@inproceedings{seyssel-etal-2024-emphassess,
title = "{E}mph{A}ssess : a Prosodic Benchmark on Assessing Emphasis Transfer in Speech-to-Speech Models",
author = "Seyssel, Maureen and
D{'}Avirro, Antony and
Williams, Adina and
Dupoux, Emmanuel",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.30",
pages = "495--507",
abstract = "We introduce EmphAssess, a prosodic benchmark designed to evaluate the capability of speech-to-speech models to encode and reproduce prosodic emphasis. We apply this to two tasks: speech resynthesis and speech-to-speech translation. In both cases, the benchmark evaluates the ability of the model to encode emphasis in the speech input and accurately reproduce it in the output, potentially across a change of speaker and language. As part of the evaluation pipeline, we introduce EmphaClass, a new model that classifies emphasis at the frame or word level.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="seyssel-etal-2024-emphassess">
<titleInfo>
<title>EmphAssess : a Prosodic Benchmark on Assessing Emphasis Transfer in Speech-to-Speech Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maureen</namePart>
<namePart type="family">Seyssel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antony</namePart>
<namePart type="family">D’Avirro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adina</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Dupoux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce EmphAssess, a prosodic benchmark designed to evaluate the capability of speech-to-speech models to encode and reproduce prosodic emphasis. We apply this to two tasks: speech resynthesis and speech-to-speech translation. In both cases, the benchmark evaluates the ability of the model to encode emphasis in the speech input and accurately reproduce it in the output, potentially across a change of speaker and language. As part of the evaluation pipeline, we introduce EmphaClass, a new model that classifies emphasis at the frame or word level.</abstract>
<identifier type="citekey">seyssel-etal-2024-emphassess</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.30</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>495</start>
<end>507</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmphAssess : a Prosodic Benchmark on Assessing Emphasis Transfer in Speech-to-Speech Models
%A Seyssel, Maureen
%A D’Avirro, Antony
%A Williams, Adina
%A Dupoux, Emmanuel
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F seyssel-etal-2024-emphassess
%X We introduce EmphAssess, a prosodic benchmark designed to evaluate the capability of speech-to-speech models to encode and reproduce prosodic emphasis. We apply this to two tasks: speech resynthesis and speech-to-speech translation. In both cases, the benchmark evaluates the ability of the model to encode emphasis in the speech input and accurately reproduce it in the output, potentially across a change of speaker and language. As part of the evaluation pipeline, we introduce EmphaClass, a new model that classifies emphasis at the frame or word level.
%U https://aclanthology.org/2024.emnlp-main.30
%P 495-507
Markdown (Informal)
[EmphAssess : a Prosodic Benchmark on Assessing Emphasis Transfer in Speech-to-Speech Models](https://aclanthology.org/2024.emnlp-main.30) (Seyssel et al., EMNLP 2024)
ACL