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Abstract
Logical reasoning remains a challenge for natu-
ral language processing, but it can be improved
by training language models to mimic theorem
provers on procedurally generated problems.
Previous work used domain-specific proof gen-
eration algorithms, which biases reasoning to-
ward specific proof traces and limits auditabil-
ity and extensibility. We present a simpler and
more general declarative framework with flex-
ible context-sensitive rules binding multiple
languages (specifically, simplified English and
the TPTP theorem-proving language). We con-
struct first-order logic problems by selecting up
to 32 premises and one hypothesis. We demon-
strate that using semantic constraints during
generation and careful English verbalization of
predicates enhances logical reasoning without
hurting natural English tasks. We use relatively
small DeBERTa-v3 models to achieve state-of-
the-art accuracy on the FOLIO human-authored
logic dataset, surpassing GPT-4 in accuracy
with or without an external solver by 12%.

1 Introduction

Language models trained only on natural language
show lackluster capabilities at logical reasoning
(McCoy et al., 2023; Mahowald et al., 2024). As
a countermeasure, we can train neural models to
match the output of symbolic reasoning systems
(e.g., logic theorem provers, or other algorithms)
on procedurally generated problems, to sharpen
their reasoning capabilities. This process improves
accuracy on some human-authored problems (Wu
et al., 2021; Clark et al., 2020; Wu et al., 2022; Liu
et al., 2023).

Previous work on synthetic first-order logic
(FOL) reasoning datasets, RuleTaker (Clark et al.,
2020), LogicNLI (Goodwin et al., 2020a) and FLD
(Morishita et al., 2023), write dedicated code re-
implementing the FOL axioms from scratch to
generate proofs, and translate the generated prob-
lems to natural language. We propose Unigram,

a framework for synthetic reasoning data gener-
ation, specifically designed to generate problems
jointly into multiple languages. We represent gram-
mars with concise and expressive rules binding
two languages, and constraints to prune unwanted
generations.

We write the most extensive grammar of FOL
semantic fragments to our knowledge. We struc-
ture the generated expressions into PREMISE, HY-
POTHESIS pairs, and annotate their logical relation-
ship (entailment/contradiction/neutral) with a FOL
solver, following the natural language inference
(NLI) framework (Goodwin et al., 2020b). A sim-
plistic FOL NLI problem is: PREMISE: Everyone
who is happy is rich. Mary is rich. HYPOTHESIS:
Mary is happy LABEL: Neutral.

We fine-tune DeBERTa NLI models (He et al.,
2021) on Unigram-FOL and compare it with previ-
ous similar datasets. The 184M parameters (base-
size) beats GPT-4 augmented or not with exter-
nal theorem provers, on the FOLIO (Han et al.,
2022) dataset. Our contributions are as follows: (i)
A dataset of reasoning problems expressed in En-
glish and TPTP (a language that can be interfaced
with numerous theorem provers) alongside Vam-
pire proof annotations, covering FOL with equality
and both finite and open domains, improved com-
positionality, and more extensive quantifiers. (ii)
Ablations measuring the effect of constraining ma-
terial conditionals usage, of using realistic English
predicates, and of reimplementing LogicNLI with
declarative generation instead of proof tree genera-
tion, highlighting that declarative can work better
but that a richer logical modeling drives most of the
improvement. (iii) A general reasoning problem
grammar-based generation framework relying on
solvers. The generation library, grammars, models,
and generated dataset are publicly available1.

1[code:GitHub ][data:HF-datasets ]
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2 Related work

Synthetic datasets for reasoning Numerous
works investigate the logical capabilities of NLP
models using textual datasets and symbolic reason-
ing (Helwe et al., 2022). We focus on the grammar-
derived synthetic datasets. RuleTaker (Clark et al.,
2020) explores this area with a subset of first-order
logic. LogicNLI addresses a broader FOL subset
(Tian et al., 2021). FLD explores full FOL (Mor-
ishita et al., 2023) and increased compositionality.
Richardson et al. (2020); Richardson and Sabhar-
wal (2022) use a solver to study the satisfiability in
natural language using the Z3 solver and dedicated
generation logic on constrained problems. PrOn-
toQA (Saparov and He, 2023) generates proofs
from ontologies and then derives questions from
the proofs to analyze chains of thoughts in lan-
guage models. Other work explore non-standard
logic with synthetic dataset, notably probabilistic
(Sileo and Moens, 2023), paraconsistant (Kazemi
et al., 2024), epistemic (Sileo and Lernould, 2023)
logics.

Generation frameworks Multiple frameworks
already implement generation from handwritten
grammars. NLTK (Bird and Loper, 2004) has a
context-free grammar tool, but cannot natively han-
dle multiple languages or large-scale generation.
Grammatical Framework (Ranta, 2004) is the clos-
est tool to ours. It enables generation from abstract
grammars and linearization into concrete gram-
mars (e.g. French and English) but it is translation-
oriented and not context-sensitive. GLIF (Schaefer
and Kohlhase, 2020) extends Grammatical Frame-
work to parse English into logical formulas but is
not suited for generation either.

3 Scalable dataset generation without
forward inference

3.1 Forward inference

Previous NLI-style FOL reasoning datasets (Rule-
Taker, LogicNLI, FLD) generate examples using
proof generators that are based on the axioms
of FOL. This requires domain-specific generation
code and introduces unwanted complexity. Elim-
ination and Introduction rules can cancel each
other and create an illusion of reasoning depth.
We found that some examples in the Proofwriter
dataset (Tafjord et al., 2021) directly contain the
premise in the hypothesis despite having a reason-
ing depth of 5. When constructing NLI pairs, gen-

erating neutral examples requires special strategies
introducing a sampling bias, and it can be the same
for contradiction generation. Proof generation tech-
niques enable high reasoning depth but at the cost
of breadth (linguistic variety and reasoning vari-
ety).

3.2 Declarative generation

We fully rely on an existing FOL solver and
we propose Unigram, a simpler, more generic
method to generate problems with multilingual
grammars where rules bind multiple surface form
realization templates. A Unigram Rule declaration
specifies a type signature, and two surface
form realizers, and optional validity constraints:
R(output_type, input_types, realizers, constraints)
The signature specifies the type of the rule output
and the type of the arguments. The realizers take
the arguments as input and map them to a string.
We can have a realizer for a logical representation
and a realizer for English. Using functions allows
more expressivity than context-free grammars
(Hunter, 2021), but for most cases with can
treat template strings as functions using Python
string.format. Constraints and realizers can
access the state of the current generation as an
anytree tree. Constraints are binary functions
checking construction validity. One useful
constraint is distinctness, e.g. (arguments of the
same type should have a different realization), to
avoid repetitions or statements like Mary likes
Mary. We enable this constraint by default.

Generation algorithm We use a depth-first al-
gorithm that recursively fills in the leftmost non-
terminal leaf with random type-matching rule sam-
pling until constraints are satisfied. This enables
left-to-right generation, allowing realizers and con-
straints to access the current context. We recur-
sively call realizers to construct surface forms (e.g.
English text).

4 Application to first-order logic (FOL)

We use Unigram to enrich FOL problem generation
while also avoiding ambiguity, starting as a super-
set of LogicNLI (grammar in Appendix B). To
create a problem, we uniformly sample 1 to 32 sen-
tences as premises and 1 sentence per hypothesis
ensuring that all symbols are present in the premise.
We exclude non-satisfiable formulas (paradoxes)
in premise groups and hypotheses. We label pairs
as ENTAILMENT if (premise ∧ ¬hypothesis) is
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unsatisfiable, as CONTRADICTION if (premise ∧
hypothesis) is unsatisfiable, and as NEUTRAL oth-
erwise. Following Ruletaker and LogicNLI, we
create problems with predicates over named indi-
viduals (e.g. Mary is young). We generate gender-
balanced English surnames with CensusName. We
now present new logical modeling features absent
from the previous comparable datasets:

Explicit finite and open domains We explic-
itly mention the domain when using the quanti-
fiers. We introduce two locations, anywhere, and
a room with occupants e.g. Mary, and Paul are
the only persons in the room. which logically
means ∀x, room(x) → (x = Mary ∨ x = Paul).
We can then quantify over the room (everyone
in the room) or anywhere (everyone anywhere).
By doing this, we can generate induction prob-
lems (checking that everyone in the room is happy
if Mary and Paul are happy) and test reasoning
with both finite and open domains. This requires
handling FOL with equality which was not imple-
mented in previous work.

Quantifiers and logical relationships We ex-
tend previous work with more complete quan-
tifiers not all, nobody, not everyone. We
leverage context-sensitivity to create a rule for
polysyllogisms (predicate chains of the form
all A are B, all B are C, all C are D. We also intro-
duce only if, unless, otherwise as conditionals and
allow sentence-level negation.

Constraining material conditionals Like previ-
ous work, we use material conditional to express
conditional statements: if p then q is formalized as
p → q i.e. ¬p ∨ q. This means that the implication
is true if p is false, and that negating p → q entails
q both ¬p which can be counter-intuitive. We use
a constraint to eliminate all conditionals within the
scope of negations and of other conditionals.

Improving predicate verbalization RuleTaker
and LogicNLI use adjectives as logical predicates
but do not handle their semantic interference. Rule-
Taker do not consider being both blue and being
green as contradictory. LogicNLI uses 379 adjec-
tives treated as independent, including ugly and
ugliest. FLD uses pseudo language like the lard
does hurtle pushup. We prompted GPT-4 (May
version) to Generate 150 predicates where each
predicate does not contradict nor entail any other
predicate. Two examples: "enjoys wildlife photog-
raphy" and "owns a smart tv". We remove errors

and provide manual negations. We also use rela-
tionships (like, is a sibling of, modeling symmetry
axioms when relevant, and adjectives.

Logical representation language Previous Log-
icNLI, RuleTaker, FLD, and FOLIO all use their
own logical format, representing formulas as lists
or strings. We use the TPTP (Sutcliffe, 2010) FOF
language which is a standard syntax for theorem
provers evaluation and is compatible with many the-
orem provers, notably Vampire (Reger et al., 2022),
Z3 (De Moura and Bjørner, 2008) or Prover9 (Mc-
Cune, 2005). We select the Vampire (Reger et al.,
2022) theorem prover which provides short and
readable proofs and details all the premises used
during a derivation.

Complexity control Methods based on forward
inference can theoretically control the proof depth
using hyperparameters. Here, to avoid mostly sam-
pling shallow problems, we limit the number of
non-neutral examples where the proof to the num-
ber of examples using 5 inputs, for each number of
inputs. Neutrals are still a majority by an order of
magnitude. To sample hard neutral examples, we
use a Gradient Boosting classifier with 100 trees
(and scikit-learn 1.5.0 (Pedregosa et al., 2011) de-
fault parameters otherwise) to predict the labels
based on unigram counts of the logical operators
in the premise and hypothesis. We train on 1k ex-
amples, discard these, and then discard the most
confident neutral predictions to achieve balanced
labels.

5 Experiments

5.1 Methodology

We fine-tune a pre-trained NLI model on multi-
ple synthetic FOL datasets: LogicNLI, FLD, Rule-
Taker, and on Unigram-FOL. We then evaluate the
direct effect on other three-way entailment down-
stream tasks, and on further fine-tuning on the train-
ing data of evaluation tasks (Phang et al., 2018).

We use the DeBERTa-v3 (He et al., 2021) NLI
models trained on the tasksource collection (Sileo,
2024)2. We use a learning rate of 1e−5 for
DeBERTa-large and 2e−5 (Mosbach et al., 2021)
for DeBERTa-base, 1 or 3 epochs (based on intrin-
sic validation accuracy) and Huggingface Trans-
formers (Wolf et al., 2019) version 4.41 default
Trainer arguments otherwise.

2hf.co/deberta-v3-base-tasksource-nli
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Model size Auxilary training FOLIO +ft WANLI +ft CTRL +ft Fragments

D-base - 49.5 74.3 65.2 77.4 46.2 56.7 63.6
D-base RuleTaker 55.1 71.3 60.9 73.8 36.0 53.0 48.7
D-base LogicNLI 50.5 69.3 61.1 72.4 38.4 54.4 56.3
D-base FLD 59.9 72.3 60.0 73.6 38.2 55.8 56.8
D-base Unigram-FOL 64.4 78.2 63.6 75.6 42.8 56.6 65.4

D-base − Constrained_Conditionals 63.4 81.2 62.2 71.8 40.6 55.4 59.8
D-base − Realistic_Predicates 62.4 76.2 65.8 74.4 41.8 53.2 68.2
D-base Unigram-LogicNLI 57.4 71.3 61.6 76.4 38.6 55.6 57.8

D-large - 49.5 70.0 66.2 77.0 49.6 62.0 67.6
D-large RuleTaker 58.1 77.2 68.5 77.9 43.1 60.7 61.7
D-large LogicNLI 58.7 73.3 68.5 77.4 45.4 60.9 64.4
D-large FLD 60.9 78.2 68.0 77.6 44.0 59.8 61.7
D-large Unigram-FOL 63.4 82.2 75.4 81.6 48.2 62.2 73.2

D-large Unigram-FOL+FLD 78.2 88.6 65.2 78.4 42.2 57.9 75.4

Figure 1: Comparison of auxiliary synthetic training datasets effect on the evaluation tasks. We report the average
accuracy of two runs. D column refer to zero-shot D test accuracy after synthetic auxiliary training, and +ft refers
to the test accuracy after auxiliary training then further fine-tuning D training set (in the previous column).

We generate 100k examples with a 80/10/10
train/dev/test split. but we only use 40k training
training examples to match FLD. We use the FLD⋆
version of FLD. We use the ProofWriter (Tafjord
et al., 2021) open-world-assumption version of
RuleTaker. We exclude LogicNLI examples la-
beled as paradoxes and we map all labels to NLI
labels.

5.2 Evaluation datasets
We evaluate on two pure reasoning datasets, FO-
LIO and Fragments, and on two more general
datasets: FOLIO (Han et al., 2022) contains
human-written FOL problems. We evaluate on
the validation set to compare to Olausson et al.
(2023) results who report 72.5% accuracy using
a GPT-4 with a solver and 75.3% with chain-of-
thoughts. We construct another validation set from
10% of train and map labels to NLI labels. (Wei
et al., 2022) WANLI (Liu et al., 2022) is a NLI
dataset with diverse and challenging reasoning pat-
terns. ConTRoL (Liu et al., 2021) is a NLI dataset
requiring multiple premises to derive the correct
label, measuring contextual reasoning. Fragments
(Richardson et al., 2020) is based on formal seman-
tics templates and evaluate reasoning with quanti-
fiers; this dataset is mostly suited to evaluation, as
training quickly leads to almost perfect test accu-
racy.

Comparison with previous synthetic datasets
Table 1 shows the accuracy of multiple auxil-
iary training datasets on the evaluation dataset.

Unigram-FOL outperforms RuleTaker, LogicNLI,
and FLD on all tasks with a comfortable margin,
and leads to lesser degradation on the datasets that
are not only focused on logic (WANLI, ConTRoL).
The last line of the table combines Unigram-FOL
(with the full 100k examples) with FLD and shows
that combining generation methods can further
push the state of the art on FOLIO.

We conduct ablations to better understand the
source of this improvement, presented in the mid-
dle of Table 1.

Unigram-LogicNLI We use our declarative gen-
eration method on the base LogicNLI grammar
to disentangle the effect of the generation tech-
nique from the grammar itself. This outperforms
the original LogicNLI but not Unigram-FOL which
highlights the value of our additional constructions.

Replacing Realistic Predicates We replace our
generated predicates with the original LogicNLI
adjectives (containing semantic interferences); this
degrades FOLIO accuracy but does not strongly
impact other NLI tasks, notably Fragments which
mainly use adjectives as predicates.

Removing Conditionals Constraints Unrestrict-
ing usage of material conditionals harms the zero-
shot transfer on FOLIO and the capabilities at more
general reasoning, which confirms that removing
counter-intuitive constructs can help transferability.
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6 Conclusion

We showed that simple declarative grammars
paired with solvers can outperform complex proof
tree generators for reasoning dataset generations
and released a new FOL reasoning dataset, mod-
els, and ablations. Our framework can help future
reasoning research, notably on explanation since
fully aligned TPTP code can be leveraged to model
necessity and sufficiency. We plan to extend Uni-
gram to planning, constraint satisfaction and modal
logic.

Limitations

Reasoning methods based on neural networks do
not provide formal guarantees and can introduce
biases in real applications. They can be used as a
complement to externalization methods (Olausson
et al., 2023). Automatically formalizing a problem
is difficult and can lead to mistakes (Olausson et al.,
2023) which could be detected by internalization-
based methods. Our dataset could be used to auto-
mate formalization but we did not try such experi-
ments. In addition, our work is only conducted with
English language and encoder models, mainly used
for verification and not generation. We only used
one model architecture, DeBERTa, while other ar-
chitectures like Albert (Lan et al., 2020) or other
recursive architectures could be more suited to rea-
soning.

Ethical considerations

Our models are derived from language models
which inherit bias from their training corpus. We
did not conduct any human annotations, relying on
already annotated datasets to validate our method-
ology. We use encoder models which have lower
energy consumption than decoders (Luccioni et al.,
2024) and performed experiments with less than
20 total days on a Nvidia A100 GPU.
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A FOL-nli example

PREMISE :
Christopher, Donald, Gene are the only persons in the room.
Everyone in the room who collects antique jewelry plays the drums.
Someone in the room designs and sews custom cosplay costumes for conventions.
Christopher collects classic novels.
Everyone in the room who enjoys deep-sea diving and exploring underwater caves enjoys kayaking or is a
night owl or both.
Christopher enjoys kayaking.
Everyone in the room enjoys kayaking only if they collects antique jewelry.
HYPOTHESIS :
Christopher collects antique jewelry.
LABEL

entailment
PREMISE (TPTP):

room(c) & room(d) & room(g) &
(![X]:(room(X) => (X='c' | X='d' | X='g'))) &
(![X]:(room(X) => ((collects_jewelry(X)) => (plays_drums(X))))) &
(?[X]:(room(X) & (designs_cosplay(X)))) &
collects_novels(c) &
(![X]:(room(X) => ((enjoys_diving(X)) =>
(enjoys_kayaking(X) | is_night_owl(X))))) &
enjoys_kayaking(c) &
(![X]:(room(X) => (enjoys_kayaking(X) <= collects_jewelry(X))))
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B Unigram LogicNLI reimplementation

from unigram import Rule as R

ADJECTIVES = ['rich','quiet','old','tall','kind','brave','wise',
'happy', 'strong','curious','patient','funny','generous','humble']
# (We selected adjectives with no clear semantic interference)
NAMES = ['mary', 'paul', 'fred', 'alice', 'john', 'susan', 'lucy']

R.init(['tptp','eng'], "fof")

R('premise(' + ','.join(['rule']*16')'+','+'.'join(['fact]*8)+')',
'&\n'.join([f'({i})' for i in range(24)]),
'\n'.join([f'{i}' for i in range(24)]))

R('hypothesis(person,a)','1(0)','0 is 1')

for a in ADJECTIVES:
R('adj', a), R('adj', f'~{a}', f'not {a}', weight=0.2)

R('property(adj,adj)', '(0(?)&1(?))', 'both 0 and 1')
R('property(adj,adj)', '(0(?)|1(?))', '0 or 1')
R('property(adj,adj)', '(0(?)<~>1(?))', 'either 0 or 1', weight=0.5)
R('property(adj)', '0(?)', '0')

R('rule(property,property)', '![X]:(0[?←X]=>1[?←X])',
'everyone who is 0 is 1')
R('rule(property,property)', '![X]:(0[?←X]<=>1[?←X])',
'everyone who is 0 is 1 and vice versa')

for p in NAMES:
R('person', p)

R('fact(person,property)','1[?←0]', '0 is 1')
R('fact(property)', '?[X]:(0[?←X])', 'someone is 0', weight=0.2)

R('rule(fact,fact)', '(0)=>(1)', 'if 0 then 1')
R('rule(fact,fact)', '(0)<=>(1)', 'if 0 then 1 and vice versa')

5283


