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Abstract

In Machine Translation (MT) evaluations, the
conventional approach is to compare a trans-
lated sentence against its human-created refer-
ence sentence. MT metrics provide an absolute
score (e.g., from 0 to 1) to a candidate sen-
tence based on the similarity with the reference
sentence. Thus, existing MT metrics give the
maximum score to the reference sentence. How-
ever, this approach overlooks the potential for
a candidate sentence to exceed the reference
sentence in terms of quality. In particular, re-
cent advancements in Large Language Models
(LLMs) have highlighted this issue, as LLM-
generated sentences often exceed the quality of
human-written sentences. To address the prob-
lem, we introduce the Residual score Metric
(RESUME), which evaluates the relative qual-
ity between reference and candidate sentences.
RESUME assigns a positive score to candidate
sentences that outperform their reference sen-
tences, and a negative score when they fall
short. By adding the residual scores from RE-
SUME to the absolute scores from MT metrics,
it can be possible to allocate higher scores to
candidate sentences than what reference sen-
tences are received from MT metrics. Experi-
mental results demonstrate that RESUME en-
hances the alignments between MT metrics and
human judgments both at the segment-level and
the system-level.

1 Introduction

Evaluation metrics for Machine Translation (MT)
mainly rely on comparisons with human-crafted
reference sentences. Most frequently used metrics
count the number of matching tokens between the
reference and candidate sentences (Papineni et al.,
2002; Popović, 2015) or estimate the similarity
within the embedding space (Zhang et al., 2020).
These metrics impose penalties on candidate sen-
tences that show less alignment with the reference
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sentence while rewarding those that closely match
the reference.

However, the current design of MT metrics
leads to a limitation: they overlook the possibil-
ity that candidate sentences outperform reference
sentences in terms of quality. Candidate sentences
can be better than their reference sentences in re-
ality for two reasons. Firstly, reference sentences,
subject to the variability of human translators, may
contain errors or inconsistencies. Thus, reference
sentences are not guaranteed to be of best qual-
ity and often include critical translation and gram-
matical errors (Freitag et al., 2023). Secondly,
Large Language Models (LLMs) exhibit remark-
able generative capability. As recent advancements
focus on training LLMs to follow human feed-
backs (Ouyang et al., 2022), LLMs align with hu-
man preferences increasingly. Consequently, LLMs
show strong performance across various genera-
tive tasks and even surpass average human per-
formance in academic exams originally designed
for humans (Achiam et al., 2023). Notably, some
LLMs have been shown to produce better trans-
lations than gold human references according to
automatic evaluation metrics (Xu et al., 2024) and
can be rated higher than a human reference system
for specific language pairs (Freitag et al., 2023).
Nevertheless, conventional MT metrics inherently
assign the highest scores to candidate sentences that
are identical to the reference sentence, thereby suf-
fering from the reference-bias problem (Fomicheva
and Specia, 2016). As a result, current MT met-
rics do not allocate a higher score to a candidate
sentence than the scores assigned to the reference
sentence even when the candidate sentence is su-
perior to its reference sentence. This situation re-
quires a metric design that recognizes the potential
superiority of machine-generated content.

To address the problem mentioned above, we
present Residual score Metric (RESUME), a novel
approach for MT evaluation. While traditional MT
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metrics allocate an absolute score to the candidate
sentence based on the similarity with the reference
sentence, our approach RESUME quantifies the rel-
ative quality of the candidate sentence compared to
the reference sentence. The relative score is positive
when the candidate sentence is better than the ref-
erence sentence, and negative when the reference
sentence surpasses the candidate sentence. Then,
we add the relative score to the absolute score com-
puted by an existing MT metric. By introducing
RESUME, it has become possible to assign a higher
score to the candidate sentence better than to the
reference sentence itself. As a result, the proposed
method can be utilized to appropriately evaluate
LLMs that provide translation results superior to
those created by humans. In the experimental sec-
tion, we report an interesting observation that GPT-
4 outperforms conventional MT systems with the
proposed method RESUME.

Labeling a substantial amount of residual scores
to train our model is both time-consuming and
costly. For this reason, we propose a method to
train our RESUME model using existing labeled
data with standard absolute scores, eliminating the
additional labeling costs. We conduct extensive ex-
periments to validate the performance of RESUME

both with the segment-level and the system-level
evaluations. Specifically, RESUME encourages the
alignment between MT metrics and human expert
ratings across various language pairs at the seg-
ment level evaluation even without residual score
labels. In system-level evaluation, our approach af-
fords more accurate assessments for MT systems
especially for LLMs which are underestimated by
conventional MT metrics. Furthermore, RESUME

can assess candidates outperforming references ac-
curately compared to other MT metrics. The code
is available via a GitHub repository1. Our main
contributions are summarized as follows:

• We identify a new issue that current MT met-
rics fail to assign elevated scores to better can-
didates than references compared to the scores
given to the references, suffering from the ref-
erence bias problem.

• We propose a novel MT metric, RESUME,
which calculates the relative quality between
reference and candidate sentences, instead of
considering the reference as a perfect gold
standard.

1https://github.com/hyudsl/beyond_reference_resume

• We propose a method to generate residual (rel-
ative) scores for training RESUME by convert-
ing absolute scores of existing human-rated
datasets, without any additional labeling cost.

• The empirical results demonstrate that RE-
SUME enhances the correlation of MT metrics
with human expert ratings and addresses the
reference-bias problem.

2 Related Work

Lexical overlap metrics. Conventional MT met-
rics focus on evaluating candidate sentences at the
surface-from level. Such metrics (Papineni et al.,
2002; Banerjee and Lavie, 2005; Popović, 2015,
2017) count n-grams appearing in both reference
and candidate sentences simultaneously. Neverthe-
less, these metrics fail to recognize semantically
equivalent, but lexically diverse words, resulting
in incorrect scores on paraphrased sentences. This
attribute leads to a lower correlation with human
judgements.

Embedding similarity metrics. Word embeddings
are employed in order to capture semantic similar-
ity between words. Specifically, since Pre-trained
Language Models (PLMs) (Devlin et al., 2019; Liu
et al., 2019) are learned from huge amounts of text
data, its contextual embedding enables a deeper
understanding of words between reference and can-
didate sentences. Zhang et al. (2020) extracts token
embeddings corresponding to reference and can-
didate sentences using BERT or RoBERTa. Then,
the final score is derived by calculating the cosine
similarity among these embeddings.

Trainable metrics. Recent works (Shimanaka
et al., 2018; Sellam et al., 2020) attempt to train
metrics using a dataset containing human rating.
These methods involve adding a regression layer
on the top of PLMs and training it to directly pre-
dict human rating between reference and candidate
sentences. In the machine translation, several stud-
ies (Rei et al., 2020a; Kocmi et al., 2022b; Wan
et al., 2022) utilize the source sentence as semi-
reference jointly during training since it holds the
same meaning with reference sentence, playing an
important role in translation quality assessment.
This approach represents improved alignment with
human ratings in machine translation evaluation.

Reference bias of MT metrics. The reference bias
problem is raised by Fomicheva and Specia (2016);
Ma et al. (2017); Freitag et al. (2020). Previous
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studies highlight the bias in conventional MT eval-
uation, where subpar candidates sharing a similar
style with references receive high scores. With ad-
vancements in LLMs, a new issue of MT metrics
has emerged, which has not been considered by the
previous studies. Although LLM-based models can
generate high-quality candidates that surpass the
references, these candidates do not receive higher
scores than those given to the references. In this
work, we identify the new issue and propose a novel
method to overcome the problem.

Zouhar and Bojar (2024) emphasizes the impor-
tance of reference quality in the automatic MT eval-
uation. Low-quality references can significantly de-
grade the performance of MT metrics, leading to
unreliable assessments of candidates. However, ob-
taining high-quality references is both expensive
and time-consuming. In this work, we introduce a
new MT metric that measures the relative quality
between the reference and candidates, allowing for
an accurate evaluation regardless of the reference
quality.

3 Conventional learnable MT metrics

The evaluation of MT commonly involves the use
of source, reference, and candidate sentences, de-
noted as s, r, and c respectively. Given a triplet
of (s, r, c), an MT metric is formulated as a scor-
ing function f : (s, r, c) → R. A dataset for
a learnable MT metric comprises a set of tuples
{(si, ri, ci, yi)}Ni=1 with size of N , where yi rep-
resents the human rating that assesses the quality
of the candidate sentence ci. The primary objec-
tive of a learnable metric is to generate scores that
are correlated with human ratings. To achieve this,
the training process for a learnable metric involves
minimizing the mean squared error between the
prediction of the metric and human ratings

L = (yi − fθ(s, r, c))
2

where fθ is a learnable metric parameterized by θ.

4 Proposed Method

In this section, we first introduce the Residual score
Metric (RESUME) for machine translation (§4.1).
Then, we discuss how to train RESUME with resid-
ual scores (§4.2). Finally, we propose a method for
training RESUME with existing data that includes
only absolute scores (§4.3).

4.1 The Residual Metric RESUME

Current MT metrics are designed to yield the maxi-
mum score when evaluating the reference sentence
itself, resulting in a lower score when assessing the
candidate sentence (i.e., f(s, r, c) ≤ f(s, r, r)). As
a result, existing methods are inherently incapable
of assigning a higher score to a candidate sentence
even if it is better than the reference sentence (i.e.,
f(s, r, c) ≯ f(s, r, r)).

To address this problem, we introduce a residual
score RESUME to indicate the relative quality of
the candidate sentence compared to the reference
sentence. The RESUME score ranges from -1 to
1, outputting a positive value when the candidate
sentence c surpasses the reference sentence r in
quality, and a negative value when it is worse than
the reference. We use the summation of RESUME

and an existing absolute score such as BLEU (Pa-
pineni et al., 2002) as the evaluation metric for
MT (i.e., f(s, r, c) + λ · RESUME(s, r, c)). λ is
a hyperparameter to adjust the importance and
scale of the residual score. By adding this resid-
ual score to the output of an MT metric, RESUME

enables a better candidate sentence to receive a
higher evaluation than the reference sentence (i.e.,
f(s, r, c) + λ · RESUME(s, r, c) > f(s, r, r)).

4.2 Training RESUME with Residual Scores
RESUME takes source, reference, and candidate
sentences as input and should consider the rela-
tionships between the sentences. We use existing
model architecture suitable for this process such as
UniTE (Wan et al., 2022) and COMET (Rei et al.,
2020a). We empirically demonstrate that regardless
of the specific architecture used, RESUME consis-
tently enhances the performance of existing MT
metrics in §6.6.

Our goal of learning RESUME involves two key
aspects: (1) to assign a positive score when a candi-
date sentence is better, a negative score otherwise
and, (2) to achieve a higher correlation than those
achieved by an existing MT metric without RE-
SUME. If there is an MT evaluation dataset with
residual scores, RESUME can be trained in a su-
pervised manner. Given a tuple (s, r, c,∆y), we
optimize RESUME to reduce the mean squared er-
ror:

L = (∆y − RESUME(s, r, c))2

where ∆y is the relative (residual) score of the
candidate c compared to the reference r.
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Figure 1: The training process of RESUME with absolute scores.

4.3 Training RESUME with Absolute Scores
In existing datasets for training MT metrics (Bo-
jar et al., 2017, 2018; Barrault et al., 2019, 2020),
only absolute scores for candidate sentences are
available, typically ranging from 0 to 100, since
our work is the first study to measure the relative
score. To utilize the existing datasets, we transform
these absolute scores to the score quantifying the
difference between sentences. We train RESUME

using the WMT 17-20 shared task data. Since the
range of RESUME is from -1 to 1, we normalize
the ratings in the data to a range from 0 to 1.

The straightforward method for generating resid-
ual scores is to compute the difference in absolute
scores among candidate sentences that share the
same source sentence. However, because multiple
human raters were involved in measuring absolute
scores, and their scoring strategies are varied in the
existing dataset, utilizing the difference between
candidate sentences can be inappropriate (Graham
et al., 2013; Sellam et al., 2020; Kocmi et al.,
2022b). To solve the problem, we use reference
sentences by assigning a maximum score of 1 to
all reference sentences in the dataset. Despite the
presence of some noisy reference sentences, this
approach is generally effective for learning residual
scores, as the training data from WMT 17-20 data
lacks translations generated by the recent LLMs, re-
sulting in the majority of reference sentences have
higher quality than their candidate sentences.

Figure 1 shows the training process of RESUME.
Given a tuple (s, r, c, y), where y ∈ [0, 1], we can
set the residual score ∆y = score(c)− score(r) =
y−1 by the above assumption. RESUME is trained
to predict the residual score ∆y by minimizing the
following MSE loss

Lref>cand = ((y − 1)− RESUME(s, r, c))2.

However, training solely through the above process
results in RESUME only returning negative values,

thereby failing to allocate additional scores to the
candidate sentence better than the reference.

Thus, we propose using the reference sentence
r as the candidate and the candidate sentence c
as the reference conversely to the previous pro-
cess. In that case, the residual score is ∆y =
score(r) − score(c) = 1 − y which is a positive
value. Then, we enable RESUME to output a posi-
tive score to the case when the higher quality can-
didate sentences are assessed, using the following
objective function:

Lref<cand = ((1− y)− RESUME(s, c, r))2

Consequently, RESUME is trained to output a
positive value when the candidate c is better than
the reference r, and a negative value when it is
worse than the reference.

5 Experimental Settings

5.1 Baseline Methods
We classify the baseline metrics based on whether
they are trained or not on human ratings. For un-
supervised metrics, we select BLEU (Post, 2018),
chrF++ (Popović, 2017), and BERTScore (Zhang
et al., 2020). We employ BLEURT (Sellam et al.,
2020), COMET (Rei et al., 2020a), UniTE (Wan
et al., 2022), MS-COMET-22 (Kocmi et al., 2022b),
and xCOMET-XL (Guerreiro et al., 2023) as super-
vised metric. The implementation details for each
metric are as follows:

• BLEU, chrF++: We use BLEU and chrF++
implemented in SacreBLEU (Post, 2018)
repository2. We apply the tokenizer zh for
Chinese and 13a for the other languages.

• BERTScore: We use XLM-RoBERTaLARGE
version of BERTScore.

• BLEURT: We use the recommended check-
point BLEURT-203 which is based on 32-layer

2https://github.com/mjpost/sacrebleu
3https://github.com/google-research/bleurt
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RemBERT (Chung et al., 2020). It is trained
on WMT 15-19 Metric Shared Task dataset
and synthetic data derived from WMT corpus.

• COMET: We utilize the wmt20-comet-da
checkpoint implemented in COMET frame-
work repository4. It is fine-tuned on WMT 17-
19 Metrics Shared Task dataset and employs
XLM-RoBERTaLARGEas PLM.

• UniTE: We employ UniTE-MUP-large which
utilizes XLM-RoBERTaLARGE as PLM and is
fine-tuned on pseudo-labeled synthetic data
and WMT 17-19 Metric Shared Task dataset.

• MS-COMET-22: We download the check-
point from MS-COMET-22 repository5. MS-
COMET-22 is fine-tuned on both WMT 17-19
Metrics Shared Task dataset and proprietary
data collected from experts. MS-COMET-22
also utilizes XLM-RoBERTaLARGE as PLM.

• xCOMET-XL: We use the XCOMET-XL check-
point implemented in the COMET framework
repository. xCOMET-XL has 3.5B parameters
finetuned on the WMT Metrics Shared Task
datasets and proprietary data.

5.2 Datasets

WMT dataset. The WMT Metrics Shared Task
datasets are widely used human-rated datasets for
training MT metrics. The datasets employ two
distinct forms of annotations for human ratings,
namely Direct Assessments (DA) and Multidimen-
sional Quality Metrics (MQM). DA ratings are de-
rived from crowd-sourced evaluations, with scores
ranging from 0 to 100. Conversely, MQM ratings
are determined by experts, using a comprehensive
set of error annotations and guidelines (Freitag
et al., 2021). As outlined in §4.3, we construct
the train set for RESUME using WMT 17-20 DA
datasets (Bojar et al., 2017, 2018; Barrault et al.,
2019, 2020) while comprising the valid set based
on WMT 21 DA dataset (Akhbardeh et al., 2021).
To validate the effectiveness of RESUME, we use
WMT 22 MQM dataset (Freitag et al., 2022) as
the test set. Notably, the MQM dataset includes
only three language pairs (en-de, en-ru, and zh-en)
due to the high cost of expert labeling. There are
no overlapping sentences among the train, valid,
and test sets. Training examples are provided in

4https://github.com/Unbabel/COMET
5https://github.com/MicrosoftTranslator/MS-Comet

Appendix C. For detailed dataset statistics, please
refer to Appendix G.
Post-edited translation dataset. Additionally, we
utilize a post-editing dataset in MT (Fomicheva
et al., 2022) to analyze how MT metrics assign
a score when the candidate excels the reference.
The dataset comprises source sentences, their cor-
responding translations, and the post-edited version
of these translations refined by experts.

5.3 Measures for Meta Evaluation

Segment-level evaluation. We employ Kendall’s
τ -like correlation coefficient to analyze the DA
dataset (Ma et al., 2019). The correlation coefficient
is computed as follows:

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant|

For candidate sentence pairs derived from the same
source sentence, |Concordant| represents the num-
ber of sentence pairs where the metric assigns a
higher score to the candidate sentence that also re-
ceived a higher human judgement. |Discordant| is
the opposite case.
System-level evaluation. We use pairwise accu-
racy (Kocmi et al., 2021) on the MQM dataset. For
each system pair, the difference in metric scores
(metric∆) and the difference in human scores
(human∆) are calculated. The pairwise accuracy is
defined as:

Accuracy =
|sign(metric∆) = sign(human∆)|

|all system pairs|
5.4 Implementation Details of RESUME

We train RESUME using COMET Framework (Rei
et al., 2020a) using the unified input approach (Wan
et al., 2022). The model consists of a XLM and
feedforward layers built on top of the XLM. The
infoXLMBASE model (Chi et al., 2021) is employed
as XLM. The feedforward network comprises 3 lin-
ear layers where the output dimensions of each
layer are [3072, 1024, 1], respectively. We use
AdamW optimizer (Loshchilov and Hutter, 2018)
to train our model and learning rates 1e−5 for PLM
and 3e−5 for feedforward layer with a batch size
of 8. The number of epochs is 5. For a third of the
first epoch, we freeze the encoder model to opti-
mize the feedforward network, following Rei et al.
(2020a). We select the checkpoint which is best
correlated with the valid set. The model is trained
on an NVIDIA RTX3090 GPU for 25 hours.
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When calculating the final score with RESUME,
to avoid the complexity of individual adjustments,
we employ a common λ = 0.2 value in our main
experiments. Despite the fixed λ value, we empir-
ically demonstrate that RESUME consistently en-
hances the correlation of various MT metrics with
human judgments in § 6.1. We report the optimal
λ value for each MT metric in Appendix B. The
impact of the λ value is explored in § 6.7.

6 Experimental Results

6.1 Main Results

Table 1 shows the performance changes of base-
line methods on the WMT 22 MQM dataset when
integrating RESUME. First, at the segment-level,
we observe that RESUME enhances the average
correlation for both supervised and unsupervised
metrics. Specifically, the correlation consistently in-
creases across all metrics for non-English-targeted
as well as English-targeted pairs. This indicates
that RESUME can enhance alignments of MT met-
rics with expert scores. Second, at the system-level,
RESUME also improves the average of pairwise ac-
curacy across all metrics. Particularly, considerable
performance gains are observed in unsupervised
metrics. For instance, there is a larger increase of
0.08 in BERTScore, which presents comparable
results to other supervised metrics such as COMET
and MS-COMET-22. This suggests that RESUME

contributes to a more accurate rank of systems that
are underestimated by conventional measurements.
Note that the performance could be improved by
applying the optimal λ value for each metric. Ad-
ditionally, we provide the results on medium- and
low-resource language pairs in Appendix D.

6.2 Analysis on Reference Bias of MT Metrics

Using the post-editing dataset, we conduct exper-
iments to verify that RESUME actually assigns
higher scores to a candidate that is superior to the
reference rather than the scores assigned to the ref-
erence itself. Post-edited translations refined by ex-
perts exhibit superior quality than pre-edited trans-
lations. Thus, we examine whether MT metrics as-
sign higher scores to post-edited translations than to
pre-edited translations when pre-edited translations
are used as the references. Table 2 represents the
proportion of instances where each metric assigns
higher scores to post-edited translations. Existing
MT metrics allocate higher scores to post-edited
translations at a very low rate, regardless of whether

they are trained or not. For example, widely-used
MT metrics such as COMET and UniTE exhibit
rates below 7%. This demonstrates that existing
MT metrics fail to evaluate candidates of superior
quality than the reference correctly. However, our
RESUME significantly outperforms other MT met-
rics, achieving a much higher rate of 59%. For the
comparison with the reference-free metric, please
refer to Appendix A.

6.3 Case Study
We aim to investigate whether RESUME assigns
a positive score when the quality of the candidate
sentence surpasses the reference sentence utilizing
the post-editing dataset. In the post-editing dataset,
we use pre-edited translations containing errors
such as omission of words as the reference, and
post-edited translations, refined by experts, as can-
didates. Table 3 shows the scoring results of MT
metrics. red indicates the error locations in the
pre-edited translations while yellow shows cor-
rected parts in the post-edited translations.

The first example represents a case where pre-
edited translations contain mistranslation errors.
For BERTScore and MS-COMET-22, these met-
rics fail to award higher scores to the post-edited
translation compared to the score of the pre-edited
translation. However, RESUME allocates a positive
score to the post-edited translation, enabling it to
be evaluated higher than its original scores.

The second example showcases a scenario where
the source’s words are omitted in a pre-edited trans-
lation in addition to a mistranslation error. Due
to the lexical difference from the pre-edited trans-
lation, the post-edited translation receives lower
scores from BERTScore and MS-COMET-22 than
scores of the pre-edited translation, despite of their
higher quality. Nevertheless, RESUME assigns ad-
ditional positive scores to post-edited translations,
allowing them to receive a more accurate eval-
uation. For more examples, please refer to Ap-
pendix F.

6.4 Comparison with Reference-free Metric
Reference-free metrics estimate the quality of can-
didate sentences exclusively based on source sen-
tences. By computing scores without reference sen-
tences, reference-free metrics can avoid the issues
associated with flawed reference sentences during
the evaluation process. Table 4 shows the aver-
age correlation of COMET-QE (Rei et al., 2020b),
which is the reference-free version of COMET,
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Metrics
Segment-level (τ ) System-level (Acc.)

en-de en-ru zh-en Avg. en-de en-ru zh-en Avg.

Supervised

xCOMET-XL 0.242 0.365 0.313 0.307 0.724 0.914 0.905 0.848
+ RESUME 0.350 0.423 0.327 0.367 0.771 0.914 0.886 0.857

UniTE 0.328 0.384 0.324 0.345 0.695 0.886 0.838 0.806
+ RESUME 0.343 0.397 0.328 0.356 0.695 0.876 0.857 0.810

BLEURT 0.330 0.352 0.304 0.329 0.781 0.886 0.867 0.844
+ RESUME 0.361 0.384 0.309 0.352 0.790 0.877 0.876 0.848

COMET 0.309 0.349 0.277 0.312 0.800 0.857 0.838 0.832
+ RESUME 0.330 0.366 0.284 0.326 0.810 0.857 0.838 0.835

MS-COMET-22 0.247 0.313 0.241 0.267 0.752 0.838 0.867 0.819
+ RESUME 0.288 0.344 0.264 0.299 0.800 0.829 0.848 0.825

Unsupervised

BERTScore 0.231 0.287 0.228 0.248 0.714 0.867 0.714 0.765
+ RESUME 0.316 0.348 0.258 0.307 0.848 0.857 0.819 0.841

chrF++ 0.191 0.234 0.180 0.202 0.714 0.876 0.705 0.765
+ RESUME 0.257 0.296 0.222 0.259 0.762 0.905 0.733 0.800

BLEU 0.119 0.122 0.110 0.117 0.667 0.838 0.695 0.733
+ RESUME 0.241 0.264 0.192 0.232 0.714 0.905 0.724 0.781

Table 1: Results on the WMT22 MQM dataset in both segment-level and system-level. We report Kendall’s τ -like
correlation at segment-level, and pairwise accuracy at system-level. Values marked in bold signify an increase when
RESUME is applied. Avg. denotes average correlation or pairwise accuracy across all language pairs.

Metrics Pre-edited.
< Post-edited.

COMET 1%
BLEURT 2%
BERTScore 3%
MS-COMET-22 4%
UniTE 7%
RESUME 59%

Table 2: The percentage of instances where the MT met-
ric assigns a higher score to the post-edited translation
compared to the pre-edited translation.

on WMT 22 MQM dataset. The results represent
that COMET-QE exhibits a declined correlation in
comparison to COMET. This observation implies
that the absence of reference sentences might limit
the opportunity to thoroughly assess candidate sen-
tences with most of reliable reference sentences,
leading to less accurate evaluations.

6.5 Ranking Top Performing MT Systems

Following Hendy et al. (2023), we compare GPT
models and the best-performing MT system in the
WMT22 en-zh pair. Figure 2 represents the scor-
ing results when RESUME is either applied or not.

The top-ranked system in WMT22 en-zh pair is
marked in ‘Online-W’ (Kocmi et al., 2022a). In
contrast to the human evaluation in Hendy et al.
(2023), BLEU selects the ‘Online-W’ system as the
highest-performing system in the en-zh pair. Nev-
ertheless, the incorporation of RESUME into the
evaluation process aligns with the previous finding,
showcasing GPT-3’s superiority over the Online-W
system. Additionally, the summation of RESUME

with conventional MT metric produces an interest-
ing result by choosing GPT-4, known for its supe-
rior generative performance (Achiam et al., 2023),
as the best MT system in the en-zh pair. These
results indicate that RESUME precisely evaluates
high-performance MT systems.

6.6 Architecture of RESUME

We investigate whether the performance enhance-
ment of MT metrics is due to the specific model ar-
chitecture employed for RESUME. Figure 3 shows
the variations in the average correlation of MT met-
rics on WMT 22 MQM dataset at the segment-level
when varying the model architecture of RESUME.
‘RESUME (UniTE)’ denotes the model trained
using the UniTE architecture while ‘RESUME

(COMET)’ indicates the mode trained using the
COMET architecture. A consistent trend is ob-
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Example #1

Source Кошка любит молоко, да рыло коротко.

Pre-edited. The cat loves milk, but the fish is short.
Post-edited. The cat loves milk, but the snout is too short.

Scores
Reference: Pre , Candidate: Pre Reference: Pre , Candidate: Post

BERTScore 0.997 BERTScore 0.965 BERTScore + RESUME 1.099 (= 0.965 + 0.134)
MS-COMET-22 0.868 MS-COMET-22 0.818 MS-COMET-22 + RESUME 0.952 (= 0.818 + 0.134)

Example #2

Source Бить по рогам лишь надсада рукам .

Pre-edited. Beating the horns is only a handshake .

Post-edited. Beating the horns only hurts your hands .

Scores
Reference: Pre , Candidate: Pre Reference: Pre , Candidate: Post

BERTScore 0.999 BERTScore 0.953 BERTScore + RESUME 1.118 (0.953 + 0.165)
MS-COMET-22 0.877 MS-COMET-22 0.741 MS-COMET-22 + RESUME 0.906 (0.691 + 0.165)

Table 3: Two examples from the post-editing translation dataset. Pre and Post denote pre-edited translations and
post-edited translations, respectively.

Metrics Avg. τ

COMET-QE 0.236
COMET 0.312

+ RESUME 0.326

Table 4: Comparison of the average correlation among
MT metrics with and without reference utilization.

Figure 2: Scoring results on GPTs and top-performing
system (Online-W) in WMT22 en-zh pair.

served across all MT metrics: the application of
RESUME improves the correlation, regardless of
the specific architecture. Concretely, ‘RESUME

(UniTE)’ increases the correlation of MT metrics
more than ‘RESUME (COMET)’ across all metrics.
Hence, we select UniTE as the backbone architec-
ture of RESUME.

6.7 Impacts of Residual Scores Ratio

We conduct an experiment to examine the degree
to which the integration of RESUME scores con-
tributes to the enhancements of MT metrics per-
formance. To do this, we vary the weight λ from
0.1 to 10 to investigate the importance of resid-

Figure 3: The impact of model architecture for RESUME
on the average correlation of MT metrics.

ual score. Figure 4 represents the changes in the
average correlation of MT metrics on WMT 22
MQM dataset at the segment-level. Depending on
the existing metric, the optimal values of λ are dif-
ferent. Specifically, many supervised metrics attain
higher correlation when λ < 0.5, while most un-
supervised metrics attain near λ = 1. Thus, we
recommend using the weight λ ≤ 1 for existing
MT metrics. In our experiment, we use λ = 0.2
for all metrics instead of using individual optimal
values to avoid overfitting.

7 Conclusion

In this paper, we propose RESUME, a novel metric
designed to assess the relative quality between ref-
erence and candidate sentences in MT. By adding
residual scores from RESUME to the output of ex-
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Figure 4: Changes in the average correlation of MT
metrics according to RESUME score ratios.

isting MT metrics, we address the reference-bias
problem in current MT evaluation, which arises
with significant advancements in MT systems: the
candidate sentences, produced by MT systems, ex-
cel the quality of the reference sentences. The em-
pirical results demonstrate that RESUME not only
increases the alignment between MT metrics and
human judgements but also enables to discrimi-
nate between top MT systems. Furthermore, we
disclose analyses that RESUME indeed evaluates
higher quality translations over references more
accurately against other MT metrics.

Limitations

Although RESUME improves the performance of
existing MT metrics, the evaluation time may be
slightly longer because the final scores are obtained
by adding the residual scores with the output of
other MT metrics. One of the methods generating
residual scores could calculate the scores of can-
didate sentences in existing human-rated datasets,
as mentioned in §4.3. However, when we trained
RESUME containing this method, we observed the
decreased performance of RESUME.

Despite the good performance of RESUME in
our experiments, we partly agree that the assump-
tion of assigning a reference score of 1 during the
training process is revisited in future works to fully
leverage recent datasets (e.g., WMT 22, 23) that
include a growing proportion of LLM-generated
translations. In addition, we believe that RESUME

could be enhanced by including human-annotated
residual scores into the training data.
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A Comparison with Reference-free
Metrics on a Post-editing Dataset

Metrics Pre-edited.
< Post-edited.

COMET 1%
COMET-QE 54%
RESUME 59%

Table 5: The percentage of instances where the MT met-
rics assign a higher score to the post-edited translation
compared to the pre-edited translation.

We investigate that reference-free metric assigns
higher scores to post-edited translations when us-
ing pre-edited translations as references, as out-
lined in § 6.2. Table 5 shows the result of COMET-
QE, the reference-free version of COMET, on the
post-editing dataset. COMET-QE allocates greater
scores to post-edited translations more frequently,
compared to COMET, as it is not influenced by the
quality of references. However, COMET-QE shows
a lower rate compared to our RESUME. This in-
dicates that our RESUME evaluates higher-quality
translations more accurately than the method with-
out references.

B The Optimal Ratio of RESUME Score
for MT Metrics on the WMT Dataset

We investigate the most suitable proportion (λ) of
RESUME scores for MT metrics on WMT dataset.
We diversify the ratio λ from 0.1 to 10 incremen-
tally. Table 6 shows the optimal λ value for MT
metrics at both segment- and system-level.

C Training Examples used for RESUME

To facilitate understanding of the training process
of RESUME, we provide training examples with
residual score in Table 8. The original data example

Metrics Segment-level System-level

UniTE 0.4 0.6
BLEURT 0.2 0.2
COMET 0.6 0.6
MS-COMET-22 0.2 0.2
BERTScore 0.2 0.2
chrF++ 1 1
BLEU 2 1

Table 6: The best-suited ratio(λ) of RESUME score for
MT metrics on the WMT 22 MQM dataset.

with the absolute score is represented in Table 7.
As introduced in § 4.3, we convert absolute scores
from a human-rated dataset into residual scores
without any additional labeling cost.

D Results on Medium- and Low-Resource
Language Pairs

Since there are only three high-resource language
pairs in the WMT 22 MQM dataset, we additionally
test RESUME on 11 medium- and low-resource lan-
guage pairs in the WMT 22 DA dataset. As shown
in Table 9 and 10, RESUME consistently improves
the average performance of baseline methods in
medium- and low-resource language pairs.

E Results on the WMT 21, 22, and 23
MQM tasks.

To validate the generalization performance of RE-
SUME, we experiment with the WMT 20, 21, and
23 MQM datasets. To avoid overlap between the
training and evaluation datasets, we utilize RE-
SUME trained on the WMT 17-18 DA datasets for
the WMT 20 MQM dataset and RESUME trained
on the WMT 17-19 DA datasets for the WMT 21
MQM dataset. For the WMT 23 MQM dataset,
we employ the same RESUME checkpoint used in
our main experiment without any additional train-
ing. As shown in Table 11, 12, and 13, RESUME

enhances the performance of baseline metrics in
the newly introduced dataset at both segment- and
system-levels.

F Case Study

We sample several (source, reference) pairs from
the WMT 21 de-en language pair where reference
sentences represent deficiencies, such as the omis-
sion of words. Subsequently, we generate candi-
date sentences using GPT-4, as it can produce high-
quality translations than gold references (Xu et al.,
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Source Reference Candidate Absolute Score

What is your view of the match? Jak byste zhodnotily zápas? Jaký je váš pohled na zápas? 0.892

Table 7: An example sampled from an existing human-rated dataset with absolute scores.

Source Reference Candidate Residual Score

What is your view of the match? Jak byste zhodnotily zápas? Jaký je váš pohled na zápas? -0.108 (= 0.892 - 1)
What is your view of the match? Jaký je váš pohled na zápas? Jak byste zhodnotily zápas? 0.108 (= 1 - 0.892)

Table 8: Training examples used for RESUME.

2024). These candidate sentences are then scored.
Table 14 shows the scoring results assigned by ex-
isting MT metrics and RESUME.

The first example presents that the English word
corresponding to ‘In Bangladesch’ does not exist
in reference. In the case of BERTScore and MS-
COMET-22, these metrics do not assign higher
scores to the candidate sentence rather than the
evaluation of the reference sentence itself. How-
ever, RESUME gives a positive value to the can-
didate sentence, allowing it to receive a higher as-
sessment.

The second example shows a case where cer-
tain words, found in the reference, are absent from
the source. Notably, there are no English counter-
parts for ‘Würzburg’ and ‘echzig’ in the reference.
Moreover, the ‘the 1860s’ word appears in the ref-
erence sentence but does not exist in the source sen-
tence. The assessment of the candidate is decreased
using BERTScore and MS-COMET-22. However,
RESUME assigns an additional score, resulting in
proper evaluation for the candidate sentence.

Furthermore, we also provide examples from the
post-editing dataset. As shown in Table 15, existing
MT metrics struggle to assign higher scores to post-
edited translations than to erroneous pre-edited
translations when pre-edited translations serve as
references. Nevertheless, since RESUME can as-
sess translations regardless of the reference quality,
post-edited translations can receive higher evalua-
tions, when RESUME is applied, despite the pres-
ence of flawed references.

G Dataset Statistics

We provide detailed statistics on the datasets uti-
lized for training and evaluating RESUME. Ta-
ble 16 shows the count of sentence pairs for each
language pair in the WMT Metrics Shared Task
datasets.
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Metrics en-ja cs-uk en-hr en-uk sah-ru uk-cs en-cs ja-en cs-en uk-en liv-en Avg.

Supervised

UniTE 0.108 0.195 0.184 0.141 0.643 0.226 0.090 0.078 0.035 -0.028 0.515 0.199
+ RESUME 0.119 0.206 0.208 0.159 0.647 0.239 0.124 0.084 0.049 0.001 0.519 0.214

BLEURT 0.068 0.149 0.113 0.078 0.632 0.159 0.033 0.042 -0.012 -0.133 0.512 0.149
+ RESUME 0.103 0.187 0.189 0.146 0.639 0.216 0.116 0.087 0.045 -0.018 0.527 0.203

COMET 0.102 0.165 0.167 0.122 0.644 0.184 0.053 0.078 0.037 -0.040 0.523 0.185
+ RESUME 0.114 0.191 0.199 0.146 0.648 0.221 0.092 0.091 0.058 0.000 0.527 0.208

MS-COMET-22 0.079 0.155 0.127 0.101 0.587 0.169 0.071 0.073 -0.019 -0.089 0.490 0.159
+ RESUME 0.104 0.175 0.178 0.144 0.591 0.204 0.140 0.097 0.015 -0.013 0.511 0.195

Unsupervised

BERTScore 0.060 0.114 0.087 0.041 0.628 0.115 -0.019 0.042 -0.008 -0.132 0.523 0.132
+ RESUME 0.099 0.154 0.176 0.125 0.617 0.188 0.121 0.086 0.028 -0.014 0.521 0.191

chrF++ 0.042 0.091 0.062 0.027 0.630 0.120 -0.036 0.046 -0.006 -0.144 0.481 0.119
+ RESUME 0.097 0.141 0.162 0.117 0.644 0.193 0.051 0.097 0.052 -0.022 0.519 0.186

BLEU 0.031 0.024 -0.035 -0.047 0.580 0.047 -0.082 -0.010 -0.031 -0.185 0.423 0.065
+ RESUME 0.087 0.123 0.149 0.115 0.630 0.180 0.053 0.100 0.048 -0.022 0.493 0.178

Table 9: Segment-level Kendall’s τ -like correlation results on the mid- and low-resource language pairs in the WMT
22 DA dataset. Values marked in bold signify an increase when RESUME is applied. Avg. denotes the average score
across all language pairs.

Metrics en-ja cs-uk en-hr en-uk sah-ru uk-cs en-cs ja-en cs-en uk-en liv-en Avg.

Supervised

UniTE 0.923 0.964 0.911 0.917 1.000 0.945 0.712 0.571 0.712 0.694 1.000 0.850
+ RESUME 0.912 0.964 0.933 0.889 1.000 0.982 0.727 0.571 0.727 0.694 1.000 0.854

BLEURT 0.824 0.927 0.933 0.889 1.000 0.982 0.682 0.593 0.727 0.694 1.000 0.841
+ RESUME 0.846 0.909 0.956 0.889 1.000 0.982 0.773 0.571 0.727 0.694 1.000 0.850

COMET 0.857 0.927 0.956 0.917 1.000 0.964 0.682 0.549 0.712 0.667 1.000 0.839
+ RESUME 0.868 0.945 0.978 0.917 1.000 0.964 0.682 0.560 0.727 0.667 1.000 0.846

MS-COMET-22 0.890 0.873 0.956 0.833 1.000 0.964 0.697 0.593 0.727 0.667 1.000 0.836
+ RESUME 0.901 0.909 0.933 0.861 1.000 0.945 0.788 0.582 0.667 0.667 1.000 0.841

Unsupervised

BERTScore 0.879 0.873 0.822 0.861 1.000 0.891 0.606 0.637 0.712 0.722 0.933 0.812
+ RESUME 0.901 0.945 0.933 0.889 1.000 0.909 0.818 0.582 0.652 0.722 1.000 0.850

chrF++ 0.824 0.800 0.822 0.889 1.000 0.945 0.591 0.615 0.712 0.750 0.933 0.807
+ RESUME 0.846 0.873 0.933 0.889 1.000 0.927 0.606 0.626 0.697 0.722 1.000 0.829

BLEU 0.725 0.800 0.756 0.861 1.000 0.927 0.591 0.593 0.697 0.750 0.933 0.785
+ RESUME 0.890 0.818 0.867 0.889 1.000 0.964 0.621 0.604 0.682 0.722 1.000 0.823

Table 10: System-level pairwise accuracy results on the mid- and low-resource language pairs in the WMT 22 DA
dataset. Values marked in bold signify an increase when RESUME is applied. Avg. denotes the average score across
all language pairs.

Metrics
Segment-level (τ ) System-level (Acc.)

en-de zh-en he-en Avg. en-de zh-en he-en Avg.

Supervised

xCOMET-XL 0.537 0.448 0.396 0.460 0.897 0.842 0.949 0.896
+ RESUME 0.574 0.471 0.371 0.472 0.936 0.858 0.962 0.919

UniTE 0.540 0.442 0.393 0.458 0.923 0.833 0.923 0.893
+ RESUME 0.545 0.450 0.391 0.462 0.923 0.842 0.923 0.896

BLEURT 0.476 0.347 0.390 0.404 0.949 0.800 0.897 0.882
+ RESUME 0.513 0.387 0.398 0.433 0.936 0.808 0.923 0.889

COMET 0.544 0.428 0.383 0.452 0.923 0.825 0.872 0.873
+ RESUME 0.551 0.436 0.388 0.458 0.923 0.833 0.872 0.876

MS-COMET-22 0.425 0.273 0.326 0.341 0.897 0.850 0.936 0.894
+ RESUME 0.506 0.393 0.288 0.396 0.897 0.858 0.949 0.901

Unsupervised

BERTScore 0.541 0.410 0.362 0.438 0.936 0.792 0.846 0.858
+ RESUME 0.569 0.462 0.341 0.457 0.910 0.858 0.897 0.888

chrF++ 0.337 0.211 0.310 0.286 0.910 0.750 0.769 0.810
+ RESUME 0.392 0.290 0.332 0.338 0.910 0.775 0.782 0.822

BLEU 0.375 0.195 0.256 0.275 0.936 0.767 0.795 0.833
+ RESUME 0.441 0.327 0.303 0.357 0.949 0.783 0.795 0.842

Table 11: Results on the WMT 23 MQM dataset.
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Metrics Segment-level(τ ) System-level(Acc.)

en-de en-ru zh-en Avg. en-de en-ru zh-en Avg.

Supervised

UniTE 0.179 0.317 0.114 0.203 0.728 0.617 0.495 0.613
+ RESUME 0.216 0.367 0.107 0.230 0.853 0.750 0.590 0.731

BLEURT 0.194 0.301 0.103 0.199 0.831 0.708 0.476 0.672
+ RESUME 0.234 0.350 0.085 0.223 0.875 0.825 0.610 0.770

COMET 0.163 0.280 0.096 0.180 0.743 0.642 0.514 0.633
+ RESUME 0.213 0.340 0.093 0.215 0.875 0.767 0.600 0.747

MS-COMET-22 0.163 0.304 0.095 0.187 0.824 0.717 0.543 0.695
+ RESUME 0.207 0.355 0.060 0.207 0.846 0.792 0.610 0.749

Unsupervised

BERTScore 0.075 0.192 0.046 0.104 0.632 0.567 0.476 0.558
+ RESUME 0.200 0.314 0.042 0.185 0.860 0.800 0.600 0.753

chrF++ 0.057 0.123 0.031 0.070 0.654 0.550 0.467 0.557
+ RESUME 0.170 0.300 0.063 0.178 0.853 0.808 0.486 0.716

BLEU 0.018 0.015 0.007 0.013 0.654 0.542 0.476 0.557
+ RESUME 0.146 0.262 0.052 0.153 0.757 0.800 0.448 0.668

Table 12: Results on the WMT 21 MQM dataset.

Metrics Segment-level(τ ) System-level(Acc.)

en-de zh-en Avg. en-de zh-en Avg.

Supervised

UniTE 0.234 0.217 0.226 0.733 0.467 0.600
+ RESUME 0.319 0.233 0.276 0.911 0.778 0.844

BLEURT 0.320 0.320 0.320 0.933 0.578 0.756
+ RESUME 0.372 0.321 0.347 0.889 0.800 0.844

COMET 0.207 0.183 0.195 0.778 0.578 0.678
+ RESUME 0.316 0.206 0.261 0.911 0.689 0.800

MS-COMET-22 0.221 0.175 0.198 0.800 0.622 0.711
+ RESUME 0.322 0.198 0.260 0.844 0.800 0.822

Unsupervised

BERTScore 0.092 0.103 0.097 0.511 0.400 0.456
+ RESUME 0.312 0.182 0.247 0.889 0.756 0.822

chrF++ 0.049 0.057 0.053 0.489 0.444 0.466
+ RESUME 0.255 0.164 0.209 0.956 0.489 0.722

BLEU 0.014 0.010 0.012 0.422 0.489 0.456
+ RESUME 0.207 0.136 0.171 0.800 0.467 0.633

Table 13: Results on the WMT 20 MQM dataset.
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Example #1

Source In Bangladesch bemüht sich der Rote Halbmond in Booten die isolierten Menschen zu erreichen.

Reference The Red Crescent strove to reach isolated people in boats.

GPT-4 In Bangladesh , the Red Crescent is endeavoring to reach isolated individuals using boats.

Scores
Reference itself GPT-4

BERTScore 1.000 BERTScore + RESUME 1.067 (0.952 + 0.115)
MS-COMET-22 0.928 MS-COMET-22 + RESUME 1.042 (0.927 + 0.115)

Example #2

Source Sollte Zweitliga-Aufsteiger Würzburg das Finale erreichen, wäre Sechzig bereits fix für die erste Runde
im DFB-Pokal qualifiziert.

Reference Should the new second-league team reach the finals, then the 1860s would already qualify for the first
round of the DFB-Pokal.

GPT-4 If second division promoted team Würzburg were to reach the final, Sechzig would already be qualified
for the first round of the DFB-Pokal.

Scores
Reference itself GPT-4

BERTScore 1.000 BERTScore + RESUME 1.119 (0.941 + 0.178)
MS-COMET-22 0.923 MS-COMET-22 + RESUME 1.071 (0.893 + 0.178)

Table 14: Examples of noisy reference sentences. yellow indicates the tokens present in both source and GPT-4

translation, but not in the reference. Conversely, red denotes the tokens in the reference, but not in the source.
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Example #1

Source Богатый дивится , чем голь живится.
Pre-edited. Rich marvel at how gold lives.

Post-edited. Rich marvel at how the poor live.

Scores
Reference: Pre , Candidate: Pre Reference: Pre , Candidate: Post

BERTScore 0.999 BERTScore 0.903 BERTScore + RESUME 1.082 (= 0.903 + 0.179)
MS-COMET-22 0.864 MS-COMET-22 0.792 MS-COMET-22 + RESUME 0.971 (= 0.792 + 0.179)

Example #2

Source Что сделать чтобы прошло жжение в глазах.
Pre-edited. What to do to get your eyes burning.
Post-edited. What does one do to stop the eyes burning.

Scores
Reference: Pre , Candidate: Pre Reference: Pre , Candidate: Post

BERTScore 0.999 BERTScore 0.931 BERTScore + RESUME 1.034 (0.931 + 0.103)
MS-COMET-22 0.873 MS-COMET-22 0.841 MS-COMET-22 + RESUME 0.944 (0.841 + 0.103)

Example #3

Source Почему вам пора перестать просто ПОДНИМАТЬ штангу и гантели?

Pre-edited. Why should you stop just HAPPY the barbell and dumbbells?
Post-edited. Why should you stop just LIFTING the barbell and dumbbells?

Scores
Reference: Pre , Candidate: Pre Reference: Pre , Candidate: Post

BERTScore 0.998 BERTScore 0.948 BERTScore + RESUME 1.057 (0.948 + 0.109)
MS-COMET-22 0.837 MS-COMET-22 0.811 MS-COMET-22 + RESUME 0.920 (0.811 + 0.109)

Example #4

Source И потеряла надежду Мария поймать кайф .

Pre-edited. And Maria lost hope of catching the bug .

Post-edited. And Maria lost hope of getting high .

Scores
Reference: Pre , Candidate: Pre Reference: Pre , Candidate: Post

BERTScore 1.0 BERTScore 0.973 BERTScore + RESUME 1.106 (0.973 + 0.133)
MS-COMET-22 0.902 MS-COMET-22 0.850 MS-COMET-22 + RESUME 0.983 (0.850 + 0.133)

Table 15: Additional examples from the post-editing translation dataset. Pre and Post denote pre-edited
translations and post-edited translations, respectively.

WMT 17 (DA) WMT 18 (DA) WMT 19 (DA) WMT 20 (DA) WMT 21 (DA) WMT 22 (MQM)

LP Num. LP Num. LP Num. LP Num. LP Num. LP Num.

en-tr 2039 en-tr 3132 fr-de 3999 ps-en 4611 zu-xh 2502 en-ru 19725
zh-en 26419 de-en 28404 en-de 75777 zh-en 55006 zh-en 36128 zh-en 28125
de-en 21704 zh-en 25352 de-en 31887 en-zh 29950 en-zh 27876 en-de 19725
en-cs 20532 en-zh 22128 zh-en 20170 ru-en 19499 de-en 18409
ru-en 17980 et-en 20496 ru-en 19644 en-de 19410 en-ja 14856
en-ru 17358 en-ru 16748 en-zh 19506 de-en 17188 ja-en 14482
tr-en 17335 fi-en 14965 en-cs 18201 en-cs 14575 en-de 13572
fi-en 15159 en-et 13376 en-ru 17417 pl-en 11816 ha-en 13171
cs-en 11585 ru-en 13157 en-fi 16079 en-ru 11226 en-is 10838
en-zh 10221 tr-en 12851 fi-en 16021 en-pl 10572 en-ha 10812
en-fi 10159 en-de 10208 de-cs 13804 en-ja 9578 en-cs 10006
en-de 7025 cs-en 8732 lt-en 10315 ja-en 8939 en-ru 9313
en-lv 5810 en-fi 8097 gu-en 9063 en-ta 7890 ru-en 8926
en-tr 2039 en-cs 7629 en-lt 8959 ta-en 7577 is-en 8903

en-tr 3132 en-kk 8219 cs-en 7530 de-fr 8258
en-gu 6924 km-en 4722 cs-en 7242
kk-en 6789 ps-en 4611 fr-de 7196
de-fr 6691 hi-bn 4512
fr-de 3999 bn-hi 4461

xh-zu 2968

Table 16: The number of sentence pairs in the WMT Metrics Shared Task datasets. LP denotes the language pair.
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