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Abstract

Large Language Models (LLMs) have demon-
strated capability in “instruction induction,”
generating instructions from demonstrations
(input-output pairs). However, existing meth-
ods often rely on large datasets or numerous ex-
amples, which is impractical and costly in real-
world scenarios. In this work, we propose a
low-cost, task-level framework called INDUCT-
LEARN. It induces pseudo instructions from a
few demonstrations and a short phrase, adding
a CoT process into existing demonstrations.
When encountering new problems, the learned
pseudo instructions and demonstrations with
the pseudo CoT process can be combined into
a prompt to guide the LLM’s problem-solving
process. We validate our approach on the BBH-
Induct and Evals-Induct datasets, and the re-
sults show that the INDUCT-LEARN framework
outperforms state-of-the-art methods. We also
exhibit cross-model adaptability and achieve
superior performance at a lower cost compared
to existing methods.

1 Introduction

Although Large Language Models (LLMs) excel at
adapting to unseen tasks through in-context learn-
ing (Brown et al., 2020; Wei et al., 2022a; Chen
et al., 2023; Wei et al., 2023), their inferential pro-
cess is often implicit, making it challenging to
explicitly understand the underlying mechanisms.
Honovich et al. (2023) reveal LLMs’ potential for
“instruction induction,” where they infer rules from
input-output pairs to create natural language in-
structions, offering hope for mitigating the chal-
lenge of implicit reasoning.

Following these insights, Zhou et al. (2022), Sun
et al. (2023), Zhang et al. (2023), Chen et al. (2024),
Hsieh et al. (2024) innovated in utilizing input-
output pairs for generating diverse prompts, aimed
at selecting optimal prompts for downstream mod-
els. These works generally assume the availabil-

Task Content: The purpose of this task is to determine the final coordinate
(x, y) after a series of movements in a 2D space. The movements can include
steps forward, backward, and turns (90 degrees left or right).
Operational Steps: 
1. Initialize the current position to (0, 0) and the current direction to north.
2. Process each movement in the input sequence:
   a. If the movement is "take X steps forward", move X steps in the current
direction and update the current position accordingly.
   [...]
3. After processing all movements, return the final coordinate (x, y).

[Q] If you take 1 step backward, then take 2 steps forward, then take 5 steps
backward, then turn 90 degrees left, what coordinate are you at?  
Initial Position: (0, 0) Initial Direction: North (0 degrees)
Movement 1: Take 1 step backward [...]

New Position: (0, -1)  New Direction: North (0 degrees)
[...]
Movement 4: Turn 90 degrees left [...]
Since we've processed all movements, our final coordinate is (0, -4).
...

Model Input

Model Output

INDUCT-LEARN Prompting

Model Input
Standard Prompting

Few-shot
Demonstrations
w/ Pseudo CoT

Test Quesiton

[Task Name] 2d movement

[Q] If you turn 90 degrees right, then take 2 steps backward, what coordinate
are you at? 
[A]

[Q] If you turn 90 degrees right, then take 2 steps backward, what coordinate
are you at?
[A] Let's refer to the 'Operational Steps' and think step by step.

Initial Position: (0, 0) Initial Direction: North (0 degrees)

Movement 1: Turn 90 degrees right
We'll turn 90 degrees clockwise, so our new direction is east.
New Position: (0, 0) New Direction: East (90 degrees)
[...]

Since we've processed all movements, our final coordinate is (-2, 0).
So, the answer is  (-2, 0). 

 (0, -2) 
Model Output

Short Phrase

Few-shot
Demonstrations

Test Question

 Pseudo Instructions

[Q] If you take 1 step backward, then take 2 steps forward, then take 5 steps
backward, then turn 90 degrees left, what coordinate are you at? 
[A] (0, -4)
...

Figure 1: Comparison of model output from standard
prompting and INDUCT-LEARN prompting. INDUCT-
LEARN framework generates pseudo instructions and
pseudo CoT demonstrations to help the model answer
questions more effectively.

ity of substantial external resources, like extensive
training datasets, for acquiring numerous demon-
strationsa process that can incur significant costs
for producing prompts. Moreover, most of these
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methods require an initial prompt (instruction) to
perform prompt optimization.

However, this differs from the situation of gen-
eral users. Typical users usually only possess lim-
ited data (a few examples) and are unwilling to in-
vest significant costs in prompt optimization using
these methods. Moreover, these approaches opti-
mize prompts for specific target models, and the
optimized prompts may not be effective for other
models. Furthermore, general users often lack suffi-
cient prompting skills to communicate with LLMs
(Desmond and Brachman, 2024; Mishra and Nouri,
2022; Zamfirescu-Pereira et al., 2023), making it
challenging to write good initial instructions.

We propose a low-cost, task-level INDUCT-
LEARN framework that can effectively improve
performance using only a few demonstrations and
a very simple short phrase to limit the scope. This
framework first induces task-level pseudo instruc-
tions based on the provided task-specific demon-
strations and corresponding short phrase. These
pseudo instructions encapsulate the Task Content,
Input and Output Format, and Operational Steps.
Then, similar to human inductive learning, the
model is asked to practice and infer specific ex-
amples using its self-induced pseudo instructions,
rewriting the demonstrations into pseudo CoT ex-
amples. When encountering new questions, the
learned pseudo instruction and CoT demonstrations
can be combined into a prompt to guide the LLM’s
thinking and solve the problem.

Our validation on custom datasets BBH-Induct
and Evals-Induct shows that our proposed low-cost
INDUCT-LEARN framework achieves performance
comparable to carefully crafted human instruc-
tions and significantly outperforms state-of-the-art
frameworks. Notably, powerful LLMs using the
INDUCT-LEARN framework can even surpass the
performance of human-written instructions. Fur-
thermore, our experiments demonstrate that the
INDUCT-LEARN framework exhibits cross-model
adaptability, meaning that the prompt generated by
one model can be effectively used by other mod-
els to improve their performance. In terms of cost,
we can outperform state-of-the-art frameworks at a
lower cost.

2 INDUCT-LEARN Framework

This section details the design of the INDUCT-
LEARN framework for generating pseudo instruc-
tions and chain-of-thought (CoT) processes.

2.1 INDUCT Stage

The objective of this stage is to utilize the inductive
capabilities of LLMs to generate comprehensive
instructions from demonstrations. Given a set of
demonstrations containing N samples:

D = {(x1, y1), (x2, y2), . . . , (xN , yN )} (1)

where xi denotes an input, and yi denotes the cor-
responding output.

Then, we provide additional information with a
short phrase I . Let the LLM read the samples,
induce from them, and generate the instruction
prompt. The process can be expressed as follows:

PINDUCT = LM(I,D | Pφ) (2)

where Pφ is the meta prompt we design to guide
the LLM to simulate an expert’s analysis, induc-
ing instructions from the given demonstrations D.
PINDUCT is the outcome of this step, containing four
important components: Task Content, which is a
description of this task; Input Format and Output
Format, which describe the format of the input-
output pairs (xi, yi), to guide the LLM in precisely
understanding the input and generating the accu-
rate output; and Operational Steps, which provide
step-by-step guidance to answer the given input xi.

2.2 LEARN Stage

This stage utilizes the instruction PINDUCT gener-
ated in the previous stage to produce high-quality
demonstrations with a detailed Chain-of-Thought
(CoT) process. Specifically, there are several steps
in the LEARN stage. First, we take the input xi
from each demonstration (xi, yi) ∈ D along with
PINDUCT. We can formulate the process as:

(ŷi, ci) = LM(xi | PINDUCT) ∀ i ∈ [1, N ] (3)

where ci is the CoT process generated by the LLM
and ŷi is the corresponding generated answer.

Subsequently, we compare ŷi with the ground-
truth yi and filter out the incorrect ones. The filter-
ing process can be expressed as:

DLEARN = {(xi, ŷi, ci) | ŷi = yi,

∀ i ∈ [1, N ]} (4)

where DLEARN is the demonstration set that has
been verified as correct, containing the input xi,
the generated answer ŷi, and the CoT process ci.
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Then, we concatenate the first k samples from
DLEARN and generate PLEARN. The order of con-
catenation will be xj , cj , ŷj . This process can be
formulated as follows:

PLEARN = concat(xj , cj , ŷj) ∀ j ∈ [1, k] (5)

where PLEARN is the prompt generated by concate-
nating the input xj , the Chain-of-Thought process
cj , and the generated answer ŷj for the first k sam-
ples from DLEARN.

Finally, we can easily create the final prompt by
concatenating(⊕) PINDUCT and PLEARN, which can
be expressed as:

PINDUCT_LEARN = PINDUCT ⊕ PLEARN (6)

2.3 Inference Stage
The goal of this stage is to leverage PINDUCT_LEARN

to enhance model performance on new inputs for
the same task. Given an input x′ where x′ /∈ D, we
can use our PINDUCT_LEARN to generate the result:

y′ = LM(x′ | PINDUCT_LEARN) (7)

3 Experiments

3.1 Models
In our experiments, we conduct evaluations on
eight instruction-tuned models across three series,
including both open-source models and commer-
cial APIs. For open-source models, we adopt
Mistral-7B (Jiang et al., 2023), Mixtral-8x7B
(Jiang et al., 2024), Mixtral-8x22B, Llama 3 8B,
and Llama 3 70B (Meta, 2024). On the commer-
cial side, we select Gemini 1.0 Pro (Gemini Team,
2023), Gemini 1.5 Flash, and Gemini 1.5 Pro (Gem-
ini Team, 2024).

3.2 Datasets
To evaluate the capability of LLMs in inferring
instructions from demonstrations without explicit
hints, we adopt BBH-Induct and Evals-Induct.
Both datasets are sufficiently challenging and do
not perform well when LLMs are used in zero-shot
settings without given instructions.

BBH-Induct We introduce a modification of the
BIG-Bench-Hard (BBH) dataset (Suzgun et al.,
2022) called BBH-Induct, specifically designed
to evaluate the instruction induction capabilities of
LLMs. Unlike the original BBH dataset, which con-
tains explicit hints in each instance, BBH-Induct re-
moves information that is unrealistic for real-world

cases where only input-output pairs are available,
and the LLM is expected to solve problems with-
out explicit instructions. To address this issue, we
eliminate the prefix and suffix templates in the ques-
tions. Due to space constraints, the construction
process is shown in Appendix A. Each BBH-Induct
task contains approximately 96 to 600 examples,
amounting to a total of 5,161 instances. For de-
tailed descriptions of the tasks, refer to the BBH
task descriptions in (Suzgun et al., 2022).

Evals-Induct We adopt another challenging
dataset: Evals-Induct, derived from the OpenAI
Evals project1. This project collects tasks that even
GPT-4 struggles with. We select 24 suitable chal-
lenge tasks in Evals-Induct. Similar to BBH-Induct,
we include only question-answer pairs without ad-
ditional information as demonstrations, aiming to
use Evals-Induct to evaluate the induction capa-
bility of LLMs. LLMs are required to perform
inductive reasoning across multiple examples and
generate suitable instructions that are beneficial for
answering the questions. Each Evals-Induct task
has approximately 91 to 378 examples, totaling
3,683 instances. For detailed information on the
tasks, please refer to Table 10 in Appendix.

3.3 Baselines

We evaluate our approach against several baselines:

Short Phrase Model generates the result without
complete instructions, using only a short phrase as
a hint. We use task titles (task names) as the short
phrases, which briefly describe the core content of
the task without providing detailed instructions.

Human Model generates results based on in-
structions provided by human experts, which are
sourced from the original datasets. These instruc-
tions serve as a strong performance benchmark.

Self-Discover The state-of-the-art method (Zhou
et al., 2024) automatically constructs task-level rea-
soning structures by selecting, adapting, and im-
plementing from a set of 39 common reasoning
modules.

3.4 Other Details

INDUCT-LEARN In our experiments, we set N
to 9 in the INDUCT stage and k to 3 in the LEARN

stage. This implies that our INDUCT-LEARN

method generates instructions by inducing from
1https://github.com/openai/evals
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Model BBH-Induct Evals-Induct

SP Human Self-
Discover

INDUCT
(Ours) ∆ SP Human Self-

Discover
INDUCT
(Ours) ∆

Llama 3 8B 30.28 45.51 38.96 43.49 -2.02 9.19 21.04 15.24 18.21 -2.83
Llama 3 70B 59.45 70.30 59.37 69.93 -0.37 18.83 36.52 24.22 47.91 11.39
Mistral 7B 37.58 41.30 40.26 37.59 -3.71 12.78 20.87 13.96 16.32 -4.55

Mixtral 8x7B 38.97 48.32 40.51 44.71 -3.61 12.64 25.68 21.20 25.22 -0.46
Mixtral 8x22B 45.57 58.61 45.91 67.01 8.4 16.96 36.83 31.92 40.50 3.67
Gemini 1.0 Pro 46.21 57.64 50.38 53.55 -4.09 16.13 36.64 19.58 24.23 -12.41

Gemini 1.5 Flash 42.62 56.69 54.27 65.09 8.4 18.17 42.87 25.95 44.44 1.57
Gemini 1.5 Pro 52.44 69.45 62.81 78.96 9.51 22.42 49.38 37.50 51.13 1.75

Table 1: Results of instruction generation experiment across models and tasks in zero-shot settings. We evaluate
exact match accuracy (%) and calculate the mean of all the tasks of both BBH-Induct and Evals-Induct. The best
results of each setting are marked in bold, and underlines denote the best performance excluding human instructions.
∆ denotes the performance gap between INDUCT(Ours) and human instructions (Ours - Human). SP denotes Short
Phrase.

only 9 demonstrations and utilizes up to 3 CoT
results in the inference scenario.

Experimental Setups To optimize experimental
efficiency and stability, we utilize the API services
of all eight LLMs, including Google, Groq2, and
Together AI3. Details such as model version and
safety settings are listed in Appendix B. Due to
resource constraints, experiments with Gemini 1.5
Pro and Mixtral 8x22B are conducted on a ran-
dom sample of 25 instances per task per dataset.
All other models are evaluated on the complete
datasets.

4 Results and Analysis

4.1 Quality of Instruction Generation
We conduct experiments in the zero-shot setting to
evaluate the quality of different instructions. Given
the instructions generated by different methods and
the question, we calculate the accuracy of the re-
sults that LLMs generate. According to Table 1,
PINDUCT significantly outperforms the SOTA base-
line Self-Discover (Zhou et al., 2024) in 15 out of
16 settings, with the only exception being the Mis-
tral 7B model on BBH-Induct dataset. Compared
to instructions given by human experts, PINDUCT

achieves a comparable performance, with a minor
loss in the BBH-Induct dataset (3 vs. 5) and a tie
in the Evals-Induct dataset.

Notably, we observe that our PINDUCT benefits
more as the model’s scale increases. For the
Llama 3 series, as the model scale increases from
8B to 70B, PINDUCT improves by 26.44% (from
43.49% to 69.93%), while human instruction im-
proves by 24.79 (from 45.51% to 70.30%). As

2https://groq.com/
3https://www.together.ai/

the model scale grows, PINDUCT gradually closes
the gap with human instruction. Hence, the gap be-
tween PINDUCT and human instruction narrows from
-2.02% (45.51% minus 43.49%) to -0.37% (70.3%
minus 69.93%). There is a similar trend in the Mis-
tral and Gemini series. For the Mixtral 8x22B,
Gemini 1.5 Flash, and Gemini 1.5 Pro models,
PINDUCT even surpassed human instructions. This
finding aligns with the observations of Honovich
et al. (2023) that larger and more capable models
exhibit stronger “instruction induction” abilities.
We can conclude that our PINDUCT is significantly
better than human expert instructions in modern
powerful LLMs.

4.2 Effect of LEARN Stage

In order to measure the effectiveness of our gener-
ated pseudo CoT process, we conduct a 3-shot ex-
periment across different models and instructions.
The first row of each model in Table 2 represents
the 3-shot performance without CoT, and the sec-
ond row represents the 3-shot performance with our
pseudo CoT PLEARN. We can see that in most set-
tings, adding our PLEARN benefits the performance.
Specifically, 23 out of 24 settings in BBH-Induct
and 18 out of 24 settings in Evals-Induct show im-
provement.

Moreover, compared to SOTA baseline, our
PINDUCT-LEARN outperforms Self-Discover in most
of the settings after adding the pseudo CoT pro-
cess. It only loses in the Llama 3 8B and Mistral
7B models of BBH-Induct and the Gemini 1.0 Pro
model of Evals-Induct. This aligns with our pre-
vious findings, showing that our method benefits
more as the model becomes stronger. Furthermore,
Our PINDUCT-LEARN method also achieved perfor-
mance comparable to human instructions and even
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Model BBH-Induct Evals-Induct

Human Self-
Discover

INDUCT
(Ours) Human Self-

Discover
INDUCT
(Ours)

Llama 3 8B 37.29 30.02 35.49 16.30 15.97 19.24
+PLEARN 48.59 (+11.30) 49.79 (+19.77) 44.62 (+9.13) 20.23 (+3.93) 18.52 (+2.55) 25.23 (+5.99)

Llama 3 70B 72.97 64.55 68.37 42.85 37.13 46.95
+PLEARN 73.68 (+0.71) 69.00 (+4.45) 73.35 (+4.98) 41.69 (-1.16) 31.49 (-5.64) 47.73 (+0.78)

Mistral 7B 41.32 40.50 38.04 19.32 16.41 18.99
+PLEARN 47.16 (+5.84) 44.89 (+4.39) 44.53 (+6.49) 22.09 (+2.77) 16.14 (-0.27) 20.57 (+1.58)

Mixtral 8x7B 40.99 33.11 39.78 25.17 19.93 22.25
+PLEARN 52.64 (+11.65) 47.64 (+14.53) 53.86 (+14.08) 30.67 (+5.50) 22.79 (+2.86) 26.42 (+4.17)

Mixtral 8x22B 34.26 41.28 50.26 26.54 22.46 34.67
+PLEARN 60.75 (+26.49) 58.09 (+16.81) 70.55 (+20.29) 36.17 (+9.63) 36.04 (+13.58) 46.00 (+11.33)

Gemini 1.0 Pro 58.67 53.83 54.41 39.73 40.14 33.37
+PLEARN 62.95 (+4.28) 54.82 (+0.99) 58.44 (+4.03) 40.75 (+1.02) 27.09 (-13.05) 26.93 (-6.44)

Gemini 1.5 Flash 60.87 61.73 66.89 43.62 40.76 46.80
+PLEARN 73.59 (+12.72) 61.26 (-0.47) 73.30 (+6.41) 45.42 (+1.80) 34.39 (-6.37) 49.69 (+2.89)

Gemini 1.5 Pro 76.87 62.38 76.52 46.96 40.17 49.46
+PLEARN 78.43 (+1.56) 72.52 (+10.14) 82.72 (+6.20) 50.58 (+3.62) 48.63 (+8.46) 55.92 (+6.46)

Table 2: The results of using PLEARN to enhance model performance are presented. Accuracy is expressed as a
percentage. Differences compared to 3-shot results are shown in parentheses: improvements are highlighted in blue,
indicating performance enhancement due to our method, while declines are marked in red, indicating performance
degradation in these cases.

(a) Cross-model Improvement (BBH-Induct) (b) Cross-model Improvement (Evals-Induct)

Figure 2: Comparison of INDUCT-LEARN (Ours) and Short Phrase + 3-shot under different cross-model settings,
where the prompt induction model and task execution/inference model are different. Accuracy is expressed as a
percentage. Darker green indicates greater performance improvement with INDUCT-LEARN (Ours), while darker
red indicates greater performance decline. The comparison is conducted on the (a) BBH-Induct and (b) Evals-Induct
datasets.

outperformed humans in powerful models, such as
the Mixtral 8x22B and Gemini 1.5 Pro models.

4.3 Cross-Model Performance

We present the cross-model adaptability and effec-
tiveness of PINDUCT_LEARN in Figure 2. Specifically,
the figure shows the performance difference (i.e.,
improvement) between using our PINDUCT_LEARN

and the original Short Phrase + 3-shot setting.
Cross-model refers to using PINDUCT_LEARN gener-

ated by one model to perform tasks with another
model. For example, we use the Gemini 1.5 Pro
model to generate PGemini−1.5−Pro

INDUCT_LEARN , and then use
PGemini−1.5−Pro

INDUCT_LEARN as the prompt for the Mixtral
8x22B model to perform tasks. Compared to Mix-
tral 8x22B directly using Short Phrase, the perfor-
mance improves by 42.03.

BBH-Induct Dataset In Figure 2(c), we observe
several key phenomena: 1) PINDUCT_LEARN gener-
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(a) Llama 3 8B (b) Mistral 7B (c) Mixtral 8x7B (d) Mixtral 8x22B

(e) Llama 3 70B (f) Gemini 1.0 Pro (g) Gemini 1.5 Flash (h) Gemini 1.5 Pro

Figure 3: The accuracy difference distribution across 23 BBH-Induct tasks for 8 models using our Induct-Learn
Prompt compared to the Short Phrase under 3-shot settings. Tasks are sorted by accuracy difference from low to
high, indicating that tasks to the right benefit more from our method. Improvements are marked in green, while
performance declines are highlighted in red.

ated by all models can effectively improve the per-
formance of other models when used as prompts.
For example, even using Llama 3 8B to generate
PLlama−3−8B

INDUCT_LEARN as a prompt for Gemini 1.5 Pro (the
most powerful model), the performance can be im-
proved by 3.37 compared to directly using Gemini
1.5 Pro to perform tasks (Short Phrase + 3-shot).
2) As the model becomes stronger, the generated
PINDUCT_LEARN improves, effectively enhancing the
performance of any model.

Evals-Induct Dataset Figure 2(d) shows that the
Evals-Induct dataset exhibits a similar trend. How-
ever, the Evals-Induct dataset specifically collects
tasks that are challenging even for GPT-4. There-
fore, weaker models (e.g., Llama 3 8B, Mistral 7B,
Gemini 1.0 Pro) may not fully understand the ques-
tions, and the generated PINDUCT_LEARN may some-
times mislead certain models, causing performance
degradation. Nevertheless, prompts generated by
more powerful models (e.g., Llama 3 70B, Mix-
tral 8x22B, Gemini 1.5 Flash/Pro) still effectively
enhance the performance of other models.

Cost-effective Strategy These findings indicate
that under limited cost conditions, we can adopt
different deployment strategies based on the esti-
mated future frequency of task execution: 1) For
tasks that are estimated to be performed very few
times (or even just once), we can choose to use
relatively weaker (low-cost) models to generate
PINDUCT_LEARN, and then the original models can

use these prompts to perform tasks. This can im-
prove performance with almost no additional cost.
2) For tasks that are expected to be performed very
frequently, since INDUCT_LEARN generates task-
level prompts and only needs to be generated once,
we can use powerful models to generate INDUCT-
LEARN prompts and then have relatively weaker
models use these prompts to perform tasks in the
inference stage.

4.4 Breakdown BBH-Induct Tasks

To gain deeper insights, we segmented 23 BBH-
Induct tasks for detailed analysis. Figure 3 presents
a head-to-head comparison between using our
PINDUCT_LEARN framework and not using it (Short
Phrase + 3-shot). The results for three series of
models are as follows:

Llama 3 Series Improved from 16-0-7 (win-tie-
lose) with Llama 3 8B to 19-1-3 with Llama 3 70B.

Mistral 3 Series Improved from 14-9 (win-lose)
with Mistral 7B to 21-0-2 with Mixtral 8x22B.

Gemini Series Improved from 15-8 (win-lose)
with Gemini 1.0 Pro to 17-0-3 with Gemini 1.5 Pro.

Our experimental results show that as model
capabilities enhance, the improvements brought
by the INDUCT_LEARN framework become more
significant.
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Model BBH-Induct Evals-Induct
Llama 3 8B 46.50 29.89
Llama 3 70B 73.25 62.07
Mistral 7B 39.51 34.10

Mixtral 8x7B 47.33 38.70
Mixtral 8x22B 65.43 51.34
Gemini 1.0 Pro 51.44 32.18

Gemini 1.5 Flash 70.78 55.56
Gemini 1.5 Pro 74.07 60.54

Table 3: The Macro Pass Rate of various models on the
BBH-Induct and Evals-Induct dataset.

5 Discussion and Analysis

5.1 Larger LLMs Benefit More from
INDUCT-LEARN

Our experiments indicate that larger LLMs bene-
fit more significantly from the proposed INDUCT-
LEARN framework compared to smaller models.

INDUCT stage This observation aligns with find-
ings by Honovich et al. (2023), who noted that
larger models exhibit stronger instruction induction
abilities. Therefore, in the INDUCT stage, larger
models possess enhanced comprehension capabili-
ties, enabling them to generate higher-quality task
instructions PINDUCT from a limited number of ex-
amples, resulting in better performance.

LEARN stage In the LEARN stage, as shown in
Equation 4, we filter out the incorrect results to
obtain DLEARN, the set of demonstrations where
the model’s predicted output ŷj matches the ground
truth yj . We define the Pass Rate (PR) as follows:

PR =
count(DLEARN)

N
(8)

where N is the total number of demonstrations.
The Macro Pass Rate for a given model across

all tasks is then defined as:

Macro PR =
1

M

M∑

i=1

PRi (9)

where M is the number of tasks and PRi is the
pass rate of the i-th task.

Table 3 shows the macro pass rates across var-
ious models and datasets. We can observe that
the larger the model in each series, the higher the
macro pass rate. Specifically, the strongest models
(i.e., Llama 3 70B, Mixtral 8x22B, and Gemini 1.5
Pro) achieve the highest macro pass rate in their
respective series. On the other hand, a low macro
pass rate may occur in situations where the num-
ber of generated CoT demonstrations is less than

Model N=3 N=6 N=9 N=12
Gemini 1.5 Flash 65.71 68.23 70.41 73.10
Mixtral 8x22B 64.41 65.51 67.01 71.59

Table 4: Results for varying numbers of demonstrations
N in the INDUCT stage using the BBH-Induct dataset.

Model k=1 k=2 k=3 k=4
Gemini 1.5 Flash 72.58 74.20 74.29 74.57
Mixtral 8x22B 66.36 68.20 70.55 73.68

Table 5: Results for varying numbers of demonstrations
k in the LEARN stage using the BBH-Induct dataset.

k. This situation weakens the effect of the LEARN

stage, causing smaller models to benefit less from
our framework. The detailed statistics of this situa-
tion are provided in Appendix D.5.

5.2 Different Number of Demonstrations

To comprehensively evaluate the impact of the
number of demonstrations N during the INDUCT

stage and the number of demonstrations k used
in the LEARN stage, we conducted additional ex-
periments by sampling instances from each task
in the BBH-Induct dataset. For both open-source
and closed-source models, we initially considered
selecting the models with the highest parameter
counts. However, due to the high cost of Gemini
1.5 Pro, we ultimately selected the Mixtral 8x22B
and Gemini 1.5 Flash models for our experiments.
Specifically, for the Mixtral 8x22B model, we sam-
pled 25 instances per task, consistent with our pre-
vious experiments. For the Gemini 1.5 Flash model,
we sampled 50 instances per task.

INDUCT Stage Table 4 shows that as N in-
creases, performance continuously improves. This
indicates that more demonstrations help induce
(generate) better instructions, thereby enhancing
the model’s performance. In practice, consider-
ing our paper mainly focuses on giving a lim-
ited amount of training data (X, Y pairs without
CoT), and best utilize this data to improve LLM’s
question-answering capabilities, we chose to set N
to 9 for subsequent experiments.

LEARN Stage Table 5 demonstrates that when
N is fixed at 9, an increase in k consistently leads
to improved performance across all models. This
suggests that a greater number of model-generated
demonstrations, augmented with Chain-of-Thought
(CoT), can significantly enhance the model’s rea-
soning abilities.
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Figure 4: Comparison of average accuracy and number of LLM requests across 8 models under an extreme condition
where a single task with only one instance is executed. The configurations compared are Short Phrase + 0-shot,
Short Phrase + 3-shot, Self-Discover + 0-shot, Self-Discover + LEARN, INDUCT(Ours), and INDUCT-LEARN on the
BBH-Induct dataset.

5.3 Meta Prompt Ablation

To prevent LLMs from being sensitive to the given
prompt, we conducted an ablation study to assess
the consistency of our proposed INDUCT-LEARN

framework. We used GPT-4o to rewrite the origi-
nal meta prompt, and these rewritten prompts are
shown in Figures 10 and 13 in Appendix D.6. We
selected the Gemini 1.5 Flash model as the rep-
resentative and sampled 50 data points from each
task in the BBH-Induct dataset for analysis. These
experiments were conducted using the INDUCT

+ 0-shot setup. Table 6 indicates that different
meta-prompts do not significantly impact the per-
formance of our INDUCT Stage.

Meta Prompt BBH-Induct
Ours 70.41

Rewritten 1 68.75
Rewritten 2 69.39
Rewritten 3 72.52

Average of Rewrittens 70.22

Table 6: The results of the ablation study on the meta
prompt. We evaluate the exact match accuracy (%) and
calculate the mean across all tasks.

6 Cost Analysis

In scenarios where the same task is executed multi-
ple times, prompt generation costs can be largely

ignored. To comprehensively assess potential costs,
we analyze the worst-case scenario where only
a single task is executed once, making the cost
of prompt generation a significant factor. Given
that different tasks and models have varying token
amounts, and even different models may use differ-
ent tokenization methods, we chose to standardize
variables by analyzing costs based on the number of
requests. For detailed request calculations, please
refer to Table 14 in Appendix.

As shown in Figure 5, our Induct-Learn method
demonstrates significant efficiency and accuracy
advantages. For the 0-shot and PLEARN settings,
INDUCT-LEARN requires fewer requests than Self-
Discover but provides higher average accuracy in
almost all cases. In almost all settings (except Mis-
tral 7B), our PINDUCT only requires one additional
request to significantly improve performance over
a single request for Short Phrase + 0-shot/3-shot.
Notably, our method’s advantages increase with
stronger models. For example, with powerful mod-
els like Llama 3 70B, Mixtral 8x22B, Gemini 1.5
Flash, and Gemini 1.5 Pro, our PINDUCT (requir-
ing only 2 requests) can outperform Self-Discover
with PLEARN (requiring 13 requests). These results
indicate that our Induct-Learn method improves
accuracy without significantly increasing computa-
tional costs.
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7 Related Work

Inductive Abilities of LLMs Inductive reason-
ing, a key cognitive ability, has been extensively
studied in the context of LLMs (Liu et al., 2024;
Yu et al., 2023). Yang et al. (2022) introduced
a task for inferring natural language rules from
facts, demonstrating LLMs’ inductive capabilities.
Zhu et al. (2023) leveraged these capabilities to
generate rules from examples, which were then
used as input prompts. Qiu et al. (2024) and Han
et al. (2023) confirmed that LLMs, particularly
GPT-4, can derive rules from input-output pairs,
performing on par with humans on classic property
induction tasks. Honovich et al. (2023) showcased
LLMs generating instructions from input-output
examples, termed “instruction induction.” Our ex-
perimental results support the observation that the
inductive ability of LLMs increases with their scale,
with larger models generating better instructions
that lead to greater performance improvements in
downstream tasks.

Instruction Generation Building on Honovich
et al. (2023), several studies have focused on gen-
erating instructions using LLMs. Some researchers
proposed methods to train LLMs to generate in-
structions from input examples and labels, such
as reverse learning (Ye et al., 2022), generating
and ranking candidate instructions (Zhou et al.,
2022; Zhang et al., 2023), and iteratively refining
instructions by combining input-output examples
(Sun et al., 2023; Chen et al., 2024). Addition-
ally, some studies have proposed methods to itera-
tively optimize prompts, such as using genetic evo-
lution (Xu et al., 2022; Fernando et al., 2023; Yang
and Li, 2023; Cui et al., 2024; Guo et al., 2024)
or gradient-based approaches (Tang et al., 2024;
Pryzant et al., 2023). However, these methods of-
ten require substantial computational resources. In
contrast, INDUCT-LEARN focuses on generating
a single instruction and its CoT, improving effi-
ciency and reducing resource usage. Our results
indicate that our method’s prompts possess cross-
model capabilities rather than being tailored for
specific models.

LLM Reasoning CoT prompts enable large lan-
guage models to generate intermediate reasoning
steps, guiding and explaining solutions (Wei et al.,
2022b; Kojima et al., 2022; Nye et al., 2021).
Zhang et al. (2022) leveraged datasets to select di-
verse samples and generate CoT examples. Wang

et al. (2022) extracted multiple reasoning chains
during decoding and chose the most consistent one.
(Wang et al., 2023) introduced a planning step be-
fore answering questions, followed by solving the
problem according to the plan. In contrast, our
approach operates at the task level. The INDUCT

stage generates PINDUCT from a small number of
demonstrations for a given task, followed by the
LEARN stage, which converts the demonstrations
into CoT examples. As a result, our method does
not require a training set, unlike the aforementioned
approaches. Moreover, when encountering new
questions, only a single request is needed.

8 Conclusion

In this work, we proposed The INDUCT-LEARN

framework that leverages the instructional induc-
tion capabilities of LLMs to enhance model per-
formance in low-resource settings. By induc-
ing pseudo instructions from limited input-output
pairs and a short guiding phrase, the framework
guides the model in rewriting demonstrations into
pseudo chain-of-thought examples. When encoun-
tering new problems, the INDUCT-LEARN prompt,
which includes the learned pseudo instructions and
pseudo CoT demonstrations, guides the LLMs rea-
soning and problem-solving approach. Empirical
evaluations on two datasets demonstrate the effec-
tiveness of our framework, outperforming state-
of-the-art methods. The cross-model adaptabil-
ity exhibited by the INDUCT-LEARN framework
further highlights its practical utility, as prompts
generated by one model can effectively enhance
the performance of others. Our work underscores
the potential of harnessing the instructional induc-
tion capabilities of LLMs to develop cost-effective
solutions for improving model performance in real-
world, low-resource scenarios. We open up new
avenues for exploring the integration of inductive
learning strategies with the capabilities of LLMs,
paving the way for more efficient and accessible
approaches to enhancing model performance.

9 Limitations

Dependence on Instruction-Following Models
LLMs employing the INDUCT-LEARN framework
require instruction tuning. This allows them to
follow the directives of the Meta Prompt during
the INDUCT stage, inducting PInduct from input-
output pairs. Models lacking instruction tuning are
unlikely to complete this task successfully.
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Necessity of Large-Scale Models Our experi-
mental results indicate that the ability for instruc-
tion induction improves with the strength of the
model. To achieve results surpassing human in-
struction, more powerful LLMs are required to gen-
erate PINDUCT-LEARN.
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A Construction of BBH-Induct Dataset

Figure 5 shows an example in the movie_recom-
mendation task, where each question in BBH starts
with Find a movie similar to, explicitly guiding the
model. In our BBH-Induct dataset, we remove this
instruction to better reflect real-world scenarios.

[Task Instruction]
Recommend movies similar to the given list of movies.
[Question]
Find a movie similar to Minority Report, Total Recall,
Inside Out, Forrest Gump:
Options:
(A) Phenomena
(B) Lilting
(C) Catwoman
(D) Edge of Tomorrow

[Answer]
(D)

Figure 5: An example of removing explicit information
from BBH to create BBH-Induct.

B Detailed Experimental Configurations

Model Version The models used in this paper
include several versions from Llama, Mistral, Mix-
tral, and Gemini, each associated with specific
API services. Llama 3 8B (llama3-8b-8192) and
Llama 3 70B (llama3-70b-8192) were both ac-
cessed through Groq. Mistral 7B (Mistral-7B-
Instruct-v0.3) and Mixtral 8x22B (Mixtral-
8x22B-Instruct-v0.1) were provided by To-
gether AI, while Mixtral 8x7B (mixtral-8x7b-
32768) was also accessed via Groq. In addi-
tion, the Gemini series, which includes Gem-
ini 1.0 Pro (gemini-1.0-pro-001), Gemini 1.5
Flash (gemini-1.5-flash-001), and Gemini 1.5
Pro (gemini-1.5-pro-001), were utilized through
Googles API service.

Safety Settings We disable safety settings for
Gemini to prevent Googles API from refusing to
respond. The following harm categories were
set to BLOCK_NONE: HARASSMENT, HATE_SPEECH,
SEXUALLY_EXPLICIT, and DANGEROUS_CONTENT.

Cost Details Table 7 shows the estimated total
cost for all experiments, which amounted to ap-
proximately $1,265, with API services provided by
Groq, Together AI, and Google.

C Additional Dataset Information

We provide the task details for the two datasets used
in our experiments: Evals-Induct and BBH-Induct.

Model Total Cost API Services
Llama 3 8B $50 Groq
Llama 3 70B $475 Groq
Mistral 7B $120 Together AI

Mixtral 8x7B $150 Groq
Mixtral 8x22B $85 Together AI
Gemini 1.0 Pro $135 Google

Gemini 1.5 Flash $100 Google
Gemini 1.5 Pro $150 Google

Total Cost $1,265 -

Table 7: Estimated costs for each model across all ex-
periments in this work.

The subtasks for BBH-Induct are listed in Table 9,
while Evals-Inducts subtasks and descriptions are
shown in Tables 10 and 11.

D Detailed Experiment Results

D.1 Further Analysis of INDUCT and Short
Phrase

This section provides a supplemental comparison
between PINDUCT and the Short Phrase (SP) with
0-shot, 0-shot-CoT, and 3-shot settings. As shown
in Table 12, the effectiveness of our framework
increases significantly with larger and more power-
ful models, demonstrating substantial performance
improvements over smaller models.

D.2 Detailed Cross-Model Performance
Results

Figure 6 and Figure 7 present the exact match ac-
curacy (%) of PINDUCT and PINDUCT-LEARN under
different cross-model settings on the BBH-Induct
and Eval-Induct datasets, where the prompt induc-
tion model and task execution/inference model are
different. Figure 8 compares the performance dif-
ference in percentage between INDUCT and the
baseline of using zero-shot without instructions
under the cross-model settings.

D.3 Breakdown of BBH-Induct tasks and Win
Rate Analysis

The Table 13 shows the accuracy ∆ for the
INDUCT-LEARN (Ours) and Short Phrase + 3-shot
across different tasks. The win rate indicates the
proportion of instances where the INDUCT-LEARN

outperformed the Short Phrase + 3-shot setting. On
average, our model achieved a win rate of 6/8. The
performance of all models improved overall on
BBH-Induct dataset.
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D.4 Breakdown of Eval-Induct Tasks
Figure 9 presents the head-to-head comparison of
8 models on the 24 tasks from Eval-Induct. The
table illustrates the accuracy difference distribution
across these tasks for the models using our Induct-
Learn Prompt compared to the Short Phrase under
3-shot settings.

D.5 Model Fill Rate
To estimate the frequency of the insufficient k sit-
uation in the LEARN stage, we define the fill rate
(FR) as the proportion of cases where the model
successfully generates k valid CoT demonstrations.
The fill rate is calculated as follows:

FR =

∑M
j=1 [|DLEARN,j | ≥ k]

M

where M is the total number of tasks, DLEARN is the
set of demonstrations generated during the LEARN

stage, and k represents the number of required
demonstrations. The formula sums 1 for each task
where |DLEARN,j | ≥ k, and 0 for subtasks where
this condition is not met.

Table 8 presents the fill rates for various models
on the BBH-Induct and Evals-Induct datasets. A
higher fill rate indicates that the model can produce
sufficient examples for effective few-shot learning
in the LEARN stage. As observed, larger models,
such as Llama 3 70B, Mixtral 8x22B, and Gemini
1.5 Pro, demonstrate significantly higher fill rates
compared to smaller models. This indicates that
larger models are better at generating the neces-
sary number of high-quality CoT demonstrations,
leading to more robust few-shot learning.

Model BBH-Induct Evals-Induct
Llama 3 8B 77.78 37.93
Llama 3 70B 88.89 79.31
Mistral 7B 66.67 48.28

Mixtral 8x7B 70.37 58.62
Mixtral 8x22B 92.59 72.41
Gemini 1.0 Pro 70.37 44.83

Gemini 1.5 Flash 96.30 82.76
Gemini 1.5 Pro 96.30 86.21

Table 8: Fill Rate (%) of models in generating sufficient
CoT demonstrations. We set the experimental param-
eters as N = 9 and k = 3. Therefore, the fill rate
represents the percentage of instances where at least 3
CoT demonstrations are generated.

D.6 Details of Meta Prompt Variation
We instruct GPT-4o to generate variations of the
original meta prompt, maintaining the template

structure while rewriting the content. Each vari-
ation directs LLMs to act as different domain ex-
perts, and the phrasing and terminology were var-
ied across versions. The original meta prompt and
its variations are shown in Figures 10 to 13.

D.7 Induct-Learn Framework Examples
Figure 14 through Figure 19 demonstrate how
the Induct-Learn framework functions on the two
datasets, providing illustrative examples of its oper-
ation. The figures showcase the INDUCT, LEARN,
and inference stages of the framework.

E Use of AI Assistants

In this paper, GPT-4o was employed for text re-
finement and assisting in code development. All
outputs from GPT-4o were for reference, and the
final work was completed by the authors.
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Task Subtasks Instance Count
Boolean Expressions boolean expressions 200

Causal Judgment causal judgement 137
Date Understanding date understanding 200
Disambiguation QA disambiguation qa 200

Dyck Languages dyck languages 200
Formal Fallacies Syllogisms Negation formal fallacies 200

Geometric Shapes geometric shapes 200
Hyperbaton (Adjective Ordering) hyperbaton 200

Logical Deduction
logical deduction five objects 200

logical deduction seven objects 200
logical deduction three objects 200

Movie Recommendation movie recommendation 200
Multi-Step Arithmetic multistep arithmetic two 200

Navigate navigate 200
Object Counting object counting 200

Penguins in a Table penguins in a table 96
Reasoning about Colored Objects reasoning about colored objects 200

Ruin Names ruin names 200
Salient Translation Error Detection salient translation error detection 200

Snarks snarks 128
Sports Understanding sports understanding 200
Temporal Sequences temporal sequences 200

Tracking Shuffled Objects
tracking shuffled objects five objects 200

tracking shuffled objects seven objects 200
tracking shuffled objects three objects 200

Web of Lies web of lies 200
Word Sorting word sorting 200

Table 9: The 27 subtask names in BBH-Induct and their corresponding 23 task. In the paper, we calculate the
average accuracy score based on these 23 task.
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Task Name Description
2d_movement Evaluate if GPT can keep track of its position and orientation while random

walking on a 2D grid in first-person POV.
anagrams Given an anagram (word whose letters has been randomly shuffled), find the

original word. The dataset only takes 12+ character long words. The prompt
could include a list of 100+ candidates (the anagram being one of those) which
would make the guess easier for a human being but oddly enough, the accuracy
is lower with this input.

bitwise Bitwise operations are common across most programming languages. GPT-4
should be able to successfully evaluate them.

count_token_freq_dna The count_token_freq_dna evaluation tasks the model with counting the occur-
rence of a specific nucleotide (A, T, G, or C) within provided DNA sequences.
These sequences are derived from real human DNA and have lengths ranging
from 5 to 20 base pairs.

css-selectors Test the models ability to translate css selectors to verbal description and the
other way around

determinant Asks GPT only the answer of the determinant from 1x1 to 4x4 matrices.
forth_stack_sim Tests the models ability to keep track of a stack of numbers given a set of ANS

Forth words. The model is asked to respond to a series of numbers and words
with the resulting stack representation. The words used in the tests are arithmetic
operators: +, -, *, / and stack operators: drop, swap, rot, over, dup, 2over, 2drop,
2swap, 2dup, nip. The prompts and expected results on the stack are all less than
15 numbers and words long.

guess_the_singer This evaluation measures the model’s ability to identify a singer or band by
analyzing the first 10 words of a song. To ensure the evaluation’s fairness and
focus, we have excluded songs with multiple singers/bands and included only
those published before 2021. To test the model’s performance, we provide it
with three potential choices and evaluate its accuracy in selecting the correct one.

largest_country Test the model’s ability to determine the largest country from the list.
lat_long_identify This eval tests the model’s ability to correctly match latitude and longitude

coordinates to the country they are located in. The twist is that the model’s
response must be in the official language of the country.

mate-in-one Finds the only mate in one move on various chess board positions.
math_equations Test model’s ability to explain and solve math equations described in words.

missing_operators Solve missing operators (two blanks)
ner_finance Named entity recognition (NER) over financial documents.

next-val-series Test the model’s ability to predict the next value in a mathematical series.
partially_solved_crossword_clues This evaluates the model’s ability to find the answer to crossword clues, when

some of the letters of the answer are already provided.
points_on_line 100 sets of vector coordinates in the form of (x, y, z), (x, y, z), with an ideal centre

coordinate. The coordinates have a random start position of (-10, -10, -10) to (10,
10, 10) and a furthest maximum distance from origin per-component of 20. All
positions are in steps of 0.01 for ease of readability and human understanding.

poker_analysis Adds a calculation eval in 2-player no-fold heads up scenario pre-flop without
viewing the community cards on the raw probability of winning against a random
opponent.

recurrence-relation This will evaluate the models’ performances when calculating the runtime of
recurrence relations

resistor_ohm_calculator Tests the model’s ability to calculate the resistance (in ohms) based on the colors
of resistor’s four bands. This eval doesn’t test the model’s ability to calculate
the minimum/maximum value based on the tolerance. This eval doesn’t test the
model’s ability to calculate the resistance of a resistor with five or six bands.

smiles_to_formula Conversion of SMILES (Simplified Molecular Input Line Entry System) strings
– a widely used ASCII string notation for molecular structures – to the corre-
sponding molecular formula (the types and numbers of atoms in the molecule).

sort_numeric Tests performance sorting different comma-separated values under different cir-
cumstances (integers/decimals, positives/negatives, as well as currency-formatted
values).

three-pt-mapping Given a result from a three-point cross (using 3 genes to determine the order and
distance between the genes.), return the allele that is in the middle of the 3 genes.
It is a multi-step genetic problem.

word_association The Word Association Evaluation Set is designed to gauge the model’s profi-
ciency in discerning a covertly embedded word within a sequence of intercon-
nected words.

Table 10: Tasks Descriptions of Evals-Induct
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Task Sub Task Instance Count
2d_movement - 91

anagrams - 200
bitwise - 200

count_token_freq_dna - 92

css-selectors css-selectors_explain 105
css-selectors_verbal 48

determinant - 200
forth_stack_sim - 167
guess_the_singer - 200
largest_country - 115

lat_long_identify - 141
mate-in-one - 91

math_equations - 91
missing_operators - 91

ner_finance - 200
next-val-series - 91

partially_solved_crossword_clues - 91
points_on_line - 91
poker_analysis - 200

recurrence-relation - 200
resistor_ohm_calculator - 200

smiles_to_formula - 200
sort_numeric - 91

three-pt-mapping - 109

word_association

word_association_related_words_2 111
word_association_related_words_3 99
word_association_related_words_4 89
word_association_related_words_5 79

Table 11: The 28 subtask names in Eval-Induct and their corresponding 24 task. In the paper, we calculate the
average accuracy score based on these 24 task.

Model BBH-Induct Eval-Induct
INDUCT
(Ours)

SP
0-shot

SP
0-shot-CoT

SP
3-shot

INDUCT
(Ours)

SP
0-shot

SP
0-shot-CoT

SP
3-shot

Llama 3 8B 43.49 30.28 42.15 35.48 18.21 9.19 11.03 16.50
Llama 3 70B 69.93 59.45 63.40 57.50 47.91 18.83 17.28 30.50
Mistral 7B 37.59 37.58 39.25 41.83 16.32 12.78 10.57 17.35

Mixtral 8x7B 44.71 38.97 44.92 35.17 25.22 12.64 12.60 15.23
Mixtral 8x22B 67.01 45.57 56.12 37.04 40.50 16.96 18.17 20.63
Gemini 1.0 Pro 53.55 46.21 49.88 53.30 24.23 16.13 15.77 33.25

Gemini 1.5 Flash 65.09 42.62 56.57 60.39 44.44 18.17 18.15 35.59
Gemini 1.5 Pro 78.96 52.44 63.48 64.46 51.13 22.42 24.13 38.58

Table 12: Results of instruction generation experiments across models and tasks in zero-shot and few-shot settings.
We evaluate exact match accuracy (%) and calculate the mean of all the tasks of both BBH-Induct and Evals-Induct
datasets. SP denotes Short Phrase.
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(a) Cross-model Performance (BBH-Induct) (b) Cross-model Performance (Evals-Induct)

Figure 6: Exact match accuracy (%) of INDUCT-LEARN (Ours) under different cross-model settings, where the
prompt induction model and task execution/inference model are different. Darker green indicates better performance
of INDUCT-LEARN (Ours), while darker red indicates worse performance.The comparison is conducted on the (a)
BBH-Induct and (b) Evals-Induct datasets.

(a) Cross-model Performance (BBH-Induct) (b) Cross-model Performance (Evals-Induct)

Figure 7: Exact match accuracy (%) of INDUCT (Ours) under different cross-model settings, where the prompt
induction model and task execution/inference model are different. Darker green indicates better performance of
INDUCT (Ours), while darker red indicates worse performance. The comparison is conducted on the (a) BBH-Induct
and (b) Evals-Induct datasets.
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(a) Cross-model Improvement (BBH-Induct) (b) Cross-model Improvement (Evals-Induct)

Figure 8: Comparison of INDUCT (Ours) and Short Phrase + 0-shot under different cross-model settings, where the
prompt induction model and task execution/inference model are different. Accuracy is expressed as a percentage.
Darker green indicates greater performance improvement with INDUCT (Ours), while darker red indicates greater
performance decline. The comparison is conducted on the (a) BBH-Induct and (b) Evals-Induct datasets.

(a) Llama 3 8B (b) Mistral 7B (c) Mixtral 8x7B (d) Mixtral 8x22B

(e) Llama 3 70B (f) Gemini 1.0 Pro (g) Gemini 1.5 Flash (h) Gemini 1.5 Pro

Figure 9: The accuracy difference distribution across 24 Eval-Induct tasks for 8 models using our Induct-Learn
Prompt compared to the Short Phrase under 3-shot settings. Tasks are sorted by accuracy difference from low to
high, indicating that tasks to the right benefit more from our method. Improvements are marked in green, while
performance declines are highlighted in red.
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Task Llama 3 Mis(x)tral Gemini Win
Rate8B 70B 7B 8x7B 8x22B 1.0

Pro
1.5

Flash
1.5
Pro

boolean expressions -7.00 10.00 27.00 26.50 44.00 15.50 9.50 12.00 7/8
causal judgement 2.92 2.92 -3.65 -12.41 4.00 -2.92 0.73 8.00 5/8

date understanding 38.50 26.00 9.00 13.50 52.00 13.50 17.00 24.00 8/8
disambiguation qa 33.50 25.50 -9.00 26.00 4.00 -8.50 10.50 -20.00 5/8

dyck languages 16.50 8.00 10.50 23.50 4.00 2.50 9.50 24.00 8/8
formal fallacies -23.50 14.50 -9.50 -3.00 -12.00 -48.00 -8.50 0.00 1/8

geometric shapes 25.50 28.00 14.00 9.00 36.00 11.00 17.00 0.00 7/8
hyperbaton 2.50 10.50 -9.50 17.50 20.00 3.00 -29.50 12.00 6/8

logical deduction 15.00 17.17 11.50 26.50 49.33 5.33 10.17 2.67 8/8
movie recommendation -11.00 -5.00 -60.50 -8.00 -8.00 -23.00 -14.00 -16.00 0/8
multistep arithmetic two 14.50 17.00 9.00 24.50 80.00 65.00 89.00 84.00 8/8

navigate 14.50 26.00 3.00 3.00 44.00 -4.50 -7.50 64.00 6/8
object counting 37.00 34.00 -6.50 53.00 80.00 -4.50 19.50 44.00 6/8

penguins in a table 32.29 11.46 9.38 22.92 4.00 13.54 25.00 16.00 8/8
reasoning about colored objects 37.00 16.00 26.00 19.00 24.00 13.00 1.00 4.00 8/8

ruin names -13.50 -9.50 -14.00 14.50 28.00 5.50 28.50 20.00 5/8
salient translation error detection 23.00 5.00 18.00 16.00 52.00 -5.50 0.50 -8.00 6/8

snarks 3.91 28.91 14.84 32.03 48.00 46.09 57.81 8.00 8/8
sports understanding -12.00 -16.00 -27.50 47.00 16.00 -17.50 -34.00 16.00 3/8
temporal sequences -28.00 -1.00 -19.50 -3.00 48.00 7.50 -24.00 0.00 2/8

tracking shuffled objects 7.17 64.67 18.00 18.83 37.33 4.67 57.33 65.33 8/8
web of lies -22.50 38.00 49.50 51.00 84.00 23.00 46.00 52.00 7/8

word sorting 24.00 12.50 2.00 12.00 32.00 3.50 15.50 8.00 8/8
AVERAGE 9.14 15.85 2.70 18.69 33.51 5.14 12.91 18.26 6/8

Table 13: Accuracy ∆ comparison for INDUCT-LEARN (Ours) and Short Phrase + 3-shot across various tasks in the
BBH-Induct dataset. The Win Rate column represents the proportion of times INDUCT-LEARN (Ours) outperforms
the Short Phrase. Bold indicates a win rate greater than 0.5.

You are an expert in the field of NLP (Natural Language Processing), possessing exceptional data observation and
analysis skills. Your expertise includes extracting significant rules from complex datasets and formulating precise task
instructions based on these rules.

Currently, you are focusing on analyzing a specific set of examples, deriving insights to formulate a clear and detailed
task description. This task description will serve as an instruction set, guiding the execution of the related tasks.

The task description should include the following elements:

Task Content: Clearly define the purpose of the task and the specific activities required to be completed.

Input Format: Provide detailed descriptions of the types of data accepted, their formats, and how to process these data
effectively.

Output Format: Clearly outline the expected result types and formats, including any necessary standards or specifications.

Operational Steps: Detail the specific step-by-step procedures required to complete the task.

Please write the [Task Instruction] concisely and clearly to ensure it is easily understandable and followable by users.

Figure 10: Meta Prompt
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You are an authority in the realm of Quantum Physics, known for your exemplary skills in data observation and
theoretical analysis. Your expertise lies in extracting significant principles from intricate datasets and creating precise
task instructions based on these principles.

Presently, you are concentrating on examining a specific set of examples to draw insights for formulating a lucid and
comprehensive task description. This description will serve as a set of guidelines directing the accomplishment of related
tasks.

The task description should encompass the following components:

Task Content: Explicitly state the objective of the task and detail the specific activities that need to be performed.

Input Format: Describe thoroughly the types of data that are acceptable, their formats, and how to process these data
properly.

Output Format: Clearly specify the expected result types and formats, including any required standards or criteria.

Operational Steps: Outline the exact step-by-step actions necessary to complete the task.

Please craft the [Task Instruction] succinctly and clearly to ensure it is straightforward and easily followable by users.

Figure 11: Meta Prompt 1 (Rewritten)

You are an expert in the field of Environmental Science, known for your outstanding observational and analytical abilities.
Your skillset includes identifying key patterns in complex environmental data and crafting accurate task instructions
based on these observations.

Currently, you are concentrating on examining a particular set of examples to derive insights and create a comprehensive
task description. This task description will guide the completion of related assignments.

The task description should include the following components:

Task Content: Clearly delineate the objective of the task and the specific actions required to accomplish it.

Input Format: Offer detailed explanations of the types of data accepted, their formats, and the best methods for processing
these data.

Output Format: Define clearly the expected types and formats of the results, including any relevant standards or
specifications.

Operational Steps: Describe the precise step-by-step procedures necessary to complete the task.

Please write the [Task Instruction] concisely and clearly to ensure it is straightforward and easy to follow for users.

Figure 12: Meta Prompt 2 (Rewritten)

You are an expert in the field of materials science, possessing exceptional skills in data observation and analysis. Your
expertise includes extracting significant rules from intricate datasets and formulating precise task instructions based on
these rules.

Presently, you are concentrating on analyzing a specific set of examples, deriving insights to create a clear and
comprehensive task description. This task description will act as a guide, directing the execution of related tasks.

The task description should include the following components:

Task Content: Explicitly define the purpose of the task and the specific activities that need to be performed.

Input Format: Provide detailed descriptions of the types of data accepted, their formats, and how to process these data
effectively.

Output Format: Clearly outline the expected result types and formats, including any necessary standards or specifications.

Operational Steps: Detail the specific step-by-step procedures that are necessary to complete the task.

Please write the [Task Instruction] concisely and clearly to ensure it is easily understandable and followable by users.

Figure 13: Meta Prompt 3 (Rewritten)
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Request Count
Method shot Instruction 3-shot COT Inference Totalgeneration generation

Short Phrase 0 0 0 1 1
3 0 0 1 1

Self-Discover 0 3 0 1 4
3 3 9 1 13

Ours 0 1 0 1 2
3 1 9 1 11

Table 14: Breakdown of request usage from Figure 4. Note that for Short Phrase, we use the human-provided
demonstrations in the dataset. For Self-Discover and Ours, we use the demonstrations generated after the LEARN
stage.
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[Task Name]
Object Counting

[Question]
I have a lettuce head, two yams, a cabbage, a stalk of celery, three heads of
broccoli, a garlic, an onion, a carrot, a cauliflower, and a potato.

[Answer]
13

[Question]
I have a cauliflower, a stalk of celery, a cabbage, and a garlic.

[Answer]
4

[Question]
I have a car, and a toaster.

[Answer]
2

[Question]
I have two cows, a snail, a fish, a mouse, a snake, and a frog.

[Answer]
7

[Question]
I have four oranges, a peach, a plum, three apples, three grapes, two
raspberries, a nectarine, a strawberry, a blackberry, and a banana.

[Answer]
18

[...]

You are an expert in the field of NLP (Natural Language Processing),
possessing exceptional data observation and analysis skills. Your
expertise includes extracting significant rules from complex datasets
and formulating precise task instructions based on these rules.

Currently, you are focusing on analyzing a specific set of examples,
deriving insights to formulate a clear and detailed task description.
This task description will serve as an instruction set, guiding the
execution of the related tasks.

The task description should include the following elements:

Task Content: Clearly define the purpose of the task and the specific
activities required to be completed.

Input Format: Provide detailed descriptions of the types of data
accepted, their formats, and how to process these data effectively.

Output Format: Clearly outline the expected result types and formats,
including any necessary standards or specifications.

Operational Steps: Detail the specific step-by-step procedures
required to complete the task.

Please write the [Task Instruction] concisely and clearly to ensure it is
easily understandable and followable by users.

Meta Prompt (System Prompt) Short Phrase and Demonstrations (User Prompt)

Task Instruction: Object Counting

Task Content: Count the total number of objects mentioned in a given text.

Input Format: 
 • Text: A sentence or short paragraph listing various objects. 
 • Format: Plain text.
 • Processing:  
    • Identify individual objects mentioned.
    • Account for quantifiers (e.g., "two," "three," "a"). 

Output Format:
 • Type: Integer.
 • Format: A single number representing the total count of objects.

Operational Steps:
 1. Read the input text.
 2. Identify all nouns or noun phrases that represent distinct objects.
 3. Sum the number of each object, considering any preceding quantifiers.
 4. Return the total count as a single integer. 

 Pseudo Instructions

INDUCT Stage

LLM

Short Phrase

Few-shot
Demonstrations

Figure 14: INDUCT Stage: A Case Example in BBH-Induct
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[Question]
I have a lettuce head, two yams, a cabbage, a stalk of celery,
three heads of broccoli, a garlic, an onion, a carrot, a
cauliflower, and a potato. 

[Answer]
Let's refer to the 'Operational Steps' and think step by step.

Task Instruction: Object Counting

Task Content: Count the total number of objects mentioned in a given text.

Input Format: 
 • Text: A sentence or short paragraph listing various objects. 
 • Format: Plain text.
 • Processing:  
    • Identify individual objects mentioned.
    • Account for quantifiers (e.g., "two," "three," "a"). 

Output Format:
 • Type: Integer.
 • Format: A single number representing the total count of objects.

Operational Steps:
 1. Read the input text.
 2. Identify all nouns or noun phrases that represent distinct objects.
 3. Sum the number of each object, considering any preceding quantifiers.
 4. Return the total count as a single integer. 

Please follow the instructions in "Operational Steps" and perform step-by-step deduction.
In the last line, output the answer according to the rules in "Output Format".

 Pseudo Instructions (System Prompt)  Demonstrations (User Prompt)

1. Read the input text:  "I have a lettuce head, two yams, a cabbage, a stalk of celery, three heads of broccoli, a garlic, an onion, a carrot, a cauliflower, and
a potato."

2. Identify all nouns or noun phrases that represent distinct objects:
    • lettuce head
    • yams 
    • cabbage
    • stalk of celery
    • heads of broccoli
    • garlic
    • onion
    • carrot
    • cauliflower
    • potato

3. Sum the number of each object, considering any preceding quantifiers:
    • 1 lettuce head 
    • 2 yams
    • 1 cabbage
    • 1 stalk of celery
    • 3 heads of broccoli
    • 1 garlic
    • 1 onion
    • 1 carrot
    • 1 cauliflower
    • 1 potato
    • Total: 1 + 2 + 1 + 1 + 3 + 1 + 1 + 1 + 1 + 1 = 13

4. Return the total count as a single integer: 

13

 Pseudo Chain-of-Thought (COT) Example 

LEARN Stage (1)

LLM

Figure 15: LEARN Stage: A Case Example in BBH-Induct
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Task Instruction: Object Counting

Task Content: Count the total number of objects mentioned in a given text.

Input Format: 
 • Text: A sentence or short paragraph listing various objects. 
 • Format: Plain text.
 • Processing:  
    • Identify individual objects mentioned.
    • Account for quantifiers (e.g., "two," "three," "a"). 

Output Format:
 • Type: Integer.
 • Format: A single number representing the total count of objects.

Operational Steps:
 1. Read the input text.
 2. Identify all nouns or noun phrases that represent distinct objects.
 3. Sum the number of each object, considering any preceding quantifiers.
 4. Return the total count as a single integer. 

Please follow the instructions in "Operational Steps" and perform step-by-step deduction. In the last line, output the answer according to the rules in "Output
Format".

[Question]
I have a lettuce head, two yams, a cabbage, a stalk of celery, three heads of broccoli, a garlic, an onion, a carrot, a cauliflower, and a potato. 

[Answer]
Let's refer to the 'Operational Steps' and think step by step.

1. Read the input text:  [...]

2. Identify all nouns or noun phrases that represent distinct objects:
    • lettuce head
    • yams 
    [...]
    • potato

3. Sum the number of each object, considering any preceding quantifiers:
    • 1 lettuce head 
    • 2 yams
    [...]
    • 1 potato
    • Total: 1 + 2 + 1 + 1 + 3 + 1 + 1 + 1 + 1 + 1 = 13

4. Return the total count as a single integer: 

13

[...]

[Question]
I have a piano, a flute, and four trombones.
[Answer]
Let's refer to the 'Operational Steps' and think step by step.

INDUCT-LEARN

PINDUCT-LEARN  and New Question

1. Read the input text: "I have a piano, a flute, and four trombones."

2. Identify all nouns or noun phrases that represent distinct objects: 
 • "piano"
 • "flute"
 • "trombones"

3. Sum the number of each object, considering any preceding quantifiers:
 • "a piano" = 1
 • "a flute" = 1
 • "four trombones" = 4
 • Total: 1 + 1 + 4 = 6

4. Return the total count as a single integer: 

6

Model Output: Answering Question

 LLM

PLEARN

PINDUCT

Figure 16: INDUCT-LEARN framework: A Case Example in BBH-Induct
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[Task Name]
2d movement

[Question]
If you take 5 steps forward, then take 4 steps backward, then turn 90 degrees
left, then take 4 steps backward, then take 3 steps backward, then take 1 step
forward, then take 1 step backward, then take 4 steps backward, then take 4
steps backward, then take 2 steps backward, what coordinate are you at?

[Answer]
(17, 1)

[Question]
If you take 1 step backward, then take 2 steps forward, then take 5 steps
backward, then turn 90 degrees left, what coordinate are you at?

[Answer]
(0, -4)

[...]

You are an expert in the field of NLP (Natural Language Processing),
possessing exceptional data observation and analysis skills. Your
expertise includes extracting significant rules from complex datasets
and formulating precise task instructions based on these rules.

Currently, you are focusing on analyzing a specific set of examples,
deriving insights to formulate a clear and detailed task description.
This task description will serve as an instruction set, guiding the
execution of the related tasks.

The task description should include the following elements:

Task Content: Clearly define the purpose of the task and the specific
activities required to be completed.

Input Format: Provide detailed descriptions of the types of data
accepted, their formats, and how to process these data effectively.

Output Format: Clearly outline the expected result types and formats,
including any necessary standards or specifications.

Operational Steps: Detail the specific step-by-step procedures
required to complete the task.

Please write the [Task Instruction] concisely and clearly to ensure it is
easily understandable and followable by users.

Meta Prompt (System Prompt) Short Phrase and Demonstrations (User Prompt)

Task Instruction: 2d_movement

Task Content:
The purpose of this task is to determine the final coordinate (x, y) after a series of movements in a 2D space. The movements can include steps forward,
backward, and turns (90 degrees left or right).

Input Format:
The input will be a sequence of movements, where each movement is separated by "then". The movements can be one of the following:

• "take X steps forward" or "take X steps backward", where X is a positive integer.
• "turn 90 degrees left" or "turn 90 degrees right".

Output Format:
The output should be a coordinate in the format (x, y), where x and y are integers.

Operational Steps:

1. Initialize the current position to (0, 0) and the current direction to north (0 degrees).
2. Process each movement in the input sequence:
   a. If the movement is "take X steps forward", move X steps in the current direction and update the current position accordingly.
   b. If the movement is "take X steps backward", move X steps in the opposite direction of the current direction and update the current position accordingly.
   c. If the movement is "turn 90 degrees left", turn 90 degrees counterclockwise and update the current direction accordingly.
   d. If the movement is "turn 90 degrees right", turn 90 degrees clockwise and update the current direction accordingly.
3. After processing all movements, return the final coordinate (x, y).

Note: The current direction can be represented as an angle in degrees (0-360), where 0 degrees is north, 90 degrees is east, 180 degrees is south, and 270
degrees is west.

 Pseudo Instructions

INDUCT Stage

LLM

Short Phrase

Few-shot
Demonstrations

Figure 17: INDUCT Stage: A Case Example in Eval-Induct
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[Question]
EXERCISE: If you take 1 step backward, then take 2 steps
forward, then take 5 steps backward, then turn 90 degrees left,
what coordinate are you at?

[Answer]
Let's refer to the 'Operational Steps' and think step by step.

Task Instruction: 2d_movement

Task Content:
The purpose of this task is to determine the final coordinate (x, y) after a series of
movements in a 2D space. The movements can include steps forward, backward, and
turns (90 degrees left or right).

Input Format:
The input will be a sequence of movements, where each movement is separated by
"then". The movements can be one of the following:
[...]

Output Format:
The output should be a coordinate in the format (x, y), where x and y are integers.

Operational Steps:

1. Initialize the current position to (0, 0) and the current direction to north (0 degrees).
2. Process each movement in the input sequence:
   a. If the movement is "take X steps forward", move X steps in the current direction and
update the current position accordingly.
   [...]
3. After processing all movements, return the final coordinate (x, y).

Note: The current direction can be represented as an angle in degrees (0-360), where 0
degrees is north, 90 degrees is east, 180 degrees is south, and 270 degrees is west.

 Pseudo Instructions (System Prompt)  Demonstrations (User Prompt)

Let's break down the movements step by step:

Initial Position: (0, 0)
Initial Direction: North (0 degrees)

Movement 1: Take 1 step backward
Since we're moving backward, we'll subtract 1 from the current y-coordinate (since we're initially facing north).
New Position: (0, -1)
New Direction: North (0 degrees)

Movement 2: Take 2 steps forward
Since we're moving forward, we'll add 2 to the current y-coordinate (since we're still facing north).
New Position: (0, 1)
New Direction: North (0 degrees)

Movement 3: Take 5 steps backward
Since we're moving backward, we'll subtract 5 from the current y-coordinate (since we're still facing north).
New Position: (0, -4)
New Direction: North (0 degrees)

Movement 4: Turn 90 degrees left
We'll turn 90 degrees counterclockwise, so our new direction is west (270 degrees).
New Position: (0, -4)
New Direction: West (270 degrees)

Since we've processed all movements, our final coordinate is (0, -4).

 Pseudo Chain-of-Thought (COT) Example 

LEARN Stage (1)

LLM

Figure 18: LEARN Stage: A Case Example in Eval-Induct
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Task Content: The purpose of this task is to determine the final coordinate
(x, y) after a series of movements in a 2D space. The movements can include steps forward, backward, and turns (90 degrees left or right).
Operational Steps: 
1. Initialize the current position to (0, 0) and the current direction to north.
2. Process each movement in the input sequence:
   a. If the movement is "take X steps forward", move X steps in the current direction and update the current position accordingly.
   [...]
3. After processing all movements, return the final coordinate (x, y).

[Question]
If you take 1 step backward, then take 2 steps forward, then take 5 steps backward, then turn 90 degrees left, what coordinate are you at? 

[Answer] 
Let's refer to the 'Operational Steps' and think step by step.

Let's break down the movements step by step:

Initial Position: (0, 0)
Initial Direction: North (0 degrees)

Movement 1: Take 1 step backward
Since we're moving backward, we'll subtract 1 from the current y-coordinate (since we're initially facing north).
New Position: (0, -1)
New Direction: North (0 degrees)

Movement 2: Take 2 steps forward
Since we're moving forward, we'll add 2 to the current y-coordinate (since we're still facing north).
New Position: (0, 1)
New Direction: North (0 degrees)

Movement 3: Take 5 steps backward
Since we're moving backward, we'll subtract 5 from the current y-coordinate (since we're still facing north).
New Position: (0, -4)
New Direction: North (0 degrees)

Movement 4: Turn 90 degrees left
We'll turn 90 degrees counterclockwise, so our new direction is west (270 degrees).
New Position: (0, -4)
New Direction: West (270 degrees)

Since we've processed all movements, our final coordinate is (0, -4).
[...]

[Q] If you turn 90 degrees right, then take 2 steps backward, what coordinate are you at?
[A] Let's refer to the 'Operational Steps' and think step by step.

INDUCT-LEARN
PINDUCT-LEARN  and New Question

Let's break down the movements step by step:

Initial Position: (0, 0)
Initial Direction: North (0 degrees)

Movement 1: Turn 90 degrees right
We'll turn 90 degrees clockwise, so our new direction is east (90 degrees).
New Position: (0, 0)
New Direction: East (90 degrees)

Movement 2: Take 2 steps backward
Since we're moving backward, we'll subtract 2 from the current x-coordinate (since we're facing east).
New Position: (-2, 0)
New Direction: East (90 degrees)

Since we've processed all movements, our final coordinate is (-2, 0).

So, the answer is (-2, 0).

Model Output: Answering Question

 LLM

PLEARN

PINDUCT

Figure 19: INDUCT-LEARN framework: A Case Example in Eval-Induct
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