (Wu et al., 2023), and fine-tuning existing
models (Singhal et al., 2022, 2023). Focusing
on domain-specific needs, applications, and
knowledge with guidance from topic experts will
benefit us in acquiring a better model for specific
NLP tasks. Which approach yields the best results
for task performance and overall cost?

What is the role of in-context learning and fine-
tuning? Both LIMA (Zhou et al., 2023) and Med-
PaLM (Singhal et al., 2022) use a small number
of examples to tune a model. With expanding con-
text size, we may soon rely entirely on in-context
learning (Petroni et al., 2020). This blurs the lines
between changing model parameters and condi-
tioning during inference. Beyond inference speed
tradeoffs between the two, there may be value in
tuning on tens of thousands (or more) of exam-
ples. Which domain-specific examples are the most
effective to include and in what manner?

How can LLMs be integrated with domain-
specific knowledge? Specialized knowledge is
key in many domains. RAG (Lewis et al., 2020b;
Guu et al., 2020) and KILT-derived works (Petroni
et al., 2021) focus on knowledge-intensive tasks
by including retrieval steps. Work on attributed
QA (Bohnet et al., 2022) takes a similar approach,
as do search LLMs that require interaction with
retrieved data (Nakano et al., 2021). Rich updated
knowledge sources will always exist beyond the
model, especially in environments like medicine,
finance, and many academic disciplines.

4 Evaluation of Domain-Specific Models

The evaluation of NLP systems is at a crossroads,
and the downstream usage of LLMs and evaluation
approaches have diverged. Benchmarks assume
that their results translate to insights into similar
tasks and usefulness for commercial applications.
But benchmarks have become increasingly narrow

in scope, oftentimes assessing one metric on a sin-
gle, often flawed, dataset (Mitchell et al., 2019;
Kiela et al., 2021; Ethayarajh and Jurafsky, 2020).
The primary evaluation approach for LLMs has
been to evaluate on a broad set of these narrow
benchmarks (Liang et al., 2022, HELM) (Srivas-
tava et al., 2022, BIG-Bench). High average per-
formance argues for a broad range of capabilities;
however, one size may not fit all. Since specific
uses of LLMs are typically much more narrow, we
identify three major issues and associated research
opportunities with this approach.

Depth-first Evaluation Current approaches fo-
cus on a single model doing everything well on
average instead of being useful in a single do-
main. However, it is widely acknowledged that
the standard benchmarks for most tasks are insuffi-
cient (e.g., for summarization, Fabbri et al., 2021;
Goyal et al., 2022). Task-specific evaluations have
thus adopted additional protocols that measure how
well models transfer to different domains, how ro-
bust they are, and whether they stand up to con-
cept drift (Mille et al., 2021; Dhole et al., 2021).
These details disappear when benchmarking on
100+ tasks. Yet, a model’s usefulness is not solely
defined by doing okay on everything but rather by
how well it performs in specific and narrow tasks
that provide value. This value is only realized if the
model does not suffer from catastrophic failures.

Exemplar studies that perform deep dives on
LLMs for specific tasks exist in healthcare (Zack
et al., 2024; Eriksen et al., 2023; Ayers et al., 2023;
Han et al., 2024; Chen et al., 2024; Strong et al.,
2023), law (Blair-Stanek et al., 2023b,a; Magesh
et al., 2024), and physics (Kim et al., 2024), among
other areas. We encourage more work on eval-
uation practices for specific tasks that can han-
dle various model setups and yield informative
insights (Zhang et al., 2023; Liang et al., 2022).

Sound Metrics For convenience, most bench-
mark tasks are formulated as multiple choice ques-
tion answering or classification. This is not how
LLMs are often used. For much more common gen-
eration tasks, researchers have been ringing alarms
about broken evaluations (Gehrmann et al., 2023).
It is dubious whether we gain insights into non-
task-specific generation through NLU benchmarks.
If we are performing the depth-first evaluation of
a generation task, a remaining hurdle – and why
researchers fall back to NLU tasks – is the lack of
robust metrics. While there is much recent work on
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better metrics (Celikyilmaz et al., 2020; Gehrmann
et al., 2023), a troubling trend is the use of LLMs as
evaluators (e.g., Sellam et al., 2020; Chiang et al.,
2023). This approach poses many risks, including
the implicit assumption that the evaluating model
has access to the ground truth judgment. While
there are some promising results, using an LLM
out of the box should be avoided (e.g., Wang et al.,
2023a,b). Moreover, it is unclear how to evaluate
the evaluator when it is a non-deterministic API, or
how to scale the development of learned metrics
and quantify the strength of a metric.

Products are not Baselines If we really do want
to evaluate 100+ tasks, there are many issues with
the soundness of evaluation setups. At this scope,
it is impossible to run careful ablation studies or
to assess the effect of changes to methodology
in a causal manner. Moreover, different LLMs
respond differently to prompts. The BLOOM
evaluation averaged over multiple prompts and
found significant variance (Workshop et al., 2022).
This variance leads to a lack of reproducibility:
LLaMA (Touvron et al., 2023a) claimed high
MMLU (Hendrycks et al., 2021) performance but
didn’t release the prompts that led to them. 3 Sim-
ilarly, the evaluation scheme makes a difference
(Liang et al., 2022, Fig. 33). High evaluation costs
mean benchmarks pick a small number of setups
(sometimes only one) for each task, which intro-
duces further bias, making it hard to construct fair
benchmarks on many tasks.

An additional issue with the current benchmark-
ing approach is that the best-performing models are
often commercial APIs. With limited transparency
regarding data and training, we cannot fairly evalu-
ate these models (e.g., data leakage). Furthermore,
task-specific tuning may have been selected based
on these specific benchmarks. Moreover, the un-
derlying models change frequently, so it is unclear
whether a result will hold for long.

These evaluation issues prompt significant open
questions: 1) How do we develop consistent evalu-
ation setups across models that give true measures
of performance? 2) How do we develop evaluation
setups and metrics more closely aligned with down-
stream usage? 3) How do we develop evaluation
suites that support depth-first evaluation and not
breadth-first benchmarking?

3There was significant confusion surrounding
model evaluation: https://huggingface.co/blog/
open-llm-leaderboard-mmlu

5 The Role of Academics

A focus on general-purpose LLMs has forced aca-
demics to work with large base models and perhaps,
shifted the focus to solve problems of immediate
industrial interest. Many academics feel excluded
from current research trends (Ignat et al., 2024) and
the academic and industry relationship is chang-
ing (Littman et al., 2022). Shifting attention back
to domain-specific applications emphasizes areas
where academics hold an advantage: partnerships
with domain experts to invest in specific tasks, and
consideration of broader societal needs.

Developing domain-specific models requires do-
main expertise and universities are diverse aca-
demic environments that house experts in many
domains. Collaborations with these experts can
identify data sources, tasks, and challenges impor-
tant within each domain. Furthermore, these collab-
orations are the best avenues for better alignment
of evaluations with use cases (Winata et al., 2024),
and can support the development of proper met-
rics. These collaborations are necessary to explore
wide open interdisciplinary topics, such as models
for protein structure prediction (Tunyasuvunakool
et al., 2021; Vig et al., 2021) and games as proxies
for reasoning (Silver et al., 2016; Agostinelli et al.,
2019; Schrittwieser et al., 2020). This includes de-
veloping domain-specific resources, which require
domain experts to properly design and construct
the datasets. Further, areas where industry underin-
vests are those where academics could focus atten-
tion. For example, low-resource languages are not
served by a general-purpose multilingual LLM, nor
will we reasonably have enough data to support cur-
rent LLM training methods. Dialects and variations
in languages are still wide open topics (Aji et al.,
2022; Winata et al., 2023; Nicholas and Bhatia,
2023).

General-purpose LLMs are unlikely to solve
problems in many important domains, with many
open research problems that can only be solved by
domain-specific approaches. Focusing on domain-
specific knowledge will benefit us in acquiring
a better model and developing application strate-
gies more aligned with how humans learn domain-
specific knowledge (Tricot and Sweller, 2014). For
many interdisciplinary areas, subject matter experts
are essential, and the problems must be defined
clearly. The first pass from an LLM is often im-
pressive, but it hides the trenches and areas where
things are most interesting. We need a renewed fo-
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cus on developing and evaluating domain-specific
models and applications, an area where academics
can play a leading role. Let us not be distracted
by claims that a single model solves all tasks, and
instead deeply explore and understand the needs
and challenges of specific domains.

Limitations

The literature that we explored in this opinion paper
is limited to the area of LLMs. We study the history
of LLMs from the literature on word embeddings,
encoder-only, and generative transformers to the
latest advancement of API-based LLMs.

Ethics Statement

Our work does not include any experiments or use
of data. No potential ethical issues in this work.
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