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Abstract

Document-level relation extraction (DocRE)
aims to identify relationships between entities
within a document. Due to the vast number
of entity pairs, fully annotating all fact triplets
is challenging, resulting in datasets with nu-
merous false negative samples. Recently, self-
training-based methods have been introduced
to address this issue. However, these meth-
ods are purely black-box and sub-symbolic,
making them difficult to interpret and prone
to overlooking symbolic interdependencies be-
tween relations. To remedy this deficiency, our
insight is that symbolic knowledge, such as
logical rules, can be used as diagnostic tools
to identify conflicts between pseudo-labels.
By resolving these conflicts through logical
diagnoses, we can correct erroneous pseudo-
labels, thus enhancing the training of neural
models. To achieve this, we propose Log-
icST, a neural-logic self-training framework
that iteratively resolves conflicts and constructs
the minimal diagnostic set for updating mod-
els. Extensive experiments demonstrate that
LogicST significantly improves performance
and outperforms previous state-of-the-art meth-
ods. For instance, LogicST achieves an in-
crease of 7.94% in F1 score compared to CAST
(Tan et al., 2023a) on the DocRED benchmark
(Yao et al., 2019). Additionally, LogicST is
more time-efficient than its self-training coun-
terparts, requiring only 10% of the training
time of CAST. Code is available at https:
//github.com/XingYing-stack/LogicST.

1 Introduction

Document-level relation extraction (DocRE) aims
to extract relational facts between entities within
a document, playing a critical role in knowledge
graph construction (Trisedya et al., 2019) and ques-
tion answering (Yih et al., 2015).

* The first three authors contributed equally.
† Corresponding author.

Unlike sentence-level relation extraction, which
focuses on individual entity pairs (Stoica et al.,
2021), DocRE is challenged by the vast number
of potential entity pairs. This number increases
quadratically with the number of entities, making
it nearly impossible for annotators to meticulously
verify the validity of each triplet. Although semi-
automatic strategies, such as the recommend-revise
annotation method (Yao et al., 2019), can alleviate
annotators’ workload, they still fail to provide gold-
quality datasets. Consequently, these datasets are
prone to contain numerous false negative samples.
For example, over 60% triplets are not annotated in
DocRED (Huang et al., 2022). Therefore, training
models from incompletely annotated datasets is
crucial and practical for DocRE.

There has been extensive research aimed at al-
leviating the impact of false negative samples (Li
et al., 2021; Wang et al., 2022a, 2024). One of
the most advanced strategies is self-training (Lee
et al., 2013), wherein the model reassigns labels to
annotated negative triplets based on its predictions.
These adjusted labels are then used iteratively to
refine the model’s training process. However, self-
training is highly vulnerable to confirmation bias
(Arazo et al., 2020). Specifically, inaccurately pre-
dicted pseudo-labels may impair the model’s sub-
sequent training. Previous works have attempted to
mitigate this issue by sampling the pseudo-labels
based on class frequencies (Wei et al., 2021) or
scores calculated on the development set (Tan et al.,
2023a). However, these pseudo-labeling methods
are still far from satisfactory. First, they are purely
sub-symbolic approaches. They benefit from the
powerful representations provided by language
models (Devlin et al., 2019), but struggle with sym-
bolic reasoning among entity pairs. Therefore, they
are prone to making mistakes when logical rea-
soning is required, leading to conflicts with the
inherent interdependencies among relations. Sec-
ond, the purely data-driven nature of these pseudo-
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[1] "Have You Ever Been in Love" is a song recorded by

Canadian recording artist Celine Dion, included first on her

seventh English studio album "A New Day Has Come" (2002)

and later, on her eighth English studio album "One Heart"

(2003). [2] The song is a power ballad, written by Anders Bagg,

and Laila Bagge, while production was handled by Bagge. [3]...

Pseudo-Label & Conflicts:

(Have You Ever Been in Love, part of , One Heart): True

(One Heart, has part, Have You Ever Been in Love): False

Logical Rule:

(ℎ, part of, 𝑡) ⟺ (𝑡, has part, ℎ)

Minimal Diagnosis:𝜔1: Flip (Have You Ever Been in Love, part of , One Heart)  to False𝜔2: Flip (One Heart, has part, Have You Ever Been in Love )  to True

Figure 1: An illustration of conflicts between pseudo-
labels and logical rules. To revolve this conflict, two
potential minimal diagnostic solutions are proposed,
each involving the flip of a binary pseudo-label.

labeling methods makes them hard to interpret.
Third, to achieve optimal performance, they re-
quire multiple rounds of training across various
folds, significantly increasing the time consump-
tion and limiting their practical application. Tran-
scending these limitations calls for a fundamental
paradigm shift: i) moving away from independent
classification of each triplet to structured predic-
tion; and ii) moving away from pure representation
learning towards neural-symbolic computing.

Our key insight is that symbolic knowledge, such
as logical rules, can be utilized as diagnostic tools
to identify conflicts between pseudo-labels. For ex-
ample, in Figure 1, we can identify conflicts such
as asserting that Have You Ever Been in Love is
part of One Heart while simultaneously claiming
that One Heart does not have Have You Ever Been
in Love as a part, which conflicts with the logical
rule (h, part of, t) ⇔ (t, has part, h). By
correctly flipping certain pseudo-labels to resolve
this conflict, we can enhance the quality of pseudo-
labels and mitigate the pervasive issue of confirma-
tion bias. Building upon this insight, we propose
LogicST, a novel self-training framework that uses
logical rules to diagnose pseudo-labels. LogicST is
implemented within a teacher-student framework
(Tarvainen and Valpola, 2017), where the teacher
model is first pre-trained to establish a robust ini-
tial state. Then, the diagnosed pseudo-labels from
the teacher iteratively update the student, whose
parameters are in turn used to gradually update the
teacher. Given the multitude of potential candi-
dates and the high time complexity of computing
diagnoses, LogicST employs a sequential diagnosis
approach. Specifically, LogicST defines a scoring

function that dynamically evaluates the probabil-
ities and rewards of each diagnosis. It eliminates
those with lower scores at each updating step and
ultimately uses the highest-scoring diagnosis to up-
date the student model. By doing so, our LogicST
framework i) introduces symbolic reasoning into
representation learning, ii) achieves better perfor-
mance and interpretability, and iii) reduces the need
for multiple rounds of training and pseudo-labeling,
thus significantly improving time efficiency. Our
main contributions are listed as follows:

• We propose to use logical rules as diagnos-
tic tools to identify and correct potential errors in
pseudo-labels.

• We introduce a sequential diagnosis approach
that accelerates the training process while address-
ing the issues of imbalance and incompleteness in
the weakly-supervised training corpus.

• Extensive experiments demonstrate that Log-
icST significantly improves performance and sur-
passes previous state-of-the-art methods by a large
margin. Additionally, LogicST requires only 10%
of the training time of CAST (Tan et al., 2023a).

2 Related Work

Document-Level Relation Extraction. Since the
advent of pre-trained language models (Devlin
et al., 2019; Liu et al., 2019), research in DocRE
has experienced significant growth. Substantial
progress has been made through the development
of complex neural networks (Zhou et al., 2021;
Jiang et al., 2022; Tan et al., 2022a), the integra-
tion of evidence sentences (Huang et al., 2021;
Xie et al., 2022), and the exploration of loss func-
tions (Zhou and Lee, 2022). More recently, the use
of large language models (LLMs) (Brown et al.,
2020), has emerged as a promising direction for
further advancements (Li et al., 2023a; Gao et al.,
2023). Despite these advancements, most existing
methods fail to account for the rich logical struc-
tures among relations and lack an explicit mech-
anism for symbolic reasoning. While some ap-
proaches attempt to incorporate logical rules, they
are typically designed for fully supervised settings
and perform poorly in the presence of numerous
false negative samples (Fan et al., 2022). To the
best of our knowledge, the LogicST framework
is the first to integrate symbolic knowledge into
DocRE with incomplete annotations.
Document-Level Relation Extraction with In-
complete Annotations. Existing efforts to ad-
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dress incomplete labeling problems in DocRE can
be categorized into: negative sampling (Li et al.,
2021), positive-unlabeled (PU) learning (Wang
et al., 2022a, 2024), and sub-symbolic self-training
(Tan et al., 2023a). Negative sampling avoids over-
fitting to false negatives but fails to effectively uti-
lize the semantic information of unsampled sam-
ples. PU learning adjusts the loss weights assigned
to relational classes but overlooks the intra-class
variability among distinct samples. Sub-symbolic
self-training, representing the current state-of-the-
art, iteratively re-annotates negative samples, fully
utilizing all sample information and accounting for
within-class differences. However, it neglects the
informative structures between entity pairs, lead-
ing to sub-optimal extraction performance and ex-
tended training times. To address above three limi-
tations, this work integrates symbolic knowledge
into the self-training framework, providing a novel
perspective on DocRE with incomplete annota-
tions.

3 Methodology

Given the training set DTrain = {di}|DTrain|
i=1 ,

where each document contains n named entities
{ei}ni=1, the objective of DocRE with incomplete
annotations is to train a model that fully utilizes
both the annotated positive triplets GP and the an-
notated negative triplets GN . Note that GP only
contains true positives, while GN contains both
true negatives and numerous false positives. The
size of GP is usually small, resulting in an insuf-
ficient learning signal. To address this challenge,
self-training is proposed to assign pseudo-labels to
GN based on model predictions.

This paper introduces the LogicST framework,
which integrates symbolic knowledge into the self-
training process and constructs minimal diagnostic
sets to refine pseudo-labels. The overall architec-
ture is described in Section 3.1. The method for
developing minimal diagnostic sets is detailed in
Section 3.2. To streamline the diagnostic proce-
dure and identify the optimal diagnosis, the sequen-
tial diagnosis approach and the scoring function
employed are elaborated in Section 3.3. Figure 2
visually outlines the workflow of LogicST.

3.1 Overview

Algorithm 1 details the implementation of LogicST,
which includes a teacher model for pseudo-labeling
and a student model for online learning. Inspired by
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Figure 2: The workflow of the LogicST framework in-
volves three main steps. First, the teacher model pseudo-
labels triplets using confidence thresholding. Next, se-
quential diagnosis refines these labels. Finally, the re-
fined labels are used to update the models.

semantic segmentation studies (Wang et al., 2022b),
both models share the same architecture but have
different parameters. LogicST is compatible with
any DocRE backbone network. Following prior
work (Tan et al., 2023a), we adopt ATLOP (Zhou
et al., 2021) as the backbone and NCRL (Zhou and
Lee, 2022) as the loss function.

LogicST adopts a two-stage training paradigm.
First, the teacher model is pre-trained on DTrain to
establish a robust initial state. In the training stage,
the teacher model pseudo-labels each triplet in GN

using the method ψ(·). Typically, existing self-
training methods (Tan et al., 2023a) label triplets
as true if their logits exceed a threshold f0, i.e.,
ψ(X) = I(fθt(X) > f0). However, this approach
treats triplets independently, ignoring their logical
interdependency, which may lead to conflicts.

To address this limitation, LogicST employs
a conflict resolution strategy to correct errors in
pseudo-labels produced by confidence threshold-
ing, thereby improving the training of neural back-
bones. Specifically, the student model updates
its parameters using the corrected pseudo-labels,
while the teacher model’s weights are updated via
an exponential moving average (EMA) of the stu-
dent model’s weights, ensuring a dynamic yet sta-
ble learning.
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Algorithm 1: LogicST Framework
Input: Incompletely labeled training set DTrain,

development set DDev, DocRE backbone model f ,
pseudo-labeling method ψ, maximum training steps
MaxStep, coefficient for updating the teacher λ1 ;

Parameters: Teacher model parameters θt, student
model parameters θs ;

Output: Optimal model parameters θbest ;
Initialize parameters θpre ▷Pre-training stage
while F1 score of fθpre can be improved do

Fetch a batch of positive triplets GP and negative
triplets GN from DTrain ;

Update θpre using GP and GN ;
end
θt ← θpre, θs ← θpre ▷Training stage
for step = 1 to MaxStep do

Fetch a batch of positive triplets GP and negative
triplets GN from DTrain ;

for X := (h, r, t) in GN do
if fθt(X) == True then

GP∪ = {X}, GN\ = {X};
end

end
Update θpre using GP and GN ;
θt = (1− λ1) · θt + λ1 · θs

end
Evaluate θt, θs on the DDev dataset;
return the better model between θt and θs;

3.2 Logical Correction of Pseudo-Labels
LogicST integrates symbolic knowledge into its
pseudo-labeling method ψ(·), which uses logical
rules to identify conflicts between pseudo-labels,
and generate diagnostic sets to resolve conflicts
(Reiter, 1987). LogicST considers S =< GP ∪
GN , fθt ,K > as the input for resolving conflicts:

• GP ∪GN includes all possible relational triplets.

• fθt is the teacher model that computes logits and
binary pseudo-labels O = {otri}tri∈GP∪GN for
all triplets, where otri is defined as a key-value
pair in the form triplet: boolean value.

• K is a finite set of first-order logical rules that
symbolically capture the logical dependencies
between relations. To ensure the quality of the
logical rules, we use a frequency-based approach
(Fan et al., 2022) to construct K from the devel-
opment set, including implication, composition,
and negation rules. Definitions and examples of
used rules are provided in Appendix A.

Conflicts arise when the pseudo-labels O pro-
duced by the teacher model are not compatible
with the logical rules K:

K ∧ O ∧
∧

o∈O
keep(o) ⊢ ⊥, (1)

where ⊢ denotes logical entailment and ⊥ signi-
fies a logical contradiction. The unary predicates
keep(·) and flip(·) indicate whether to keep or flip
the boolean value of o, respectively. Furthermore,
LogicST endeavors to identify and flip a subset ω
of O to resolve conflicts, a process termed as a
diagnosis (de Kleer and Williams, 1987):

K ∧ O ∧
∧

o∈O\ω
keep(o) ∧

∧

o∈ω
flip(o) ⊢ ⊤, (2)

where ⊤ signifies that the resulting condition is
logically consistent. As shown in Figure 1, for a
logical conflict involving predicates o1, o2, . . . , oℓ,
the conflict can be resolved by flipping any indi-
vidual predicate oi ∈ {o1, . . . , oℓ}. Specifically,
flipping a predicate in the antecedent will make the
rule no longer applicable, whereas flipping the con-
sequent predicate will make the rule logically con-
sistent. Based on Occam’s razor (Domingos, 1999),
we only consider the minimal diagnosis, where no
subset of the minimal diagnostic set can resolve
the conflict. Inspired by circuit diagnosis theory
(Reiter, 1987), we calculate minimal diagnoses by
identifying conflicts. As illustrated in Algorithm 2
and Figure 1, LogicST employs an iterative process
to identify and resolve logical conflicts between the
pseudo-labels O and the rules K.

During each iteration, the algorithm checks
whether the current minimal candidate set ω can
resolve the conflict between the pseudo-labels O
and the logical rules K. This process involves eval-
uating whether the intersection ω ∩ {o1, . . . , oℓ} is
an empty set, where {o1, . . . , oℓ} represents the set
of conflicting pseudo-labels in this iteration:

1. Case 1: Conflict Already Resolved
If the intersection ω∩{o1, . . . , oℓ} ≠ ∅, this means
that ω already contains at least one new conflicting
pseudo-label to be flipped. In this case, the minimal
candidate set ω can resolve the conflict without
further modification, and no changes are needed.
This situation is marked by the ✓ in Figure 1.

2. Case 2: Conflict Not Resolved
If the intersection ω ∩ {o1, . . . , oℓ} = ∅, it indi-
cates that none of the conflicting pseudo-labels are
present in the current set ω. Therefore, ω cannot
resolve the conflict, and the algorithm replaces ω
with its supersets. Each superset contains one new
conflicting pseudo-label oi from {o1, . . . , oℓ}. This
situation is indicated by the ✗ in Figure 1.

Once the minimal candidate sets are expanded
and evaluated, LogicST proceeds to remove any
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Algorithm 2: Resolution of Logical Con-
flicts via Minimal Diagnosis

Input: Logical rules K, pseudo-labels O ;
Output: The complete set of minimal diagnostic sets
Ω = {ωj}|Ω|

j=1 ;
Initialize the set of diagnostic sets Ω = {∅};
for k in K where k involves ℓ triplets do

foreach (o1, o2, · · · , oℓ) in O do
if ¬Check(o1, o2, · · · , oℓ|k) then

Ω← {ω ∪ {oi} : ∀oi, ω ∈
Ω, ω ∩ {o1, . . . , oℓ} = ∅} ∪ {ω :
ω ∈ Ω, ω ∩ {o1, . . . , oℓ} ̸= ∅} ;

end
for ω in Ω do

if ∃ω′ ∈ Ω, s.t. ω′ ⊂ ω then
Ω← Ω \ {ω} ;

end
end

end
end
return Ω ;

supersets that are redundant (as shown by the re-
moval of ω21 and other supersets in Figure 1).
This ensures that only the minimal diagnosis sets,
those that can resolve the conflict with the fewest
changes, remain. Each iteration of this process up-
dates the pseudo-labels accordingly, refining the
labels used for subsequent model updates.

3.3 Sequential Diagnosis

Although Algorithm 2 can compute all minimal
candidate sets, it incurs a time complexity of
O(|Ω|2) in each iteration to remove non-minimal
sets, which is impractical when dealing with nu-
merous conflicts. Moreover, as shown in Figure
1, there are usually multiple minimal candidate
sets that meet the definition, but only one specific
set will be used to flip the pseudo-labels during
training. To address these challenges, LogicST
introduces a scoring function F (ω|S) to evaluate
a diagnosis ω given the input S. After updating
the minimal diagnostic sets in each iteration, only
the TopK diagnoses with the highest scores are
retained, significantly reducing the time required.
Finally, the highest-scoring candidate set is used
to update the student model, a process termed best-
first sampling in model-based diagnosis (Rodler,
2022).

We design the scoring function considering the
following two properties:

Probabilities of Diagnoses. LogicST assumes
independent failure (de Kleer, 1991), using the mul-

tiplication rule to calculate probabilities:

P (ω|S) =
∏

o∈ω+

P (o|S)
∏

o∈ω−
P (¬o|S), (3)

where ω+ and ω− are sets of triplets to be flipped to
true and false, respectively. P (o|S) is the probabil-
ity of the corresponding triplet predicted to be true
given the input S, and P (¬o|S) = 1− P (o|S).

A naive method to compute this probability is
by applying the sigmoid function to the margin
between the classification logits and the threshold
logits:

P (o|S) = σ(fi − f0), (4)

where fi is the teacher model’s logit for the rela-
tion class i corresponding to o, and f0 is the clas-
sification threshold score for that triplet. However,
DocRE tasks often suffer from severe class imbal-
ance (Tan et al., 2022a), causing logits to be biased
towards popular classes (Menon et al., 2021) and in-
troducing confirmation bias (Cho and Roy, 2004).

To address this, LogicST adopts an adaptive post-
hoc logit adjustment to compensate for minority
classes. We maintain a margin bank to dynamically
record the training status of each class. At the step-
th training iteration, we first use the batch-wise
mean margin to evaluate the instant performance
of class i:

Margini
step =

1

|GP
i |+ |GN

i |
∑

GP
i ∪GN

i

(fi − f0), (5)

where GP
i and GN

i denote the triplets belonging
to class i in GP and GN , respectively. Then we
use the EMA of Marginistep to stably measure the
performance of each class:

Margini = (1− λ2) ·Margini + λ2 ·Margini
step, (6)

where λ2 ∈ [0, 1) is the momentum coefficient. We
use the difference between the sample-wise margin
fi−f0 and the class-wise margin Margini to more
fairly calculate the probability:

P (o|S) = σ(fi − f0 − τ ·Margini), (7)

where τ is a hyper-parameter controlling the inten-
sity of compensation.

Rewards of Diagnoses. In the early phase of
the training stage, the teacher models pre-trained
under numerous false-negative samples tend to gen-
erate high-precision but low-recall pseudo-labels
(Tan et al., 2022b). Thus, the reward of flipping
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pseudo-labels from false to true is greater. As train-
ing progresses and the teacher model is updated,
the importance of precision will gradually increase,
while the importance of recall will decrease. There-
fore, the reward of a diagnosis is defined as:

R(ω|S) = γ
|ω+|

1+epoch , (8)

where γ > 1 is a hyper-parameter that measures
the importance of the reward.

Combining the two properties above, the score
of a diagnostic set ω is defined as the product of its
probability and its reward:

F (ω|S) = P (ω|S) ·R(ω|S). (9)

4 Experiment

4.1 Experimental Setup

Datasets. The experiments are conducted on the
DocRED (Yao et al., 2019) and DWIE (Zhang et al.,
2022a) datasets. DocRED is a large-scale and
widely-used benchmark, but it is known to have
numerous missing annotations. We use the incom-
pletely labeled training set of DocRED and the
revised development and test sets of Re-DocRED
(Tan et al., 2022b) and DocGNRE (Li et al., 2023b)
to validate the models’ effectiveness. Addition-
ally, we experiment on the extremely incomplete
training set, DocRED_ext (Wang et al., 2022a),
where the number of labels for each relation type
in a document is limited to one. DWIE (Zaporo-
jets et al., 2021) is a human-annotated dataset. To
create incompletely annotated training sets, we uni-
formly sample 20%, 40%, 60%, and 80% of pos-
itive triplets to build labels. The original develop-
ment and test sets of DWIE are used for evaluation.
The dataset statistics are provided in Appendix B.
Evaluation Metrics. We utilize F1, Ign F1, preci-
sion, and recall as the primary metrics, where the
Ign F1 score excludes triplets shared between the
training and test sets to avoid data leakage. We also
compute F1 scores for frequent classes (the top 10
most common relation types) and long-tail classes
(all other relation types), denoted as Freq_F1 and
LT_F1, respectively. Additional implementation
details are provided in Appendix C.

4.2 Baselines

We compare LogicST to the following six types
of baselines: 1) vanilla baselines, including vari-
ous top-performing models under fully supervised

settings, such as GAIN (Zeng et al., 2020), AT-
LOP (Zhou et al., 2021), and KD-DocRE (Tan
et al., 2022a); 2) negative sampling methods (Li
et al., 2021); 3) PU learning-based methods, includ-
ing SSR-PU (Wang et al., 2022a) and P3M (Wang
et al., 2024); 4) sub-symbolic self-training methods,
such as VST (Jie et al., 2019), CREST (Wei et al.,
2021), and CAST (Tan et al., 2023b); 5) methods
based on large language models (LLMs), including
LLaMA2-7B (Touvron et al., 2023), GPT-3.5 (Ope-
nAI, 2022), and GPT-4o (OpenAI, 2024), as well
as techniques utilizing in-context learning (ICL)
1 for task-specific adaptation (Dong et al., 2022),
natural language inference (NLI) models for fuzzy
matching (Li et al., 2023a), and data programming
for label denoising (Gao et al., 2023); and 6) log-
ical frameworks designed for supervised DocRE,
including LogiRE (Ru et al., 2021), MILR (Fan
et al., 2022), and JMRL (Qi et al., 2024).

4.3 Main Results
Results on DocRED. Table 1 presents the quanti-
tative comparisons on Re-DocRED2, from which
we draw four observations: First, even with the in-
clusion of sophisticated adaptation techniques, all
LLMs still underperform compared to specialized
models. This may be due to LLMs’ difficulty in
handling complex reasoning, and domain-specific
nuances (Pang et al., 2023), as well as the lack
of task-specific tuning and sufficient labeled data
for relation extraction tasks (Zhang et al., 2023).
Furthermore, we observe that adding more noisy
in-context samples can mislead LLMs, degrading
their performance. Second, LogicST surpasses all
baselines by a large margin, achieving a 7.94%
absolute F1 improvement over CAST, establish-
ing new state-of-the-art results with 69.26% F1
using BERT-base and 73.29% F1 using RoBERTa-
large. This significantly narrows the gap with fully
supervised ATLOP-BERT’s 74.02% performance.
Third, while all weakly-supervised methods aim to
enhance overall performance, often at the expense
of precision, LogicST maintains a superior balance
between precision and recall. Remarkably, Log-
icST either achieves or closely approaches the best
performance in both precision and recall among all
these methods. Finally, by incorporating symbolic
logic, LogicST mitigates the confirmation bias in-
herent in self-training and the class imbalance prob-
lem in the training set, thereby improving perfor-

1The detailed configurations can be found in Appendix D.
2The results on DocGNRE can be found in Appendix E.

5501



Model Precision Recall F1 Ign_F1 Freq_F1 LT_F1

L
L

M
s

GPT-3.5 13.12 2.85 4.68 - - -
GPT-3.5 + NLI 23.57 6.14 9.74 - - -
LLaMA2 5.70 25.50 9.32 8.04 - -
LLaMA2 + DP 6.56 27.00 10.56 9.03 - -
GPT-4o 23.57 6.14 21.41 21.17 - -
GPT-4o + ICL (1 shot) 47.45 19.61 27.75 27.36 - -
GPT-4o + ICL (3 shot) 39.51 20.67 27.14 26.53 - -

B
E

R
T

GAIN 88.11 30.98 45.82 45.57 - -
ATLOP 88.39 ±0.39 28.87 ±0.34 43.52 ±0.25 43.28 ±0.24 45.49 ±0.24 40.46 ±0.28

NS-ATLOP 74.79 ±0.31 46.33 ±0.34 57.22±0.25 56.28 ±0.21 59.23 ±0.23 54.13 ±0.24

SSR-PU-ATLOP 65.10 ±0.90 50.53 ±0.89 56.84 ±0.72 55.45 ±0.59 60.21 ±0.64 51.84 ±0.82

P3M-ATLOP‡ 64.50 ±0.49 58.65 ±0.33 61.43 ±0.06 60.17 ±0.08 68.20 ±0.20 52.54 ±0.17

VST-ATLOP 63.53 ±1.17 56.41 ±0.86 59.56 ±0.16 58.03 ±0.25 63.17 ±0.46 55.61 ±0.25

CREST-ATLOP 69.34 ±1.55 50.58 ±1.35 58.48 ±0.30 57.33 ±0.21 60.31 ±0.64 56.33 ±0.15

CAST-ATLOP 70.49 ±1.12 54.34 ±1.07 61.36 ±0.67 60.16 ±0.79 63.66 ±0.44 58.12 ±0.36

LogicST-ATLOP 74.68±0.65 63.95±0.49 69.26±0.31 68.49±0.33 72.74±0.45 64.26±0.18

R
oB

E
R

Ta

KD-DocRE 92.08 32.07 47.57 47.32 - -
ATLOP 92.62 ±0.35 33.61 ±0.48 49.32 ±0.29 49.16 ±0.27 51.49 ±0.51 45.36 ±0.43

NS-ATLOP 68.39 ±2.23 56.05 ±0.98 61.58 ±0.48 60.43 ±0.55 65.35 ±0.12 57.16 ±0.44

SSR-PU-ATLOP 65.71 ± 0.28 57.01 ±0.47 61.05 ±0.21 59.48 ±0.18 62.85 ±0.10 58.19 ±0.54

P3M-ATLOP‡ 69.22 ±0.42 57.95 ±0.26 63.06 ±0.36 61.98 ±0.35 69.55 ±0.64 54.58 ±0.78

VST-ATLOP 62.85 ±0.48 63.58 ±0.62 63.21 ±0.39 61.83 ±0.41 65.68 ±0.43 60.09 ±0.45

CREST-ATLOP 73.09 ±0.79 55.06 ±0.86 62.81 ±0.35 61.90 ±0.33 63.71 ±0.41 61.75 ±0.49

CAST-ATLOP 72.83 ±0.50 59.22 ±0.61 65.32 ±0.22 64.25 ±0.15 66.99 ±0.29 63.05 ±0.11

LogicST-ATLOP 78.77±0.64 68.54±0.48 73.29±0.21 72.64±0.22 76.61±0.26 68.57±0.19

Table 1: Experimental results on the test set of Re-DocRED (%). The reported results are the average of five runs.
Results marked with ‡ are reproduced from Wang et al. (2024) using the dev set of Re-DocRED.

mance for both frequent and long-tail classes. Ad-
ditionally, we compare the performance of CAST
and LogicST across various relation classes in Ap-
pendix F.
Results on DocRED_ext. The experimental re-
sults using the DocRED_ext training set and the
Re-DocRED test set are shown in Table 2. The
proposed LogicST framework consistently outper-
forms all strong baselines, surpassing the previous
state-of-the-art, P3M, by 7.94% in F1 score.

Model Precision Recall Ign F1 F1

B
E

R
T

ATLOP 88.42 12.19 21.37 21.42
NS 69.83 34.36 45.50 46.05
SSR-PU 59.52 39.18 46.47 47.24
P3M 61.12 53.44 56.17 57.02
CAST 68.94 48.17 56.10 56.71
LogicST 58.01 71.74 62.72 64.15

R
oB

E
R

Ta

ATLOP 90.78 12.43 21.82 21.86
NS 70.29 34.31 45.47 46.11
SSR-PU 61.57 41.75 48.98 49.74
P3M 63.04 57.01 59.02 59.86
CAST 67.86 52.08 58.44 58.93
LogicST 60.97 76.40 66.44 67.82

Table 2: Experimental results on Re-DocRED under
extremely unlabeled settings with ATLOP (%).

Results on DWIE. As illustrated in Figure 3, Log-
icST consistently surpasses all baseline models

across different sampling ratios, with its superi-
ority becoming increasingly evident in scenarios of
limited annotations. Remarkably, it approaches the
fully supervised performance of 74.36%. This veri-
fies the ability of logical diagnosis to mitigate false
negative issues. However, LogicST’s improvement
is less significant compared to DocRED, which
can be attributed to differences in dataset construc-
tion. The incomplete DWIE dataset is generated
through uniform sampling, whereas the missing
annotations in DocRED result from distant super-
vision, leading to biases towards popular classes
and entities (Huang et al., 2022). Consequently, the
DWIE dataset is simpler, reducing the performance
gap between different frameworks.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling Ratio of Positive Triplets

30

40

50

60

70

F1
 (

%
)

ATLOP [AAAI 2021]
NS [ICLR 2021]
CAST [ACL 2023]
P3M [AAAI 2024]
LogicST [Ours]

Figure 3: Comparison of F1 scores on the DWIE dataset
with varying positive sampling ratios.
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Figure 4: F1 comparison of CAST, NS, P3M, and Log-
icST with entity pairs’ distances on the test set of Do-
cRED. The ATLOP model is used as the backbone.

4.4 Analysis & Discussion

Comparison with Other Logical DocRE Frame-
works. We compare LogicST with LogiRE (Ru
et al., 2021), MILR (Fan et al., 2022), and JMRL
(Qi et al., 2024) using BERT-base as the encoder.
The results in Table 3 show that these baselines
only marginally improve the backbone’s perfor-
mance due to the use of noisy labels for calculating
the classification loss, which inevitably leads to
overfitting. In contrast, LogicST aims to correct
these noisy labels, performing significantly better
under conditions of incomplete annotations.

Model Test

Ign F1 F1

ATLOP 43.28 43.52
+ LogiRE 44.05(+0.77) 44.33(+0.81)
+ MILR 46.08(+2.80) 46.38(+2.86)
+ JMRL 47.32(+3.27) 47.54(+3.21)
+ LogicST 69.26(+25.98) 69.26(+24.47)

Table 3: Comparison with other logical frameworks on
the test set of Re-DocRED (%).

Performance with respect to Entity Pairs’ Dis-
tances. We break down the relation extraction per-
formance into four groups based on the distance be-
tween entity pairs to analyze the long-range depen-
dency capture capabilities. As shown in Figure 4,
the LogicST framework consistently outperforms
all strong baselines across all groups. Moreover,
the performance gains from CAST to LogicST in-
crease as the distance grows. For distances in the
ranges [200, 300) and [300,∞), LogicST achieves
15.45% and 23.67% F1 enhancement, respectively.
These results demonstrate the superiority of Log-
icST in incorporating rules to capture long-range
dependencies and alleviate confirmation bias.
Efficiency Comparison. Table 4 presents the
training time of various frameworks. Notably, only
self-training frameworks such as CAST and Log-

Framework Pre-Training Training Toal
Vanilla - 1h 1m 1h 1m

SSR-PU - 1h 15m 1h 15m
NS - 1h 8m 1h 8m

CAST 20h 32m 1h 1m 21h 33m
LogicST 11 m 1h 41m 1h 52m

Table 4: Training time of ATLOP-backbone frameworks
training for 30 epochs with batch size 4 on DocRED.

icST require an additional pre-training stage to get
better initial state. Unlike CAST, which necessi-
tates multiple rounds and splits of training, our
LogicST framework pre-trains the teacher model
only once, significantly reducing this time over-
head. During the training stage, LogicST incurs
only an additional forward propagation and logi-
cal diagnosis step, resulting in an acceptable time
increase compared to the vanilla training pipeline.
Effect of Scoring Functions. To assess the impact
of the scoring function, we plot the F1 scores of
different variants over training epochs in Figure
5. The results reveal that: 1) Without considering
the probability of diagnoses, the model struggles
to correct false positives. Initially, it corrects false
negatives, leading to a performance increase, but
subsequently fits extra introduced errors, causing
a performance decline; 2) Without considering the
reward of diagnoses, the framework fails to correct
enough false negatives in the early training stages,
resulting in sub-optimal performance. We also per-
form a case study of margin bank in Appendix G.

0 5 10 15 20 25 30
Training Epochs

35

40

45

50

55

60

F1
 (

%
)

LogicST
w/o Reward
w/o Probability
w/o Both

Figure 5: F1 vs. the number of training epochs on the
development set of DWIE with 40% sampling ratios.

Ablation Study. We conduct an ablation exper-
iment to assess the efficacy of LogicST’s compo-
nents. Additionally, we introduce a baseline termed
"Fixed Diagnosis", which employs implication and
composition rules to complement training labels
before the two-stage training, and keeping these
labels fixed. The experimental results in Table 5 re-
veal three key observations. First, the EMA teacher
is essential for mitigating the impact of noisy labels
and stabilizing the training process. Second, logi-
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Model Dev Test

Ign F1 F1 Ign F1 F1

LogicST-ATLOP 67.69 68.50 68.45 69.18
- EMA Teacher 47.16 48.54 48.21 49.08
- Diagnosis 59.05 59.94 58.81 59.60

ATLOP 44.16 44.35 43.64 43.81
+ Fixed Diagnosis 61.56 62.08 61.25 61.94

Table 5: Ablative experiments on DocRED (%).

cal diagnosis significantly improves the quality and
coverage of pseudo-labels, enhancing performance.
Third, while simply adding missing triplets via
logical rules yields competitive results, the "Fixed
Diagnosis" method falls short of LogicST due to its
inability to account for additional false negatives
identified by the backbone during training.
Case Study. To further illustrate the effect of logi-
cal diagnosis and its contribution to interpretability,
we present a typical example in Figure 6, where
the pseudo-labels generated by confidence thresh-
olding conflict with symbolic knowledge. For in-
stance, Have You Ever Been in Love is labeled
as part of One Heart, while simultaneously, One
Heart is claimed to not have part of the song,
which contradicts the rule: (h, part of, t) ⇔
(t, has part, h). LogicST resolves this conflict
by adding the missing label instead of negating a
true positive, aligning pseudo-labels with logical
rules and enhancing interpretability. Additionally,
Figure 6 provides two similar cases. Another case
study of predictions is provided in Appendix H.

[1] "Have You Ever Been in Love" is a song recorded by

Canadian recording artist Celine Dion, included first on her

seventh English studio album "A New Day Has Come" (2002)

and later, on her eighth English studio album "One Heart"

(2003). [2] The song is a power ballad, written by Anders Bagg,

and Laila Bagge, while production was handled by Bagge. [3]...

Celine Dion One Heart

Have You Ever Been in Love

performer

notable work

Figure 6: Case study of LogicST correcting pseudo-
labels on the DocRED. Solid lines indicate pseudo-
labels by confidence thresholding, while dotted lines
indicate extra facts added by diagnosis.

5 Conclusion

In this work, we introduce the LogicST framework
for DocRE with incomplete annotations. LogicST
utilizes logical rules to identify conflicts among
pseudo-labels and develop minimal diagnoses to

correct potential errors. Experiments on various
benchmarks demonstrate that LogicST achieves
state-of-the-art results. The effectiveness and ef-
ficiency of LogicST highlight the potential of the
neural-logic paradigm in incompletely labeled in-
formation extraction. We believe this paper opens
a new avenue for future exploration.

Limitations

Although making some progress, our LogicST
framework still has several limitations. First, the
scoring function of LogicST is designed for set-
tings with incomplete annotations and is not appli-
cable to distant supervision settings (Mintz et al.,
2009; Liu et al., 2022). Secondly, LogicST is only
applicable to datasets with clear logical relation-
ships between relations, making it unsuitable for
binary datasets such as CDR (Li et al., 2016) and
biomedical datasets such as ChemDisGene (Zhang
et al., 2022b). Specifically, if a chemical affects the
expression of a gene and that gene can be used as
a marker for a disease, we cannot assume that this
chemical is a therapeutic for that disease. Thirdly,
LogicST assumes that entities and their mentions
are identified beforehand (Li and Ji, 2014), which
falls short of real-world applications. We will ad-
dress these limitations in future work.

Ethics Statement

ChatGPT and Grammarly were used for parts of
the writing. Compared to their sentence-level coun-
terparts, DocRE models including the proposed
LogicST, demonstrate enhanced capabilities for
analyzing vast volumes of online text and iden-
tifying private information across different users.
Aware of the associated privacy concerns, we en-
sure that all data utilized in this study is public
and devoid of any personal information. Further-
more, we strongly advise against using the pro-
posed framework for analyzing data that contains
personal privacy elements in future applications.
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A Details of Logical Rules

In this paper, we consider implication, composition,
and negation rules, which are defined as follows:

• Implication Rules define logical consequences
between multiple relations within an entity pair.
For example, "If London is the capital of UK,
then London is definitely located in UK." For-
mally, implication rules are defined as:

(h, r1, t) ⇒ (h, r2, t). (10)

• Composition Rules describe how relations be-
tween entities can be combined to derive new
triples. For example, "If Paris is the capital
of France, and France is located in Europe,
then Paris is located in Europe too." Formally,
two-hop composition rules are represented as:

(h, r1, t1) ∧ (t1, r2, s) ⇒ (h, r3, s). (11)

Multi-hop compositions are defined similarly.

• Negation Rules express the mutual exclusivity
between triples involving the same entities. For
example, "If Beijing is the capital of China,
then Beijing cannot logically be the spouse of
any entity." Formally, the negation rules are cate-
gorized and defined based on the shared entity:

(h, r1, t) ⇒ ¬(h, r2, s) if h is shared, (12)

(h, r1, t) ⇒ ¬(s, r2, t) if t is shared. (13)

We list several used rules on the DocRED dataset
in Table 7.

B Dataset Statistics

The dataset statistics are summarized in Table 6.
As observed, the average number of triplets in the
incompletely labeled training sets is significantly
lower than in the development and test sets. This
discrepancy indicates a substantial number of false
negatives in the training sets.

C Implementation Details

The proposed LogicST framework is compatible
with any DocRE backbone. Consistent with prior
work (Tan et al., 2023a; Wang et al., 2024), we
adopt the ATLOP model (Zhou et al., 2021) as our
backbone. We use BERT-base (Devlin et al., 2019)
and RoBERTa-large (Liu et al., 2019) as the text
encoders. All models are implemented in PyTorch
(Paszke et al., 2019) and trained on one Tesla V100
GPU.

For hyper-parameters, we perform a grid search
for λ1 and λ2 within {0.99, 0.999, 0.9995}, for
TopK within {10, 20, 50}, for τ within {0.1, 0.3,
0.5}, and for γ within {2, 20, 50, 100, 1000}.
All hyper-parameters are selected based on the F1
score computed on the development set.

D Experimental Configurations for
In-Context Learning

In our experiment, we employ the
sentence-transformers/all-MiniLM-L6-v2
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Dataset #Doc. #Rel. Avg.# Ent. Avg. #Triplets #Negative Rate

DocRED train 3053 96 19.49 12.51 96.81%

DocRED_ext train 3053 96 19.49 5.36 98.63%

Re-DocRED dev 500 96 19.37 34.57 91.05%
test 500 19.56 34.90 91.22%

DocGNRE test 500 96 19.56 39.05 90.17%

DWIE

train(20%)

602
65

27.40

5.18 99.42%
train(40%) 9.97 98.87%
train(60%) 14.75 98.34%
train(80%) 19.54 97.81%
dev 98 28.42 26.78 97.15%
test 99 26.49 24.83 96.96%

Table 6: Dataset Statistics. #Doc. indicates the number of documents in each dataset. #Rel. denotes the number of
relation classes. Avg.# Ent. represents the average number of entities per document. Avg. #Triplets indicates the
average number of annotated true triplets per document. #Negative Rate represents the ratio of negative triplets to
the total number of triplets (negative + positive). For the DWIE dataset, the percentages in parentheses specify the
sampling ratios of positive samples.
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Figure 7: F1 scores (%) for each class (ranked by class frequency: left (high)→right (low)) on the test set of
Re-DocRED of CAST and LogicST’s best models, which are trained on DocRED. Columns marked with * are
relation classes involved in more than 8 logical rules. Better view in color.

Antecedent Consequent Type

capital located in Implication
spouse−1 spouse Implication
spouse−1 ∧ continent continent Composition
father−1 ∧ mother spouse Composition
capital ¬ spouse Negation(h)
sister city ¬ performer Negation(t)

Table 7: Case study of logical rules. For simplicity, we
hide the entity variables and use (h, r−1, t) to represent
(t, r, h).

model to find the most similar in-context samples
from the incompletely annotated training set. The
prompt template used is as follows:

Given a target relation type list
and a document , entities and

their mentions are marked in
the document with numbered

tags. Each entity is
represented by a unique number
enclosed in angle brackets.

Please identify all valid
given relation types between
any two given entities in the
document.

Target relation type list:
{’located in the administrative

territorial entity ’: "In the ’
located in the administrative
territorial entity ’ relation ,
the subject , a place , event ,
or item , resides or takes
place in the object , an
administrative region. Example
: (Harvard University , located
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[1] Cornelius Ryan 's A Bridge Too Far gives an account of Operation Market Garden, a failed Allied attempt to

break through German lines at Arnhem in the occupied Netherlands during World War II.

[2] The title of the book comes from a comment made by British Lieutenant General Frederick Browning,

deputy commander of the First Allied Airborne Army, who told Field Marshal Bernard Montgomery before the

operation, " I think we may be going a bridge too far.

ATLOP NS

CAST P3M

Ground

Truth

WWII Browning

Operation Market Garden 

participant  of

conflict
participant

LogicST

WWII Browning

Operation Market Garden 

participant  of

conflict
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WWII Browning

Operation Market Garden 

conflict WWII Browning

Operation Market Garden 

conflict

WWII Browning

Operation Market Garden 

conflict WWII Browning

Operation Market Garden 

conflict

Figure 8: Case study of relation extraction results on the test set of DocRED. For clarity, the named entities involved
in this case study are marked in color, and other entities are underlined. The specific definition of the relations can
be found in the original paper (Yao et al., 2019).

in the administrative
territorial entity , Cambridge ,
Massachusetts)."

......( all 96 relations and
corresponding description and
example) }

All non -duplicate valid "subject
entity "" relation type"" object
entity" triples in the
document (output format: "
entity ID"" relation type name
"" entity ID", e.g., <1>-
country -<2>; one triple per
line):

[<Entity ID >]-<Relation Name >-[<
Entity ID >]

[<Entity ID >]-<Relation Name >-[<
Entity ID >].

Please return the triplets in the
specified format directly ,

without adding any additional
information.

Here are some examples.
{ICL examples}

Document: {document to be
extracted}

Triplets:

E Results on DocGNRE

Table 8 presents the performance of various models
on the DocGNRE dataset (Li et al., 2023b), which
is based on Re-DocRED and enhanced through dis-
tant supervision using ChatGPT, followed by hu-
man annotation for refinement. As shown in Table
8, LogicST demonstrates significant performance
improvements over existing leading methods in
both precision and recall. Notably, it surpasses the
state-of-the-art P3M model by 7.51% in F1 score.
These experimental results further validate the ef-
fectiveness of our proposed framework.

F Detailed Comparison with CAST

We plot the F1 scores of CAST and LogicST for
all the classes in Figure 7, which indicates that
LogicST surpasses CAST in most classes. Note
that CAST samples pseudo labels for all classes,
while LogicST only performs logical diagnosis on
the classes involved in the rules. It can be seen that
for classes involved in many logical rules (marked
with *), LogicST usually has better performance.
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Model Precision Recall Ign F1 F1

GPT3.5 13.97 2.71 - 4.54
GPT3.5 + NLI 72.71 15.32 - 25.31
ATLOP 91.56 27.45 42.10 42.23
NS 69.23 42.34 51.72 52.54
SSR-PU 61.82 47.61 52.64 53.79
P3M 67.93 50.95 57.24 58.23
CAST 65.06 51.46 56.44 57.47
LogicST 75.16 58.41 65.05 65.74

Table 8: Experimental Results on the test set of DocN-
GRE using BERT-base (excluding GPT-3.5 based meth-
ods) and the training set of DocRED (%).
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Figure 9: Margin Bank for each class (ranked by class
frequency). Most of the margins are negative because
the logits of the threshold class are higher.

We present the margin bank after training com-
pletion on DocRED in Figure 9. It is evident that
the Margini of class i generally decreases as the
frequency decreases, although there are some ex-
ceptions. This may be due to certain classes having
fixed patterns, making them easier to recognize.

H Case Study of Relation Extraction
Results

Figure 8 illustrates relation extraction cases
for ATLOP and various frameworks built
upon it, including NS, CAST, P3M, and Log-
icST. This case study involves three logical
rules: (h, part of, t) ⇒ (t, has part, h),
(h, conflict, t) ⇒ (t, participant, h),
and (h, participant, t) ⇒
(t, participant_of, h). The results demon-
strate that ATLOP, CAST-ATLOP, and P3M-
ATLOP successfully extract two true positive
relations but fail to infer their logical derivatives.
In contrast, the NS-ATLOP method, which drops
many true negative samples during training, intro-
duces an additional false positive error. Notably,
LogicST-ATLOP extracts all relevant facts using
the same architecture and inference method as the
other models, highlighting the effectiveness of

incorporating logical rules as diagnostic tools to
identify and correct pseudo-label errors. These
findings underscore the advantages of using
LogicST to enhance the robustness and accuracy
of relation extraction tasks.
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