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Abstract

Large language models (LLMs) have emerged
as valuable tools for enhancing textual features
in various text-related tasks. Despite their su-
periority in capturing the lexical semantics be-
tween tokens for text analysis, our preliminary
study on two popular LLMs, i.e., GPT-3.5 and
Llama2, shows that simply applying news em-
beddings from LLMs is ineffective for fake
news detection. Such embeddings only en-
capsulate the language styles between tokens.
Meanwhile, the high-level semantics among
named entities and topics, which reveal the de-
viating patterns of fake news, have been ig-
nored. Therefore, we propose a topic model to-
gether with a set of specially designed prompts
to extract topics and real entities from LLMs
and model the relations among news, entities,
and topics as a heterogeneous graph to facilitate
investigating news semantics. We then propose
a Generalized Page-Rank model and a consis-
tent learning criterion for mining the local and
global semantics centered on each news piece
through the adaptive propagation of features
across the graph. Our model shows superior
performance on five benchmark datasets over
seven baseline methods and the efficacy of the
key ingredients has been thoroughly validated.

1 Introduction

The ubiquity of fake news on social media poses
a significant threat to public discourse and soci-
etal well-being (Prieur et al., 2023; Chen et al.,
2023; Ma et al., 2024). To alleviate the far-reaching
consequences, many fake news detection methods
probe the information dissemination process or so-
cial structure (Mehta et al., 2022; Ma et al., 2021)
to detect fake news. Unfortunately, despite the
impressive detection performance, their applica-
bility is substantially constrained when the social
context is unavailable or incomplete due to the
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Figure 1: Irregular co-occurrence of meaningful entities
in fake news on a specific topic (red arrows).

evolving nature of social networks and data privacy
concerns (Zhou and Zafarani, 2020; Zhang and
Ghorbani, 2020). Facing limited access to social
context, other text-mining methods (Yang et al.,
2016; Zhang et al., 2024) investigate the intrica-
cies of news content to uncover hierarchical textual
semantics (e.g., sentence and document level se-
mantics) and formulate fake news detection as a
classification problem, using only textual content
from the social media.

Following the latter approach, in which news em-
beddings are critical for providing a discriminatory
description of authentic and fake news, we are pro-
pelled to enhance them with Large Language Mod-
els (LLMs), which have been renowned for their
remarkable capabilities in language understanding,
and context modeling (Thota et al., 2018; Zhao
et al., 2023; Li et al., 2024b). A fundamental ques-
tion that guides our research in this under-explored
realm is, “Are the LLMs output news embeddings
effective for fake news detection?"

To answer this question, we conducted a pre-
liminary study by comparing the detection perfor-
mance of an MLP classifier trained using news
embeddings extracted from GPT-3.51, Llama22,
BERT (Kenton and Toutanova, 2019) and Het-
eroSGT (Zhang et al., 2024), respectively. From
the results depicted in Fig. 2 (and Table 8), we

1. https://api.openai.com
2. https://llama.meta.com
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Figure 2: A comparison between fake news detection
performance on two datasets w.r.t. accuracy, precision,
recall and F1 score.

found that simply applying the LLMs and BERT
extracted news embeddings is ineffective for fake
news detection because they primarily focus on lex-
ical semantics between tokens. When fake news
mimics the language styles of authentic news, this
approach fails.

On the other hand, the better performance of a
recent method, HeteroSGT, which investigates the
high-level semantic relations among news, entities,
and topics for fake news detection, affirms previous
findings that the knowledge of real entities and top-
ics is crucial for identifying fake news (Huang et al.,
2019; Xie et al., 2023; Jeong et al., 2022). Taken
news #2 depicted in Fig. 1 as an example, it is fake
because the named entity ‘Genetically modified
crops’ is not ‘responsible’ for ‘COVID-19’ when
discussing the ‘#Spread of COVID-19’. These dis-
coveries signify high-level semantics for fake news
detection, however, two further sub-problems exist:

P1. How can we apply LLMs to explore high-
level news semantics? From the above study, we
affirm that the exploration of high-level semantics
enables the model to acquire a better perception of
deeper contextual nuances, which encompass fabri-
cated knowledge among entities with real meaning
on a particular topic (Zhang et al., 2024), for dis-
tinguishing fake news. We identify the keys for
high-level semantics exploration using LLMs are
to extract meaningful entities and topics.

P2. How can we identify the irregular semantics
in fake news? Given the LLM-derived entities and
topics, one can aggregate their features to enhance
the centered news embeddings for fake news detec-
tion. But this primarily focuses on the information
within individual news pieces (local semantics),
lacking the ability to explicitly explore the broader
range of knowledge across news pieces (global se-
mantics) to identify narrative inconsistencies and
manipulations in fake news. For example, in de-
tecting news #2 as fake, we identify the relation
between ‘COVID-19’ and ‘Genetically modified

Method Source of Features Semantics Unlabeled
Social Context News Text Other Sources Local Global Data

HAN % " % " % %

TextGCN % " % " % %

DualEmo Comments " % " % %

UsDeFake Propagation Network " % " % %

HGNNR % " Knowledge Graph " % %

HeteroSGT % " % " " %

LESS4FD (Ours) % " % " " CR

Table 1: Overview of existing methods. Comparisons
are made upon the source information, the semantics
each method explores, and how they enforce learning
on unlabeled data.

crops’ to be irregular because they rarely co-appear
in other news discussions about the ‘#Spread of
COVID-19’. Therefore, to identify the deviating
semantic patterns of fake news, it is crucial to inves-
tigate both the local semantics of individual articles
and the global semantics across news pieces.

To address P1, by prompting LLMs for entity ex-
traction, we first propose a refined topic model that
summarizes news topics through LLM-generated
embeddings. We then construct a heterogeneous
graph to model the relationships among news, en-
tities, and topics by representing them as nodes
and connecting them with edges, which facilitates
further exploration of local and global news seman-
tics.

For P2, we apply short- and long-scale feature
propagation centered on news nodes to encapsulate
the local and global semantics into news representa-
tions. With these two scales of feature propagation,
we can identify inconsistencies between each indi-
vidual news text and the broader knowledge across
news, and involve unlabeled news for training with
our specially designed consistency training crite-
rion. Our major contributions are:

• Our preliminary study uncovers two fundamental
problems that should be addressed to incorporate
LLMs for advancing the detection of fake news;

• We introduce an LLM-enhanced topic model and
devise potent prompts for querying LLMs. Our
proposed method, LESS4FD, not only captures
local semantics surrounding individual news and
the global semantics spanning across the dataset
to identify the inconsistencies of fake news but
also allows a flexible consistency regularization
on unlabeled data for refining the news represen-
tation;

• Extensive experiments on five real-world datasets
demonstrate the superiority of our method over
seven baseline methods and confirm our design
choices.
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2 Related Work

2.1 Fake News Detection

Current investigations into fake news detection can
be categorized into content-based and graph-based
methodologies, in terms of their focus on specific
aspects of news articles for feature mining. Specifi-
cally, the content-based methods concentrate on an-
alyzing the textual content of news articles, extract-
ing linguistic, syntactic, stylistic, and other textual
features to differentiate between genuine and fake
news. For example, Horne and Adali (2017) and
Kaliyar et al. (2021) analyzed the language styles to
distinguish between fake and real news while Yang
et al. (2016) introduced a dual-attention model to
explore hierarchical news semantics. Other works
also explored the incorporation of supplementary
textual information, such as comments (Shu et al.,
2019; Rao et al., 2021), and emotion signals (Zhang
et al., 2021), to further improve detection capabili-
ties. These content-based methods strive to explore
diverse textual features associated with each single
article to identify their authenticity. However, the
detection performance is compromised when fake
news is specially fabricated to mimic the words
and language styles of genuine news, which inher-
ently necessitates the need to explore higher-level
semantics, such as the relations among news, real
entities, and topics that are explored in this paper.

Moving beyond the content-based methods,
graph-based methods explicitly model and learn
potential structures (Ding et al., 2022, 2024), such
as word-word relations (Yao et al., 2019; Linmei
et al., 2019; Li et al., 2023), news dissemination
graphs (Ma et al., 2018, 2023; Bian et al., 2020),
and social structure (Su et al., 2023; Dou et al.,
2021). Concrete examples under this category in-
clude: Yao et al. (2019) which first constructed a
weighted graph using the words within the news
content and then applied the graph convolutional
network (GCN) for classifying fake news; Linmei
et al. (2019) that built a similar graph but employed
a heterogeneous graph attention network for classi-
fication (Linmei et al., 2019); and Bian et al. (2020)
which employed recurrent neural networks and bi-
directional GCN to capture the new features from
their propagation process. There are other works
that model the relations between news and users
(Su et al., 2023; Dou et al., 2021), or even news
and external knowledge sources (Hu et al., 2021;
Xu et al., 2022; Xie et al., 2023; Wang et al., 2018)
to complement fake news detection. Despite their

progress, the reliance on supplementary sources
poses a notable challenge in their applicability, and
even when this auxiliary information is available,
the associated computational costs remain an ad-
ditional hurdle. For clarity, we compare our work
and the existing methods in Table 1.

2.2 LLMs for Feature Mining

LLMs such as GPT (Brown et al., 2020),
Llama2 (Touvron et al., 2023), and pre-trained lan-
guage models like BERT (Kenton and Toutanova,
2019) have emerged as powerful tools for feature
mining due to their remarkable adaptability in lan-
guage understanding and sentiment analysis (Min
et al., 2023; Liu et al., 2023; Wu and Ong, 2021).
LLMs for feature mining primarily focus on en-
riching the embeddings of texts. The most straight-
forward application involves feeding the output
features into specific models for tasks such as time
series analysis and graph learning (Jin et al., 2023).

To get more specific information and further en-
rich the textual features, more advanced methods
prompt LLMs to generate supplementary content,
such as related knowledge and background infor-
mation (Min et al., 2023). This additional content
is then combined with the original texts for down-
stream modeling (He et al., 2023; Li et al., 2024a).
In summary, LLMs showcase their potential for
advancing various natural language processing-
related tasks, and this paper addresses the two
prior recognized sub-problems to take advantage
of LLMs for fake news detection.

3 Methodology

3.1 Preliminaries

DEFINITION 1. Heterogeneous Graph. A het-
erogeneous graph HG = {V,L,X} models the
intricate relations (in L), among diverse types of in-
stances in V. For fake news detection, our node set
V = {ni}|N|i=0 ∪ {ei}|E|i=0 ∪ {ti}|T|i=0 comprises three
distinct types of nodes: news nodes (N), entity
nodes (E) and topic nodes (T). Each link/edge in
L denotes the explicit relation between two nodes.
X = {Xn,Xe,Xt} encompasses the feature vec-
tors for all nodes, in which Xn ∈ R|N|×d is the
news node feature matrix, Xe ∈ R|E|×d for entities
and Xt ∈ R|T|×d for topics.
DEFINITION 2. Fake News Detection. In this
paper, we define fake news detection as to learn a
model M(·) using the text of both labeled news
(NL,YL) and unlabeled news NU , to infer the la-
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Figure 3: Heterogeneous graph construction.

bels of the unlabeled news, ŶU . For a particular
news ni, its label yi ∈ YL ∪ YU is 1 if the news is
fake, and 0 if it is authentic.

3.2 LLM-Enhanced Semantics Modeling
News articles naturally encompass various entities
with real meaning, such as people, locations, and
organizations, and usually focus on specific topics.
These named entities and topics comprise rich high-
level semantic information and narratives about
news articles, which are crucial for identifying the
nuance of fake news. Driven by our preliminary
study results, as depicted in Fig. 2, we further in-
vestigate LLMs, particularly GPT-3.5 and Llama2,
to address our devised P1 as follows. For brevity,
we use LLM to denote GPT-3.5 or Llama2.

Entity Extraction. For news entity extraction,
we prompt the LLM following Table 2 for identi-
fying specific entities in all news pieces including
persons, dates, locations, organizations, and mis-
cellaneous entities3.

News and Entity Embedding. We obtain the
news embeddings and entity embeddings by di-
rectly querying the API provided by OpenAI2 and
Meta3 to encode the corresponding lexical seman-
tics in the text. The resulting news embeddings are
processed as Xn, and the entity embeddings are
stored in Xe.

Topic Modeling. In addition to entities, model-
ing the topics across news pieces not only enables
us to summarize the news focus and link different
news pieces, but also to explore the relation be-
tween the target news and entities in another news,

3. Notably, we only input the widely-used and publicly avail-
able datasets for querying the LLM in case of any privacy and
ethical concerns.

PROMPT:
# Task
Extract the following entities from the given news article:
1. PERSON: Person Definition. 2. DATE: DATE Definition.
3. LOC: LOC Definition. 4. ORG: ORG Definition.
5. MISC: MISC Definition.
Return the results in a dictionary with corresponding keys.
# Examples
Example 1: "The iPhone, created by Apple Inc., was released on
June 29, 2007."
Output1: "PERSON": ["None"], "DATE": ["June 29, 2007"],
"LOC": ["None"], "ORG": ["Apple Inc."], "MISC": ["iPhone"]
Examples 2: . . .
Output2: . . .
# Input News Article
Given news article: < The SpaceX CEO, Elon Musk, announces
ambitious plans to build a self-sustaining underwater
city on Mars by Dec 2030 . . . >
GPT-3.5:
"PERSON": ["Elon Musk", ... ], "DATE": ["Dec 2030", ... ],
"LOC": ["Mars", ... ], "ORG": ["SpaceX", ... ],
"MISC": ["CEO", ... ]

Table 2: Prompt for entity extraction.

as supported by the empirical results in Sec. 4.3.
For involving the topic information for fake news
detection, we adopt Bertopic (Grootendorst, 2022)
to derive the topics involved in all news, which
typically outputs the topic words and the corre-
sponding weights for each topic. We then feed the
topic words into the API call to extract their embed-
dings from LLM and formulated the embedding
of each topic as the weighted sum of topic words
within it following:

xt
i =

∑

j∈B(ti)
wj,thj ; xt

i ∈ Xt, (1)

where B(ti) is the topic word list output by
Bertopic, wj,t is the corresponding weight of word
j to topic ti, and hj is the topic word embedding
from LLM.

For replication purposes, we detail the practical
settings in entity extraction, embedding, and topic
modeling in Sec. 4, accompanied by an in-depth
analysis of their empirical impact.

Heterogeneous Graph Construction. Given the
news pieces, entities, topics, and their correspond-
ing embeddings, we then follow Definition 1 and
construct a heterogeneous graph HG, in which we
consider two types of explicit relations: <news,
‘contains’, entity> and <news, ‘focuses on’, topic>.

In summary, we construct a heterogeneous graph,
HG, to capture: 1) high-level relationships among
news items, entities, and topics, represented as
edges; and 2) sentence/document-level narratives
encapsulated within the embeddings of news items,
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entities, and topics, denoted by X. This approach
addresses our recognized P1 and facilitates a thor-
ough examination of local semantics around each
news item, exemplified by the 1-hop or 2-hop sub-
graphs centered on news nodes in HG, as well as
global semantics across broader ranges, all empow-
ered by LLM.

3.3 Generalized Feature Propagation
Given HG, we propose to learn fine-grained news
representations by encapsulating the valuable infor-
mation in entities, topics, and other similar news
that share common topics or entities. It is worth
noting that we highlight the significance of explor-
ing these high-level semantics not only because
of the preliminary results reported in Fig. 2, but
also regarding the consensus that fake news carries
false knowledge about real entities on a particular
topic (Zhou and Zafarani, 2020). Therefore, we
take news, entities, and topics into account so as to
distinguish the nuances of fake news.

We propose to use Generalized PageRank (GPR)
for propagating the features of entities, topics, and
other news pieces to the target, by simply learning
a weighing scalar for each propagation step. To
be specific, we first apply a two-layer MLP, fθ(·),
and project the news, entities, and topics’ features
into the same space following H = fθ(X), and
X = [Xn⊤,Xe⊤,Xt⊤]⊤ is the vertical stack of
the three feature matrices. As to facilitate feature
propagation, we then unify the index of all three
types of nodes based on their index in X and trans-
form the heterogeneous graph structure into a ho-
mogeneous adjacency matrix, A, with regard to the
edges in HG and by adding self-loops. A particular
element A[i,j] = 1 if there exists an edge between
nodes i and j in HG.

With the projected node features H and adja-
cency matrix A, we can promptly propagate the
features following:

Hs = PHs−1, (2)

where s denotes the propagation step, H0 = H,
and P = D−1A is the row normalized adjacency
matrix given the diagonal degree matrix D. Then,
the target news representations are formulated as
the weighted sum of the propagated features in S
steps, given by:

Z =
S∑

s=0

wsH
s, (3)

where ws is a learnable weight corresponding to
step s and the value can be either positive or nega-
tive, indicating how the information at a particular
step contributes to the prediction. Thus, the learned
news representations comprise the high-level se-
mantics information within S steps, and the prob-
abilities of a news piece being authentic or fake
is predicted as pi = softmax(zi),which can be
directly applied to enforce the learning of θ and
w using the cross-entropy loss on labeled news.
However, this only preserves the semantics within
a particular scale S.

3.4 Global and Local Semantics Mining

During feature propagation, a larger step allows the
exploration of global semantics across HG since
neighbors across broader ranges are involved, while
a smaller step stresses more the local semantics be-
tween the target news piece and its highly related
entities, topics, and news. Both scales of seman-
tics offer complementary perspectives on the target
news and we can firmly apply two divergent scale
values sg and sl to encode the global and local se-
mantics into news embeddings, respectively. By
setting a small step sl (e.g., 2) and a larger step
sg (e.g., 20), we can obtain two representations,
zl
i ∈ Zl and zg

i ∈ Zg for each news pieces fol-
lowing Eq. (3). Indeed, these representations can
be viewed as two divergent augmentations of the
news pieces from the perspective of data augmen-
tation, and we enforce the cross-entropy loss on
both views to train the model on the labeled news,
which is to minimize:

Lsup =
1

|NL|
∑

i∈NL

[
Lce(p

l
i, yi) + λgLce(p

g
i , yi)

]
,

(4)
where pl

i and pg
i are the predictions made upon

the news embeddings zl
i and zg

i , respectively. λg

balances the contributions of the local and global
semantics.

3.5 Consistency Regularization on Unlabeled
News

Since our learned news representations already
comprise the global and local semantics, we fur-
ther explore regularization signal from unlabeled
data to make consistent predictions upon Zl and Zg.
Our proposed regularization term comprises two
dependent ingredients: 1) prototype estimation;
and 2) consistency loss between the predictions.
Specifically, the prototype estimation is to align the
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predictions pl
i and pg

i on each node, which follows:

pi = (pl
i + λgp

g
i )/2. (5)

Then, we define the consistency loss on unlabeled
news as the overall prediction divergence between
the prototype and two views following:

Lcon =
1

2|NU |
∑

i∈NU

[
D(pi||pl

i) + λgD(pi||pg
i )
]
,

(6)
where D(·) measures the KL-divergence.

Notably, our model design features an end-to-
end optimization of both the scale weights (w) and
the MLP parameters (θ). The inclusion of this con-
sistency loss not only regularizes the propagation
of more valuable features into new representations
- capturing both local and global semantics effec-
tively; but also enhances the detector’s generaliza-
tion capabilities on unlabeled data.

3.6 Training Objective and Fake News
Detection

Combing both the supervised loss and consistency
loss, the overall training objective of LESS4FD
(LLM Enhanced SemanticS mining for fake news
detection) can be formulated as:

argmin
w,θ

λceLsup + (1− λce)Lcon, (7)

where λce trades off the training signals from the
labeled and unlabeled news. After training, we
promptly predict the label of each news as ŷi =
argmax(pi), where i is classified as fake if ŷi = 1,
and as authentic otherwise.

4 Experiment

Evaluation Dataset. Our evaluation datasets cover
diverse domains, including health-related datasets
(MM COVID (Li et al., 2020) and ReCOVery
(Zhou et al., 2020)), a political dataset (LIAR
(Wang, 2017)), and multi-domain datasets (MC
Fake (Min et al., 2022) and PAN2020 (Rangel et al.,
2020)). Notably, the MC Fake dataset includes
news articles across politics, entertainment, and
health, sourced from reputable debunking websites,
such as PolitiFact4 and GossipCop5. Statistics of
these datasets are provided in Appendix A.1.
Baselines. We compare LESS4FD6 against seven
representative baselines in text classification and

4. https://www.politifact.com
5. https://www.gossipcop.com
6. https://github.com/XiaoxiaoMa-MQ/Less4FD

fake news detection, including textCNN (Kim,
2014), textGCN (Yao et al., 2019), BERT (Kenton
and Toutanova, 2019), SentenceBERT (Reimers
and Gurevych, 2019), and HAN (Yang et al., 2016)
that work on word tokens from news text for classi-
fication; HGNNR4FD (Xie et al., 2023) and Het-
eroSGT (Zhang et al., 2024), which model the
high-level news semantics as a graph for fake news
detection. We exclude other methods that are re-
liant on propagation information (Wei et al., 2022;
Yang et al., 2022), social engagement (Shu et al.,
2019; Zhang et al., 2021), and alternative sources
of evidence (Xu et al., 2022; Khattar et al., 2019)
to ensure a fair comparison. We also ignore the
conventional heterogeneous graph neural networks
because HeteroSGT has already demonstrated su-
perior performance over them. A summary of the
baselines is provided in Appendix A.3.
Experimental Settings. To test the overall per-
formance, we adopt the two most popular LLMs,
GPT-3.5 and Llama2, to extract entities, topics, and
news embeddings.

We perform 10-fold cross-validation (using a
split ratio of 80%-10%-10% for training, valida-
tion, and test) and report the averaged results along
with the standard deviations regarding five mostly-
used metrics: Accuracy (Acc), macro-precision
(Pre), macro-recall (Rec), macro-F1 (F1), and the
AUC-ROC curve. We conduct all case studies with
GPT-3.5 because of its better performance, and for
brevity, we refer to the implementation using GPT-
3.5 as ‘LESS4FD*’ and the implementation with
Llama2 as ‘LESS4FD⋄’. Detailed hyperparameter
settings are provided in Appendix A.4.

4.1 Fake New Detection Performance
Overall Performance. The results summarized
in Tables 3, and 4, and Fig. 5 reveal that our
method surpasses all baseline models w.r.t. the five
evaluation metrics. The performance gaps, which
are over 5% on MM COVID and 2% on the rest
datasets, affirm the effectiveness of our approach in
investigating the LLM-enhanced news semantics
for fake news detection. It is also worth noting
that there are firm differences between LESS4FD*
and LESS4FD⋄, which indicate both GPT-3.5- and
Llama2-derived embeddings are effective. By com-
parison with different categories of baselines, we
also observe that:
High-level Semantic Exploration is Pivotal. De-
spite the effectiveness of traditional classifiers like
TextCNN, TextGCN, HAN, BERT, and Sentence-
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Model MM COVID ReCOVery MC Fake LIAR PAN2020

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

TextCNN 0.564±0.038 0.492±0.104 0.649±0.002 0.458±0.004 0.816±0.004 0.474±0.005 0.556±0.002 0.382±0.005 0.503±0.002 0.337±0.004
TextGCN 0.691±0.160 0.642±0.245 0.733±0.004 0.544±0.128 0.697±0.142 0.452±0.004 0.487±0.039 0.414±0.030 0.495±0.032 0.389±0.079
HAN 0.829±0.009 0.838±0.009 0.694±0.003 0.439±0.001 0.834±0.004 0.434±0.003 0.559±0.003 0.417±0.006 0.494±0.005 0.467±0.009
BERT 0.744±0.110 0.711±0.103 0.697±0.003 0.426±0.007 0.799±0.005 0.474±0.005 0.522±0.004 0.490±0.004 0.519±0.005 0.512±0.004
SentenceBert 0.761±0.004 0.729±0.006 0.687±0.006 0.443±0.004 0.828±0.002 0.453±0.005 0.566±0.002 0.507±0.004 0.524±0.005 0.489±0.009
HGNNR4FD 0.732±0.017 0.755±0.021 0.783±0.008 0.726±0.009 0.818±0.010 0.461±0.010 0.544±0.013 0.500±0.013 0.690±0.014 0.724±0.014
HeteroSGT 0.924±0.011 0.916±0.012 0.912±0.010 0.888±0.013 0.878±0.012 0.778±0.014 0.582±0.017 0.572±0.015 0.720±0.021 0.723±0.021

LESS4FD⋄ 0.973±0.011* 0.972±0.011* 0.917±0.017* 0.897±0.020* 0.883±0.006* 0.787±0.008* 0.689±0.034* 0.658±0.035* 0.731±0.037* 0.727±0.037*
LESS4FD* 0.974±0.010* 0.973±0.010* 0.938±0.020* 0.929±0.017* 0.894±0.012* 0.833±0.013* 0.678±0.021* 0.672±0.019* 0.771±0.017* 0.769±0.017*

Table 3: Detection performance w.r.t accuracy and F1 score on five datasets (best in red, second-best in blue).
* indicates that the performance improvement is statistically significant at a 95% confidence level (α = 0.05)
compared to the best baseline results.

Model MM COVID ReCOVery MC Fake LIAR PAN2020

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

TextCNN 0.484±0.173 0.560±0.004 0.449±0.107 0.511±0.002 0.530±0.159 0.471±0.003 0.447±0.185 0.480±0.006 0.309±0.119 0.508±0.005
TextGCN 0.716±0.240 0.694±0.181 0.697±0.183 0.617±0.104 0.524±0.173 0.523±0.002 0.493±0.047 0.494±0.029 0.392±0.144 0.498±0.032
HAN 0.836±0.007 0.834±0.004 0.435±0.201 0.510±0.001 0.444±0.103 0.519±0.005 0.501±0.005 0.475±0.002 0.457±0.135 0.526±0.003
BERT 0.705±0.010 0.723±0.112 0.430±0.214 0.511±0.004 0.732±0.003 0.487±0.001 0.522±0.002 0.524±0.002 0.541±0.005 0.508±0.005
SentenceBert 0.786±0.002 0.730±0.006 0.645±0.167 0.514±0.001 0.464±0.006 0.501±0.002 0.565±0.002 0.542±0.002 0.508±0.009 0.523±0.006
HGNNR4FD 0.882±0.016 0.648±0.021 0.771±0.006 0.751±0.009 0.456±0.010 0.485±0.103 0.559±0.009 0.482±0.013 0.677±0.014 0.745±0.014
HeteroSGT 0.918±0.012 0.912±0.012 0.892±0.014 0.878±0.014 0.808±0.012 0.762±0.015 0.579±0.016 0.575±0.016 0.731±0.021 0.732±0.020

LESS4FD⋄ 0.972±0.011* 0.972±0.010* 0.905±0.017* 0.894±0.022* 0.811±0.014* 0.806±0.014* 0.728±0.046* 0.712±0.034* 0.777±0.030* 0.749±0.037*
LESS4FD* 0.975±0.010* 0.973±0.009* 0.930±0.018* 0.937±0.021* 0.826±0.015* 0.886±0.013* 0.765±0.019* 0.675±0.020* 0.798±0.019* 0.774±0.014*

Table 4: Detection performance w.r.t precision and recall on five datasets (best in red, second-best in blue).
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Figure 4: Coherence, Diversity, and Sil Score with the
different numbers of topics on three datasets.

BERT in capturing word-level narratives, they
struggle with the relationships among news pieces,
entities, and topics, limiting their performance. In
contrast, our method, along with HeteroSGT and
HGNNR4FD, excels by modeling these high-level
semantics in a graph and analyzing the relations
and features of news, entities, and topics.

Mining the Global and Local Semantics Results
in the Better Performance. While HGNNR4FD
and HeteroSGT employ heterogeneous graphs to
analyze news, entities, and topics, their perfor-
mance has deteriorated due to the insufficient ex-
ploration of global and local semantics. Specifi-
cally, HGNNR4FD only focuses on local seman-
tics, while HeteroSGT suffers from information
loss through random walks. Our method addresses
these issues by mining global and local semantics
at lower computational costs (see Table 6).

Overall, we attribute LESS4FD’s superiority to
the investigation of high-level semantics in news
text and mining global and local semantics in HG,
which have been further validated in Sec. 4.3.

4.2 Topic Modeling Validation
Topic modeling is pivotal to constructing the HG.
In this section, we specifically validate the choices
for the optimal topic numbers and their impact on
the detection performance.
Optimal Topic Number. We use a multi-metric
approach to select the optimal number of topics
for each dataset, considering topic coherence for
interpretability, topic diversity for variety, and the
Silhouette Score for topic separation and compact-
ness. The evaluation spans a range of topic num-
bers, from 3 to 60. Ideally, the optimal number
of topics corresponds to the point where all three
metrics reach their peak values, but as depicted in
Figs. 4 and 10 no point meets this criterion. There-
fore, we compromise by selecting six topic num-
bers for each dataset, which yield the highest or
near-highest values for at least one metric.
The Impact of Topic Numbers on the Detection
Performance. As depicted in Fig. 8, we observe
slight variations in the performance of LESS4FD
across different topic numbers on each dataset,
while the optimal topic numbers for each dataset
are: 44 for MM COVID, 58 for ReCOVery, 8 for
MC Fake, 10 for LIAR, and 40 for PAN2020.

4.3 Ablation Study
In this ablation study, we assess the impact of each
model component by omitting them one at a time:
‘⊘HG’ excludes the heterogeneous graph, relying
only on LLM-extracted news embeddings for detec-
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Figure 5: ROC curves on five datasets.
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Figure 6: Sensitivity to λce and λg on three datasets.

Datasets Methods Acc Pre Rec F1

MM COVID

LESS4FD* ⊘HG 0.634±0.053 0.539±0.216 0.555±0.074 0.481±0.130
LESS4FD* ⊘ E 0.924±0.021 0.928±0.020 0.919±0.021 0.920±0.021
LESS4FD* ⊘ T 0.938±0.020 0.937±0.022 0.942±0.019 0.939±0.020
LESS4FD* ⊘ CR 0.950±0.019 0.950±0.018 0.948±0.020 0.948±0.020
LESS4FD* 0.974±0.010 0.975±0.010 0.973±0.009 0.973±0.010

LIAR

LESS4FD* ⊘HG 0.556±0.021 0.534±0.123 0.523±0.026 0.443±0.066
LESS4FD* ⊘ E 0.626±0.027 0.649±0.040 0.629±0.027 0.625±0.027
LESS4FD* ⊘ T 0.638±0.024 0.670±0.061 0.636±0.027 0.633±0.028
LESS4FD* ⊘ CR 0.654±0.029 0.671±0.035 0.653±0.027 0.650±0.031
LESS4FD* 0.678±0.021 0.765±0.019 0.675±0.020 0.672±0.019

ReCOVery

LESS4FD*⊘HG 0.685±0.052 0.526±0.051 0.504±0.053 0.418±0.053
LESS4FD*⊘E 0.870±0.017 0.864±0.016 0.865±0.020 0.854±0.019
LESS4FD*⊘T 0.884±0.015 0.870±0.016 0.880±0.019 0.870±0.017
LESS4FD*⊘CR 0.904±0.020 0.910±0.027 0.908±0.019 0.891±0.023
LESS4FD* 0.938±0.020 0.930±0.018 0.937±0.021 0.929±0.017

MC Fake

LESS4FD*⊘HG 0.818±0.007 0.414±0.009 0.501±0.004 0.453±0.006
LESS4FD*⊘E 0.839±0.013 0.761±0.015 0.800±0.015 0.754±0.016
LESS4FD*⊘T 0.854±0.011 0.781±0.009 0.829±0.011 0.798±0.012
LESS4FD*⊘CR 0.869±0.009 0.809±0.009 0.842±0.013 0.818±0.014
LESS4FD* 0.894±0.012 0.826±0.015 0.886±0.013 0.833±0.013

PAN2020

LESS4FD*⊘HG 0.558±0.073 0.515±0.165 0.557±0.071 0.496±0.125
LESS4FD*⊘E 0.718±0.069 0.767±0.067 0.711±0.076 0.704±0.087
LESS4FD*⊘T 0.731±0.049 0.770±0.050 0.728±0.050 0.724±0.052
LESS4FD*⊘CR 0.7571±0.025 0.766±0.025 0.757±0.023 0.755±0.024
LESS4FD* 0.771±0.017 0.798±0.019 0.774±0.014 0.769±0.017

Table 5: Ablation results of LESS4FD* on five datasets.

tion; ‘⊘T’ and ‘⊘E’ remove topic and entity nodes
from the graph, respectively; and ‘⊘CR’ omits the
consistency learning module.

From the results in Tables 5 and 10, we observe
a notable decrement in performance when directly
using LLM-extracted embeddings for fake news
detection, exemplified by the case of ‘⊘HG’. Af-
ter incorporating the heterogeneous graph into the
training process, as demonstrated by ‘⊘E’, ‘⊘T’,
and ‘⊘CR’, the results are enhanced across all
datasets. Such performance gaps before and af-
ter engaging with HG further support our motiva-
tion to learn high-level semantics for fake news
detection. Meanwhile, the better performance of
‘⊘E’ and ‘⊘T’, compared to ‘⊘HG’, showcase
that each of them benefits our model from cap-
turing the nuances of fake news. As proposed to
engage unlabeled news for a fine-gained training of
the detector, the consistency loss is capable of im-
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Figure 7: Sensitivity to sl and sg on MM COVID w.r.t.
accuracy and F1 score.

proving the overall performance around 2% on the
five datasets, by comparing ‘⊘CR’ and LESS4FD.

4.4 Further Analysis

We further study the impacts of different parameter
settings and training cost of our news representa-
tion learning method. We use LESS4FD* unless
specified.
Scales of Feature Propagation. The scales of fea-
ture propagation determine the local and global
semantics to be explored. Both scales can be ad-
justed upon two parameters sl and sg, as presented
in Sec. 3.4. We vary their values and depict their
influence in Figs. 7 and 11. It is evident that the
model performs best when sl is around 5 denoting
that the local semantics within 5-hops is optimal,
while a larger sg always leads to better performance
since more global information is involved.
Impact of λce. This hyperparameter balances the
weights of training loss on labeled and unlabeled
news. A higher value of λce makes the model em-
phasize more on labeled data. To assess its impact,
we adjust λce between 0.1 and 0.9 and depict the
results in Fig. 6(a). We see that increasing λce

is beneficial to the detection performance, partic-
ularly when it remains below 0.4. Beyond this
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point, marginal fluctuations in performance emerge
across datasets and the optimal range for λce con-
sistently lies between 0.4 and 0.6.
Impact of λg. λg is to regularize the training signal
from the exploration of global semantics. As illus-
trated in Fig. 6(b), we find that our model maintains
almost steady performance despite variations in the
weights of global semantics.
Impact of Potential Data Contamination. At the
time of this study, all datasets had already been
published before the LLMs’ training date and they
might have been involved in tuning the textual
tokens in LLMs. However, for our task of fake
news detection, we clarify that such potential data
contamination merely impacts our research find-
ings because: 1) The LLMs we use, specifically
GPT-3.5 and Llama2, are primarily trained for text-
generation rather than fake news detection; 2) In
our preliminary experiments, as reported in Fig. 2
and Table 8, the news embeddings derived from
these LLMs proved to be ineffective for fake news
detection; and 3) Through our extensive ablation
study, we demonstrate that our performance gains
stem from the novel model design of exploring
high-level semantics as well as the local and global
information, which is typically ignored in the tok-
enized training text of LLMs.

To validate this claim, we further compare the
performance of our method with that of the best
baseline method, HeteroSGT, by incorporating en-
tities, topics, and news embeddings derived from
GPT-3.5 into both models. As both our method
and HeteroSGT utilize the same sets of entities,
topics, news, and embeddings, this setup allows
for a fair comparison of the model designs for fake
news detection. According to the results presented
in Table 9, our design consistently demonstrates
superior detection performance.
Computational Costs. In addition to the detec-
tion performance improvement, we also evaluate
LESS4FD’s efficiency, showcasing reduced time
per training epoch with moderate GPU memory
usage, as detailed in Table 6.

5 Conclusion

In this paper, we propose LESS4FD to take ad-
vantage of LLMs for enhancing semantics mining
for fake news detection. We first employ LLMs
as the enhancers to extract news, entities, topics,
and their corresponding features using a set of po-
tent prompts. By modeling the extracted data as a

Method MM COVID MC Fake

Time (s/epoch) Mem (MB) Time (s/epoch) Mem (MB)

TextCNN 0.115 649.413 1.951 816.292
TextGCN 0.066 538.879 0.343 1354.532
HAN 9.976 1908.109 43.643 2528.107
BERT 0.110 958.879 0.803 3040.097
SentenceBERT 0.131 962.392 2.102 2626.038
HGNNR4FD 1.078 988.765 2.956 2098.223
HeteroSGT 0.238 547.826 0.980 2302.512

LESS4FD* 0.056 740.312 0.068 2043.563
LESS4FD⋄ 0.067 878.235 0.082 2371.381

Table 6: Running time & GPU memory cost.

heterogeneous graph, we then propose an effective
feature propagation algorithm to encode both the
local and global semantics into news embeddings
to enrich the training of the detector. Through ex-
tensive experiments on five widely-used datasets,
our method demonstrates better performance than
seven baseline methods while the efficacy of key
ingredients is further validated in the case studies.

Limitations. In this work, we only adopt the two
most popular LLMs as enhancers to explore the
news semantics. Extending our method to tuning
LLMs, particularly for fake news detection is an
important direction for future efforts.

Ethical issues. The datasets utilized in our re-
search for detecting fake news are widely accessed
and publicly available for academic research. Our
proposed method exclusively relies on the textual
content of news articles from these datasets as in-
put, without requiring any additional user-specific
information (e.g., personal identifiers) or user so-
cial information (e.g., retweet/comment behavior).
We employed publicly accessible APIs provided
by OpenAI and Meta to obtain embeddings. Our
prompts, which are made publicly available, are
used exclusively for extracting entities and topics
from LLMs. Therefore, our method ensures mini-
mal risk of privacy infringement.

Applications. Detecting fake news is critical
due to its significant implications for society, poli-
tics, and individual decision-making. Our proposed
model demonstrates efficacy in distinguishing au-
thentic and false content, which could contribute to
mitigate the spread of false information and public
distrust.
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A Experimental Details

A.1 Datasets

The statistical details of the five datasets are sum-
marized in Table 7.

Dataset #Fake #Real #Total #Entities

MM COVID 1,290 869 2,159 3,353
ReCOVery 578 1,254 1,832 13,703
MC Fake 2,591 12,435 15,026 150,435
LIAR 1,595 1,346 2,941 4,066
PAN2020 238 243 481 9,740

Table 7: Statistics of datasets.

A.2 Preliminary Experiment Results

Our preliminary experiment results with Llama2,
ChatGPT, BERT and HeteroSGT on ReCOVery
and MC Fake datasets were summarized in Table 8.

A.3 Baselines

For a fair evaluation of the overall detection per-
formance and considering the availability of addi-
tional sources, we compared LESS4FD with seven
representative baseline algorithms including:
textCNN (Kim, 2014) is designed to capture local-
ized patterns and features within input texts. It uti-
lizes Convolutional Neural Network layers (CNNs)
to small windows of words in the text to extract
patterns and features for news classification.
textGCN (Yao et al., 2019) represents input texts
as nodes in a graph, employing graph convolutional
operations on both the textual content of each doc-
ument and the graph structure. This process aims
to learn effective representations for fake news de-
tection.
HAN (Yang et al., 2016), or Hierarchical Attention
Network, employs attention mechanisms to repre-
sent intricate relationships at both word-sentence
and sentence-article levels, enhancing its ability
to capture hierarchical features for improved fake
news detection performance.
BERT (Kenton and Toutanova, 2019) is a promi-
nent transformer-based language model. In our
experimentation, we utilize the embedded represen-
tation of the [CLS] token from BERT for the task
of fake news classification.
SentenceBERT (Reimers and Gurevych, 2019)
is an extension of BERT that is specifically de-
signed for sentence embeddings. It uses siamese
and triplet network structures during training to
generate semantically meaningful sentence embed-
dings

HGNNR4FD (Xie et al., 2023) models news ar-
ticles in a heterogeneous graph and incorporates
external entity knowledge from Knowledge Graphs
to enhance the learning of news representations for
fake news detection.
HeteroSGT (Zhang et al., 2024) proposes a hetero-
geneous subgraph transformer to exploit subgraphs
in the news heterogeneous graph that contains rela-
tions between news articles, topics, and entities.

A.4 Hyperparameter and Computational
Settings

Hyperparameters. For constructing HG, we
choose the optimal number of topics |T| for each
dataset through the comprehensive topic model
evaluation detailed in Sec. 4.2. For a fair com-
parison between LESS4FD* and LESS4FD⋄, we
use the same set of entities, topics, and their embed-
dings from GPT-3.5, while the news embeddings
are derived from GPT-3.5 and Llama2, respectively.
We perform a grid search to determine the remain-
ing hyperparameters, with the search space defined
as follows:

Feature propagation scale sl: [2, 12]
Feature propagation scale sg: [15, 25]
Trade-off parameter λg: [0.1, 0.9]
Cross-entropy loss weight λce: [0.1, 0.9]

Computational Environment. All the exper-
iments are conducted on a Rocky Linux 8.6
(Green Obsidian) server with a 12-core CPU and 1
NVIDIA Volta GPU (with 30G RAM).

A.5 Addition Experimental Results

Optimal Topic Number. We depict the Coher-
ence, Diversity, and Silhouette Score with different
numbers of topics on ReCOVery and MC Fake in
Fig. 10 and similar to that on MM COVID, LIAR,
and PAN2020, no point meets the criterion where
all three metrics reach their peak values.
Fake News Detection Performance. From Ta-
bles 4 and 3, we see that our proposed method
LESS4FD performs better than all baseline meth-
ods. To demonstrate the statistical significance of
performance improvement, we conduct further pair-
wise t-test at a 95% confidence level (a = 0.05).
The results in Tables 11, 12, 13, and 14 show that
the performance improvement is significant.
Ablation Study. In addition to the ablation study
on LESS4FD∗, we report the results on LESS4FD⋄

in Table 10. Similar to that in Table 5, we can see
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Method ReCOVery MC Fake

Acc Pre Rre F1 Acc Pre Rec F1

Llama2 0.678± 0.067 0.520± 0.061 0.322± 0.063 0.398± 0.063 0.741± 0.010 0.377± 0.011 0.486± 0.012 0.410± 0.011
GPT-3.5 0.685± 0.052 0.526± 0.051 0.504± 0.053 0.418± 0.053 0.818± 0.007 0.414± 0.009 0.501± 0.004 0.453± 0.006
BERT 0.697± 0.003 0.430± 0.214 0.511± 0.004 0.426± 0.007 0.799± 0.005 0.732± 0.003 0.487± 0.001 0.474± 0.005
HeteroSGT 0.912± 0.018 0.892± 0.020 0.878± 0.018 0.888± 0.018 0.878± 0.013 0.808± 0.016 0.762± 0.013 0.778± 0.014

Table 8: Preliminary experiment results.
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Figure 8: Performance of LESS4FD* on datasets with different numbers of topics.
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Figure 9: Performance of LESS4FD⋄ on datasets with different numbers of topics.
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Figure 10: Coherence, Diversity and Sil Score with
different numbers of topics on ReCOVery and MC Fake.

Datasets Methods Acc Pre Rec F1

MM COVID
HeterSGT(GPT-3.5) 0.949±0.011 0.939±0.012 0.955±0.010 0.946±0.013
LESS4FD* 0.974±0.010 0.975±0.010 0.973±0.009 0.973±0.010

LIAR
HeterSGT(GPT-3.5) 0.644±0.013 0.640±0.015 0.638±0.015 0.638±0.016
LESS4FD* 0.678±0.021 0.765±0.019 0.675±0.020 0.672±0.019

PAN2020
HeterSGT(GPT-3.5) 0734±0.020 0.735±0.021 0.726±0.019 0.727±0.020
LESS4FD* 0.771±0.017 0.798±0.019 0.774±0.014 0.769±0.017

Table 9: Comparison with HeteroSGT’s performance
using LLM-derived entities, topics, and embeddings.

that the key ingredients consistently yield better
detection performance using Llama2 and GPT-3.5.

A.6 Sensitivity to sl and sg

In addition to Fig. 7 in Sec. 4.2, we can see that our
model performs best with sl = 5 and sg = 25 w.r.t.
precision and recall on MM COVID.
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Figure 11: Sensitivity to sl and sg on MM COVID w.r.t.
precision and recall.

Datasets Methods Acc Pre Rec F1

MM COVID

LESS4FD⋄ ⊘HG 0.612±0.018 0.592±0.020 0.578±0.018 0.518±0.018
LESS4FD⋄ ⊘ E 0.923±0.019 0.921±0.020 0.922±0.019 0.921±0.020
LESS4FD⋄ ⊘ T 0.941±0.019 0.938±0.022 0.941±0.022 0.937±0.021
LESS4FD⋄ ⊘ CL 0.943±0.018 0.944±0.019 0.942±0.018 0.941±0.019
LESS4FD⋄ 0.973±0.011 0.972±0.011 0.972±0.010 0.972±0.011

ReCOVery

LESS4FD⋄ ⊘HG 0.678±0.067 0.520±0.061 0.322±0.063 0.398±0.063
LESS4FD⋄ ⊘ E 0.814±0.020 0.793±0.026 0.7705±0.019 0.779±0.022
LESS4FD⋄ ⊘ T 0.852±0.021 0.876±0.025 0.824±0.021 0.822±0.023
LESS4FD⋄ ⊘ CL 0.887±0.020 0.890±0.025 0.841±0.021 0.839±0.023
LESS4FD⋄ 0.917±0.017 0.905±0.017 0.894±0.022 0.897±0.020

MC Fake

LESS4FD⋄ ⊘HG 0.741±0.010 0.377±0.011 0.486±0.012 0.410±0.011
LESS4FD⋄ ⊘ E 0.794±0.011 0.706±0.012 0.776±0.013 0.743±0.010
LESS4FD⋄ ⊘ T 0.820±0.011 0.713±0.058 0.796±0.012 0.760±0.014
LESS4FD⋄ ⊘ CL 0.834±0.008 0.745±0.057 0.798±0.009 0.767±0.011
LESS4FD⋄ 0.883±0.006 0.811±0.014 0.806±0.014 0.787±0.008

LIAR

LESS4FD⋄ ⊘HG 0.521±0.023 0.563±0.062 0.478±0.022 0.393±0.023
LESS4FD⋄ ⊘ E 0.613±0.021 0.671±0.056 0.604±0.027 0.609±0.029
LESS4FD⋄ ⊘ T 0.629±0.024 0.692±0.032 0.624±0.032 0.619±0.032
LESS4FD⋄ ⊘ CL 0.658±0.021 0.656±0.044 0.654±0.025 0.647±0.025
LESS4FD⋄ 0.689±0.034 0.728±0.046 0.712±0.034 0.658±0.035

PAN2020

LESS4FD⋄ ⊘HG 0.528±0.062 0.511±0.088 0.573±0.065 0.447±0.095
LESS4FD⋄ ⊘ E 0.694±0.055 0.684±0.051 0.622±0.047 0.683±0.055
LESS4FD⋄ ⊘ T 0.706±0.053 0.703±0.040 0.700±0.047 0.698±0.054
LESS4FD⋄ ⊘ CL 0.729±0.050 0.740±0.044 0.729±0.051 0.721±0.053
LESS4FD⋄ 0.731±0.037 0.777±0.030 0.749±0.037 0.727±0.037

Table 10: Ablation results of LESS4FD⋄ on five
datasets.
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Dataset A-TextCNN A-TextGCN A-HAN A-BERT A-SentenceBert A-HGNNR4FD A-HeteroSGT

MM COVID 1.4E-17 8.0E-07 1.1E-17 2.0E-04 3.5E-11 3.8E-09 4.8E-10
ReCOVery 6.3E-10 9.6E-17 1.4E-08 3.1E-08 4.8E-08 2.7E-14 4.0E-05
MC Fake 2.2E-16 8.2E-05 1.2E-12 3.4E-17 5.1E-16 9.8E-14 7.2E-05
LIAR 5.0E-12 1.6E-10 7.1E-12 1.1E-13 1.8E-11 1.5E-12 4.1E-09
PAN2020 5.8E-13 1.3E-11 4.0E-14 2.6E-13 3.9E-13 4.4E-05 9.7E-04

Dataset B-TextCNN B-TextGCN B-HAN B-BERT B-SentenceBert B-HGNNR4FD B-HeteroSGT

MM COVID 1.1E-17 1.0E-06 3.2E-09 2.6E-04 2.9E-13 8.8E-10 7.1E-11
ReCOVery 2.7E-17 1.3E-14 4.5E-16 7.9E-16 6.7E-16 1.3E-12 8.1E-05
MC Fake 2.1E-16 3.6E-05 1.5E-13 3.4E-17 6.5E-16 2.0E-14 1.1E-06
LIAR 1.4E-15 4.5E-11 2.1E-15 2.6E-17 5.1E-15 2.4E-15 1.4E-10
PAN2020 4.8E-14 1.6E-15 6.5E-14 3.1E-16 3.9E-17 1.1E-08 4.6E-04

Table 11: Pairwise t-test on Accuracy. A-TextCNN denotes the t-test results between LESS4FD⋄ and baseline
methods, while B-TextCNN denotes the t-test results between LESS4FD∗ and baselines.

Dataset A-TextCNN A-TextGCN A-HAN A-BERT A-SentenceBert A-HGNNR4FD A-HeteroSGT

MM COVID 1.9E-10 3.0E-04 3.9E-10 6.5E-14 7.0E-15 4.3E-13 7.5E-11
ReCOVery 1.1E-10 4.1E-07 1.6E-09 2.1E-06 1.5E-11 1.3E-18 2.4E-03
MC Fake 1.1E-04 2.9E-09 2.4E-11 1.4E-16 2.0E-12 1.8E-11 1.1E-04
LIAR 3.4E-04 3.7E-09 3.4E-10 2.8E-08 4.1E-07 1.2E-05 1.9E-04
PAN2020 3.1E-13 4.0E-11 1.1E-07 8.7E-14 4.2E-08 1.0E-03 1.4E-04

Dataset B-TextCNN B-TextGCN B-HAN B-BERT B-SentenceBert B-HGNNR4FD B-HeteroSGT

MM COVID 1.8E-10 2.8E-04 2.9E-15 2.1E-15 3.1E-16 2.1E-10 3.2E-08
ReCOVery 4.8E-11 1.4E-07 7.4E-10 1.0E-06 5.4E-12 1.0E-17 1.3E-04
MC Fake 4.5E-05 1.1E-09 7.9E-12 2.3E-19 1.5E-14 3.1E-13 3.9E-05
LIAR 2.5E-05 1.3E-13 1.9E-12 3.4E-11 4.1E-10 3.9E-18 5.2E-13
PAN2020 1.4E-14 2.1E-12 7.9E-09 1.4E-12 8.1E-13 5.6E-12 1.8E-07

Table 12: Pairwise t-test on Precision. A-TextCNN denotes the t-test results between LESS4FD⋄ and baseline
methods, while B-TextCNN denotes the t-test results between LESS4FD∗ and baselines.

Dataset A-TextCNN A-TextGCN A-HAN A-BERT A-SentenceBert A-HGNNR4FD A-HeteroSGT

MM COVID 4.4E-13 4.3E-04 6.2E-10 1.0E-04 3.3E-14 1.2E-10 8.3E-10
ReCOVery 8.9E-11 1.8E-09 2.1E-13 2.3E-14 1.3E-15 8.6E-17 1.8E-05
MC Fake 2.6E-15 2.6E-14 1.2E-15 1.9E-17 2.7E-15 1.6E-08 8.6E-06
LIAR 8.3E-09 8.2E-09 2.3E-12 5.8E-13 1.0E-08 4.9E-18 3.6E-10
PAN2020 3.9E-10 2.7E-15 2.3E-16 5.4E-18 6.1E-08 6.1E-05 1.5E-04

Dataset B-TextCNN B-TextGCN B-HAN B-BERT B-SentenceBert B-HGNNR4FD B-HeteroSGT

MM COVID 8.3E-16 4.7E-04 3.6E-17 1.2E-04 6.8E-12 8.2E-10 1.4E-08
ReCOVery 8.7E-13 4.8E-10 2.0E-11 2.3E-12 1.9E-13 7.8E-16 7.4E-05
MC Fake 7.2E-15 5.3E-14 4.1E-15 1.4E-16 8.1E-15 6.2E-10 2.7E-12
LIAR 4.8E-11 3.7E-11 5.1E-08 2.6E-13 5.0E-10 1.5E-15 2.7E-07
PAN2020 1.8E-10 4.3E-16 3.0E-17 1.3E-18 1.4E-12 7.3E-09 4.0E-04

Table 13: Pairwise t-test on Recall. A-TextCNN denotes the t-test results between LESS4FD⋄ and baseline methods,
while B-TextCNN denotes the t-test results between LESS4FD∗ and baselines.

Dataset A-TextCNN A-TextGCN A-HAN A-BERT A-SentenceBert A-HGNNR4FD A-HeteroSGT

MM COVID 2.1E-12 1.5E-05 1.7E-13 1.6E-09 4.6E-09 3.3E-12 2.1E-12
ReCOVery 5.1E-15 5.6E-10 1.4E-11 4.6E-12 5.1E-11 2.2E-13 9.6E-05
MC Fake 8.8E-10 1.2E-11 3.3E-16 1.2E-13 7.0E-17 3.1E-15 1.4E-04
LIAR 3.2E-08 1.4E-13 1.4E-16 7.3E-14 4.5E-13 4.5E-13 2.1E-08
PAN2020 1.8E-14 8.3E-13 1.3E-08 2.2E-11 5.6E-18 6.8E-05 5.9E-05

Dataset B-TextCNN B-TextGCN B-HAN B-BERT B-SentenceBert B-HGNNR4FD B-HeteroSGT

MM COVID 2.3E-12 1.5E-05 9.2E-18 1.7E-09 2.5E-12 1.2E-17 7.2E-10
ReCOVery 2.6E-15 1.7E-10 5.3E-12 1.9E-12 1.4E-10 1.9E-11 1.4E-05
MC Fake 9.9E-11 1.4E-12 3.9E-17 1.2E-17 8.0E-14 3.2E-16 9.0E-12
LIAR 9.3E-09 1.3E-15 5.5E-13 1.6E-10 8.3E-11 1.2E-14 2.8E-13
PAN2020 1.2E-15 5.2E-14 9.1E-10 1.9E-13 2.0E-13 7.2E-09 1.0E-08

Table 14: Pairwise t-test on F1 score. A-TextCNN denotes the t-test results between LESS4FD⋄ and baseline
methods, while B-TextCNN denotes the t-test results between LESS4FD∗ and baselines.
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