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Abstract

The scaling of large language models (LLMs)
is a critical research area for the efficiency and
effectiveness of model training and deployment.
Our work investigates the transferability and
discrepancies of scaling laws between Dense
Models and Mixture of Experts (MoE) models.
Through a combination of theoretical analysis
and extensive experiments, including consistent
loss scaling, optimal batch size and learning
rate scaling, and resource allocation strategies
scaling, our findings reveal that the power-law
scaling framework also applies to MoE Models,
indicating that the fundamental principles gov-
erning the scaling behavior of these models are
preserved, even though the architecture differs.
Additionally, MoE Models demonstrate supe-
rior generalization, resulting in lower testing
losses with the same training compute budget
compared to Dense Models. These findings
indicate the scaling consistency and transfer
generalization capabilities of MoE Models, pro-
viding new insights for optimizing MoE Model
training and deployment strategies.

1 Introduction

The advent and scaling of large language models
(LLMs), such as GPT (Brown et al., 2020; Achiam
et al., 2023), Llama (Touvron et al., 2023a,b), Gem-
ini (Team et al., 2023), Gopher (Rae et al., 2021),
Chinchilla (Hoffmann et al., 2022), and Mistral
(Jiang et al., 2023), have marked a transformative
era in artificial intelligence and natural language
processing. Characterized by their vast parameter
counts and extensive training datasets, these mod-
els have significantly advanced capabilities across
various domains, including machine translation
(Brown et al., 2020; Hendy et al., 2023; Garcia and
Firat, 2022), logical reasoning (Huang and Chang,
2022; Wei et al., 2022; Chen et al., 2021a, 2024a),
and medical applications (Thirunavukarasu et al.,
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2023; Xiao et al., 2022). However, their increasing
complexity and parameter scale posits an urgent
need for innovative scaling strategies that optimize
computational efficiency without compromising
performance.

Historically, Dense Transformer Models have
dominated due to their simplicity and scalability.
And the scaling laws (Kaplan et al., 2020; Hoff-
mann et al., 2022) for dense models have been thor-
oughly investigated across different circumstances,
such as over-training (Gadre et al., 2024) and data-
limiting (Muennighoff et al., 2024; Chen et al.,
2022). Despite their efficacy, the huge computa-
tional demands of these models necessitate explo-
ration of alternative architectures like Mixture of
Experts (MoE) (Yuksel et al., 2012; Shazeer et al.,
2017; Du et al., 2022; Shen et al., 2024; Chen et al.,
2021b; Xiao et al., 2021), which offer a promis-
ing reduction in computational load through sparse
activations and dynamic expert routing.

This paper delves into the analysis of scaling
laws for Dense and MoE Models within the con-
text of LLMs. We extend foundational research on
hyperparameters, such as compute budget, batch
size, and learning rate (Kaplan et al., 2020; Hoff-
mann et al., 2022; McCandlish et al., 2018; Li et al.,
2024; Chen et al., 2024b), to explore their transfer-
ability and applicability across these architectures.
Our experiments involve models up to 7 billion
parameters and datasets exceeding 100 billion to-
kens, aiming to uncover universal scaling behaviors
potentially applicable to both model types.

Our results verify the hypothesis that certain
scaling laws, particularly those related to loss and
hyperparameters, may indeed be universal, bridg-
ing architectural gaps between Dense and MoE
Models. This universality suggests a simplification
in hyperparameter tuning across different scales
and architectures, which could significantly stream-
line the training processes for various LLMs. Fur-
thermore, we provide detailed analyses of the dif-
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ferential impacts of coefficient changes between
MoE and Dense Models, offering both empirical
and theoretical insights into the superior data effi-
ciency of MoE Models. Concretely, MoE Models
can achieve comparable performance with fewer
training tokens than Dense Models, alleviating data
constraints in LLM training. Our findings can be
summarized as follows:

• Consistent Scaling Law Framework: Both
MoE and Dense Models demonstrate a consis-
tent and transferable scaling law framework,
encompassing loss scaling as well as optimal
batch size and learning rate scaling. This
alignment implies that the established prac-
tices and insights for optimizing Dense Mod-
els can be readily applied to MoE Models,
potentially streamlining the process of identi-
fying optimal hyperparameters and reducing
experimental complexity.

• Enhanced Data Efficiency in MoE Models:
MoE Models demonstrate an approximate
16.37% improvement in data utilization over
Dense Models under similar computational
budgets. Theoretical and empirical analyses
suggest that during training process, MoE
Models, particularly when utilizing the Adam
Optimizer, experience lower gradient noise
scales. These results show that MoE Mod-
els could achieve stable training with smaller
batch sizes and larger learning rates, poten-
tially speeding up the training process and
improving training convergence.

2 Related Work

Large Language Models Large language mod-
els (LLMs) such as GPT (Brown et al., 2020),
Llama (Touvron et al., 2023a,b), Chinchilla (Hoff-
mann et al., 2022), Gopher (Rae et al., 2021),
Mixtral 8x7B (Jiang et al., 2024), Switch Trans-
former (Fedus et al., 2022), GLaM (Du et al., 2022),
and DeepSpeed-MoE (Rajbhandari et al., 2022)
have advanced significantly, categorized into Dense
Models and Mixture of Experts (MoE) Models.
Dense Models activate all parameters per forward
pass, while MoE Models activate only a subset,
allowing for larger model scales without propor-
tional increases in computational costs. Despite
their complexity, MoE Models have shown poten-
tial for superior performance and efficiency.

Scaling Laws for LLMs Due to the significant
costs associated with training process, understand-
ing the scaling laws of large language models
(LLMs) is crucial. Studies (Bahri et al., 2021; Ka-
plan et al., 2020; Bi et al., 2024) have established
a power-law relationship between model loss and
factors like training tokens and compute budget.
Recent work Yun et al. (2024) has explored these
relationships further in MoE Models, indicating
cost-effective scaling benefits but also highlighting
challenges such as expert selection and load balanc-
ing. However, a systematic investigation into the
scaling laws of MoE Models’ hyperparameters and
the transferability of scaling laws between Dense
Models and MoE Models remains lacking, which
is the focus of our work.

Hyperparameters Estimation As model sizes
increase, precise optimal hyperparameter estima-
tion becomes critical (Chen and Wang, 2021). Re-
search McCandlish et al. (2018) has focused on
optimizing batch size and learning rates to balance
training speed and efficiency. Novel approaches
(Yang et al., 2022, 2023) like Maximal Update
Parametrization suggest that optimal hyperparame-
ters for smaller models might scale to larger mod-
els effectively. Our study extends these insights
to explore hyperparameter transferability between
Dense and MoE Models, focusing on resource allo-
cation, learning rate, batch size, and their transfer
rules for Dense Models and MoE Models.

3 Preliminary

The scaling law of the training loss for Dense Mod-
els with respect to the number of training tokens
and model size has been extensively studied (Ka-
plan et al., 2020; Hoffmann et al., 2022). Previous
work (Hoffmann et al., 2022) has proposed the
following scaling law (shown in Equation 1). To
introduce the concept of model scale (the FLOPs
divided by the number of training tokens) as N in
our work, we denote model size (number of param-
eters) as P to avoid confusion.

L̂(P,D) =
A

Pα
+

B

Dβ
+ σ (1)

s.t. FLOPs(P,D) = C

where L̂ is the training loss, D is the number of
training tokens, P is the model size (number of
parameters), and σ represents the minimum achiev-
able training loss due to the dataset’s inherent noise.
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Figure 1: The extrapolated scaling curves for 1.5B
Mixture of Experts (MoE) models. This demonstrates
that the proposed Loss Scaling Curve L̂(N,D,E) =

A
NαEγ + B

Dβ + σ(E < 100), fits well for MoE Models
(eight experts). Specifically, D is the number of tokens
and N is the model scale, which is compute budget (C)
divided by D, instead of the model size. E is the num-
ber of experts and σ represents the random noise scale
of dataset. A, B, γ, α and β are all coefficients.

C is the compute budget with an approximation
C = 6PD. α, β, A and B are all coefficients.

For MoE (Mixture of Experts) Models, previous
research (Clark et al., 2022) has proposed a sep-
arable scaling law (Equation 2) for loss between
model size and the number of experts.

L̂(P,E) = a log(P ) + b log(E) + d (2)

where P is the number of model parameters, E is
the number of experts, and a, b, d are coefficients.
This equals to Equation 3.

L̂(P,E) =
10d

P aEb
(3)

When using Equation 2 to fit the training loss curve
of MoE Models, Clark et al. (2022) claim that a de-
crease in performance has been observed given by
expert scaling. Specifically, the value of b increases
with model size (in Equation 2) when model size
is large. This suggests that as the model size in-
creases, the benefit from increasing the number of
experts E will finally decrease. To enhance the
fitting ability of the scaling laws for MoE Models,
a quadratic interaction term is added, resulting in
Equation 4.

L̂(P,E) = a log(P ) + b log(E)

+ c log(P ) log(E) + d

=
10d

P aEb+clog(P )
=

10d

EbP a+clog(E)
(4)

4 Estimating Resources Allocation
Strategy Scaling

4.1 Scaling Laws for Training Loss

Kaplan et al. (2020) and Hoffmann et al. (2022)
originally proposed a scaling law for Dense Mod-
els, while Clark et al. (2022) extended this law to
scenarios involving multiple experts (MoE Mod-
els). Upon closer examination of Equation 3 and
Equation 4, we observed that when the number
of experts (E) remains fixed, these equations can
be simplified to the first term in Equation 1. Mo-
tivated by these insights, we introduce a unified
scaling law for both Dense Models and MoE Mod-
els, represented by Equation 5. Specifically, since
the decrease in performance is observed only when
the number of experts (E) is large, we adopt the
simplified one (Equation 2) for small E value (be-
low 100). Besides, previous work (Bi et al., 2024)
suggests replacing the model size P (number of pa-
rameters) with model scale N , which is the result
of the FLOPs divided by the number of tokens in
order to fit Equation 1 more accurately. Finally, we
get Equation 5:

L̂(N,D,E) =
A

NαEγ
+

B

Dβ
+ σ (5)

s.t. FLOPs(N,D) = C

where L is the training loss, D is the number of
training tokens, and N is the model scale, which is
the non-embedding FLOPs (C) divided by D. E is
the number of experts and we suggest E is smaller
than 100. σ roughly estimates the natural noise of
the dataset, representing the minimum achievable
training loss. A, B, α, β and γ are coefficients.

In order to validate Equation 5, in our experi-
ment, we fitted the training data for both 200M and
700M MoE Models (both with Eight Experts) to a
curve. We then used this curve to predict the train-
ing loss scaling behavior of a 1.5B MoE model.
The results, shown in Figure 1, demonstrate that
the formula we proposed based on previous work
is applicable to MoE Models when the number of
experts is not large. It could be observed that the
reduction in benefits from increasing E is minimal
and the scaling equation stands within our experi-
ment scope. Therefore, we adopted the simplified
version. This formula suggests that the Equation 5
could equal to Equation 1, given a fixed number of
experts, for MoE Models. This consistency could
help us to compare the computing resource allo-
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Figure 2: This diagram presents a heatmap of the distribution of training loss in relation to optimal batch size and
training token quantities, with fitted curves representing different training loss. A vertical red line connects the
minimum values of each curve. (a) training loss vs. optimal batch size when the MoE model size is 100M and the
learning rate is 4e-3. (b) training loss vs. optimal batch size when the MoE model size is 700M and the learning rate
is 1e-3.

cation strategy scaling for Dense Model and MoE
Models (when E is given).

4.2 Estimating Optimal Resource Allocation
Strategy Scaling

After fitting the training loss (L) as a function of
the number of tokens (D), the model scale (N ), and
the number of experts (E), we proceed to derive
the optimal computing resource allocation strategy
for model scale and the number of training tokens
given a fixed compute budget.

The objective can be defined as follows: given a
fixed number of compute budget, how to estimate
the optimal resource allocation strategy for model
scale and the number of training tokens to minimize
the training loss.

Dopt(C), Nopt(C) = argmin
D,Ns.t.C=ND

L(N,D,E)

(6)
We take the differentiation of Equation 5 with re-
spect to C = DN , we derive the optimal values of
D and N for a given compute budget:

D̂opt(C) = kD · CαD (7)

where kD = ( αA
βBEγ )

− 1
α+β and αD = α

α+β

N̂opt(C) = kN · CαN (8)

where kN = ( αA
βBEγ )

1
α+β and αN = β

α+β . Equa-
tion 7 and 8 indicate how the model scale (com-
pute budget per token N ) and the optimal number
of training tokens D scale with the overall compute
budget C. The most crucial part of this process is to

find the scaling exponent of the model scale and to-
kens number with reference to the compute budget.
Then we use the empirical fitting results obtained
previously to calculate these two exponents.

Table 1: Coefficients of optimal model and data scaling
allocation for different model architectures.

Model Architecture αD αN

OpenAI (OpenWebText2) 0.27 0.73

Chinchilla (MassiveText) 0.51 0.49

DeepSeek (OpenWebText2) 0.422 0.578

Dense Model 0.493 0.507

MoE Model 0.410 0.590

From the data shown in Table 1, we observe that
the exponent for the optimal model scale (N ) in
Mixture of Experts (MoE) models is larger, while
the exponent for the optimal number of training
tokens (D) is smaller, compared to their Dense
Model counterparts. This suggests that MoE Mod-
els benefit more from increasing model size relative
to the number of training tokens.

This finding helps explain why MoE Models
can outperform larger Dense Models. The higher
utilization of training data by MoE Models allows
them to leverage their diverse sub-networks more
effectively, capturing a broader range of features
and patterns. Moreover, this suggests that it is more
advantageous to allocate a larger computing budget
to MoE Models compared to Dense Models.
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Figure 3: We plot the optimal batch size values together with the corresponding training loss values across different
model sizes for both Dense Models and MoE Models. In log scale diagrams, (a) demonstrates the log-log relationship
of training loss vs. optimal batch size for Dense Models. (b) demonstrates the log-log relationship of training loss
vs. optimal batch size for MoE Models. This indicates that the power-law relationship remains consistent not only
across model sizes but also across model architectures. The total overlap of the comparative performance interval is
about 65.8%.

5 Optimal Hyperparameters Scaling

5.1 Estimating Optimal Batch Size
Batch size is a crucial hyperparameter for the train-
ing process. Previous works (McCandlish et al.,
2018; Kaplan et al., 2020) have investigated the
scaling law between optimal batch size and loss for
Dense Models. In this experiment, we conduct the
analysis of both models.

To start, according to previous work (McCan-
dlish et al., 2018), let ∆Lopt(B) denote the optimal
improvement in the loss function when using a
batch size B with the optimal step size ϵopt(B). It
takes into account the noise introduced by the gra-
dient estimation process. Then ∆Lopt(B) could be
shown in Equation 9.

∆Lopt(B) = ∆Lmax

(
1 +

Bnoise

B

)−1

(9)

where ∆Lmax is the maximum possible improve-
ment in the loss function when the true gradient
is used without noise. Here, the noise scale Bnoise
measures the scale of the noise in the gradient esti-
mates relative to the true gradient. It helps quantify
how much the noise affects the gradient estimation
process. The noise scale could be defined as:

Bnoise =
tr(HΣ)

GTHG
(10)

where G denotes the true gradient and H the true
Hessian at parameter values θ. Σ represents co-
variance matrix, and tr(·) represents the trace. A

higher noise scale (Bnoise) implies a larger optimal
batch size for reducing the variance in the gradient
estimate.

For training efficiency, the relationship between
training steps S and training examples E derived
from the SGD optimizer could be expressed as:

(
S

Smin
− 1)(

E

Emin
− 1) = 1 (11)

where Smin and Emin are the minimum training
steps and training examples needed to achieve a
specific performance. Finally, from the empiri-
cal and theoretical verification (McCandlish et al.,
2018; Kaplan et al., 2020; Hu et al., 2024), the
optimal batch size at a specific training loss could
be approximated using Bopt ≈ Bnoise, then we get
Equation 12.

Bnoise ≈ Bopt =
Emin

Smin
≈ λB

LαB
(12)

where λB and αB are both coefficients. Bopt is the
optimal batch size given a noisy gradient and L is
the loss value.

Equation 12 indicates that Bopt serves as the
balance point between training speed and data effi-
ciency. It represents the optimal trade-off between
training speed and data efficiency. Furthermore, it
indicates that as training progresses and the loss
decreases, Bopt gradually becomes larger, indicat-
ing that larger batch size is required to maintain the
balance between training speed and data efficiency
as the model converges.
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Figure 4: This diagram displays a heatmap showing the distribution of training loss in relation to optimal learning
rates and training token quantities, with fitted curves representing different training loss values. A vertical red line
connects the minimum points of each curve. (a) Training loss vs. optimal learning rate when the MoE model size is
700M and the batch size is 128 (the number of sequences of length 8192). (b) Training loss vs. optimal learning
rate when the MoE model size is 1.5B, with the batch size being 128 (the number of sequences of length 8192).

Then we investigate the Equation 12 for both
Dense Models and MoE Models (8 experts). Fol-
lowing the procedure in (Hu et al., 2024), we first
generate contour lines representing configurations
with an equivalent number of training tokens (Fig-
ure 2) for both Dense Models and MoE Models.
From each contour line, we identify the points that
exhibited the minimum training loss along with
their corresponding batch size and learning rate.
Subsequently, these optimal points are plotted in
Figure 3(a) and Figure 3(b) to illustrate the rela-
tionship between training loss and batch size. We
could observe that Dense Model has a larger opti-
mal batch size exponent, which means for the same
task and training loss value, the noise scale for
Dense Model is larger than that of MoE Models.

Through the theoretical analysis (Equation 10
and 12), the noise scale Bnoise is related to the
variance of the gradient estimates and Bopt could
be approximate to the noise scale. The observation
that MoE Models have smaller optimal batch sizes
for the same loss suggests that MoE Models can
achieve the same optimization efficiency with less
data, indicating a smaller noise scale. However,
for Dense Models, larger optimal batch sizes for
the same loss suggest that dense models need more
data to achieve the same optimization efficiency,
indicating a larger noise scale. This means that the
gradient estimates are noisier in dense models for
a given batch size.

5.2 Estimating Optimal Learning Rate
In previous work (McCandlish et al., 2018), the
scaling relationship between optimal learning rate

and optimal batch size when using SGD optimizer
are illustrated as Equation 13.

ϵopt(B) = ϵmax

(
1 +

Bnoise

B

)−1

(13)

where ϵopt(B) represents the optimal step size that
minimizes the expected loss from the noisy gradi-
ent. And ϵmax represents the optimal step size that
minimizes the loss function when using the noise-
less true gradient G to update the parameters. It is
defined as ϵmax = |G|2

GTHG
. This relationship (Equa-

tion 13) shows that when B is relatively small, this
Equation could be reduced as a nearly linear scaling
(Granziol et al., 2022; Goyal et al., 2017). When
the batch size is fixed, with optimal learning rate
decreases with the increasing of noise scale.

ϵopt(B) = ϵmax

(
B

Bnoise

)

Recent research by Li et al. (2024) and Granziol
et al. (2022) reveals an interesting trend in the op-
timal learning rate for the Adam Optimizer con-
cerning the optimal batch size Bopt or noise scale
Bnoise. It shows a non-monotonic behavior, indicat-
ing that as the noise scale Bnoise increases, the opti-
mal learning rate initially follows a nearly square
root scaling pattern, dominated by the second term,
before decreasing as the first term gains dominance.
The transition point occurs when these two terms
reach a balance, a critical juncture determined by
the specific values of Bnoise and B.

ϵopt(B) =
2ϵmax√

Bnoise
B +

√
B

Bnoise

(14)
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Figure 5: We plot the optimal learning rate values together with the corresponding training loss values across
different model sizes for both Dense Models and MoE Models. In log scale diagrams, (a) demonstrates the log-log
relationship of training loss vs. optimal learning rate for Dense Models. (b) demonstrates the log-log relationship
of training loss vs. optimal learning rate for MoE Models. This indicates that the power-law relationship remains
consistent not only across model sizes but also across model architectures. The total overlap of the comparative
performance interval is about 76.2%.

In order to verify this, in this experiment (shown
in Figure 4), we plot contour lines that represent
configurations with an equivalent number of train-
ing tokens. For each contour line, we identify the
points that achieved the minimum training loss,
recording their corresponding learning rate. Then
Figure 5 illustrates the relationship between train-
ing loss and optimal learning rate in Equation 15.

ϵopt ≈
λϵ

Lαϵ
(15)

where λϵ and αϵ are both coefficients. ϵopt is the
optimal learning rate given a noisy gradient and L
is the loss value.

From the observation, MoE Models are likely
to have a larger optimal learning rate compared
to Dense Models when assuming the same loss
value. Firstly, MoE Models tend to have smaller
noise scale for the same loss value compared to
Dense Models. A smaller noise scale indicates
that the gradient estimates are less noisy, allowing
for more accurate updates with smaller batch sizes.
This efficiency with smaller batches also translates
into requiring larger learning rate for effective op-
timization. Secondly, the optimal learning rate is
roughly inversely proportional to the noise scale
when the first term dominates for Equation 14. In
conclusion, MoE Models are generally more effi-
cient with smaller batch sizes and larger learning
rates. It is very likely the model architecture that
makes MoE models more efficient and more able
to handle complex data.
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Figure 6: We explore the generalization ability for both
Dense Models and MoE Models. We highlight the stable
power-law relationship interval across different model
sizes for testing loss and the compute budget. We ob-
serve that with a comparable compute budget, MoE
Models could achieve better testing loss.

6 Generalization of Scaling Law

We predict that MoE Models could have better gen-
eralization ability compared to their Dense coun-
terparts. Firstly, MoE Models consist of multiple
expert sub-networks that specialize in different as-
pects of the data, which enables the model to cap-
ture a broader range of features and patterns and
then leads to better generalization across various
tasks and datasets. Additionally, the ensemble na-
ture of MoE Models, where each expert contributes
to the final prediction, reduces overfitting and im-
proves robustness by combining predictions from
multiple models. Finally, the gating mechanisms
in MoE Models control the contribution of each
expert to the final prediction, acting as a form of
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Table 2: Details about the performance of our Dense
and MoE Models involved in all experiments.

Model Size TriviaQA MATH MMLU CMMLU MATH401

Dense-7B 54.67 5.26 28.73 25.03 49.13

Dense-1B 20.56 1.48 22.42 21.38 5.99

Dense-500M 17.86 1.18 14.65 20.02 4.99

Dense-100M 14.28 0.66 14.68 18.71 3.74

Dense-50M 13.47 0.96 11.17 22.84 1.75

MoE-3B 56.09 6.74 29.18 25.46 40.12

MoE-1.5B 26.25 4.24 25.26 19.81 7.02

MoE-700M 18.89 1.80 15.51 18.04 4.68

MoE-200M 14.36 0.96 14.40 14.60 2.77

regularization. This regularization helps prevent
overfitting by focusing on the most relevant experts
for each input, resulting in better generalization.

To investigate the generalization performance of
the scaling law for both MoE Models (Eight Ex-
perts) and Dense Models, we explore and compare
the relationship of training loss with testing loss
and compute budget for both Dense Models and
MoE Models (shown in Figure 6). We highlight
the stable power-law relationship interval across
different model sizes, illustrating the correlation
between testing loss and compute budget. Notably,
MoE Models consistently exhibit a smaller testing
loss for a given compute budget, indicating their
superior generalization performance.

We also explore the performance of the Dense
and MoE Models on different testing sets in Ta-
ble 2. It clearly shows that MoE Models could out-
perform a Dense Model with comparative model
size. The consistent trend in performance across
different datasets underscores the transferability
and reliability of the scaling law observed in our
study. This finding suggests that the performance
improvements achieved by MoE Models are not
limited to specific datasets or conditions but hold
true across diverse testing sets, indicating robust-
ness and generalizability in real-world applications.

7 Conclusion

In this paper, we investigate the transfer of tradi-
tional scaling laws from Dense Models to Mixture
of Experts (MoE) Models. Our investigation con-
firms that the power-law relationship extends to
MoE Models regarding the consistency and trans-

ferability of scaling strategies, including resource
allocation strategy, optimal batch size / learning
rate scaling, and so on. This observation indicates
that the fundamental principles of training dynam-
ics and the behavior of scaling rules are similar for
both Models. This means existing knowledge and
practices for optimizing Dense Models can be eas-
ily adapted to MoE Models, potentially reducing
the experimental burden of finding the best hyper-
parameters. Besides, we find that MoE Models
demonstrate approximately a 16.37% improvement
in data utilization efficiency compared to Dense
Models with a fixed compute budget. Thus we sug-
gest prioritizing increasing model scale over other
factors when training MoE Models, highlighting
their greater data efficiency. Finally, we use both
theoretical and empirical analysis to reveal that dur-
ing the training process, MoE Models exhibit a
lower gradient noise scale when using the Adam
Optimizer. At the same training loss value, MoE
Models can achieve stable training with smaller
batch sizes and larger learning rates, potentially
speeding up the training process and improving
convergence. It shows that MoE Models can make
more efficient use of training data and computa-
tional resources, extracting more information per
training token, leading to faster training times and
better utilization of available data. These results
offer valuable insights for refining training and de-
ployment strategies for MoE Models.

Limitation

The experiments were constrained by the available
computational resources. Firstly, we have not yet
explored scenarios with more than 100 experts in
our experiments. It has been observed that as the
model size increases, the marginal benefit from in-
creasing the number of experts tends to decrease.
Moreover, although we tested our model on several
benchmark datasets, they don’t cover all domains.
To ensure robust evaluation, we plan to validate
the model on more tasks and domains and inves-
tigate the scaling relationships between different
metrics. Additionally, as the number of training
tokens exceeded 100 billion, we observed signs
of overtraining for both models, indicating dimin-
ishing returns in performance improvements with
additional training data. These areas remain open
for future research.
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A Experimental Settings

The architecture of all models (including Dense
Models and MoE Models) are shown in table 3 and
table 4, respectively. The number of layers, atten-
tion heads, hidden dimensions, and other relevant
details are listed in the tables.

During training, we employed the AdamW op-
timizer with parameters β1 = 0.9 and β2 = 0.95
for all models. Following the Chinchilla law (Hoff-
mann et al., 2022), we established a maximum
learning rate of 1.5 × 10−3 for smaller models
and 2× 10−4 for larger ones. A cosine scheduler
with a 10x learning rate decay was implemented
throughout the training process. We applied Gaus-
sian smoothing with a 10-step window length to
enhance the training curve.

Specifically, we identified the best performance
values within our hyperparameter range. The range
of hyperparameter settings, including batch size
and learning rate, was carefully selected for each
model size to ensure optimal performance within
the designated FLOP budget. Our observations
indicate that performance tends to converge to op-
timal values around the neighborhood of the best
settings, as illustrated in Figure 7.

2e-3 1.5e-3 1e-3 6e-4 5e-4
Learning Rate
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6

12
8

Ba
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2.661 2.659 2.669 2.670 2.680

2.696 2.688 2.684 2.684 2.690
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2.75

2.80

2.85
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Figure 7: We observed that the optimal settings are
a Learning Rate of 1.5e-3 and a Batch Size of 256.
Additionally, in the neighborhood of these settings, the
training loss values have an error within 2%, indicating
that the model will converge to the optimal value around
the best hyperparameter settings.

The dataset we used for the training of Dense
Models and MoE Models is The Pile (Gao et al.,
2020), which is a 825 GiB English text corpus
consisting of 22 high-quality subsets.

Table 3: Details about the architecture of our Dense
Models involved in all experiments.

Model Size Params. Hid. Size Layers Head Size FFN

50M 47.71M 512 14 4 1536

100M 113.25M 768 16 6 2048

500M 487.59M 1280 24 10 3584

1B 936.31M 1664 28 13 4480

7B 7.03B 4096 32 32 11008

Table 4: Details about the architecture of our MoE Mod-
els involved in all experiments, all of them are top-3.

Model Size Act. Params Hid. Size Layers Head Size Int. Size

200M 183M 640 12 8 1792

700M 692M 1280 16 16 3456

1.5B 1.45B 1600 24 20 4352

3B 3.0B 2304 28 32 6272

B Discussion of related works

Large language models (LLMs) have obtained sig-
nificant attention and undergone substantial devel-
opment in recent years. They can be categorized
into two main classes based on their parameter uti-
lization during the forward pass: Dense Models
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and MoE (Model of Experts) Models. Dense Mod-
els, such as GPT-2 (Radford et al., 2019), GPT-
3 (Brown et al., 2020), Llama (Touvron et al.,
2023a,b), Chinchilla (Hoffmann et al., 2022), and
Gopher (Rae et al., 2021), maintain a total param-
eter count equal to the active parameter count per
forward pass. On the other hand, MoE Models
(Shazeer et al., 2017) activate only a subset of total
parameters during training, as seen in models such
as Mixtral 8x7B (Jiang et al., 2024), Switch Trans-
former (Fedus et al., 2022), GShard (Lepikhin et al.,
2020), GLaM (Du et al., 2022), and DeepSpeed-
MoE (Rajbhandari et al., 2022). Dense Models are
known for their simplicity in implementation and
training. However, MoE Models can scale to signif-
icantly larger total parameter counts without a pro-
portional increase in computational cost. Despite
challenges like load balancing and expert selection
faced by MoE Models, prior research indicates that
they offer superior performance due to increased
model capacity and enhanced data efficiency.

Due to the significant costs associated with train-
ing process, understanding the scaling laws of large
language models (LLMs) is crucial. Some pre-
vious studies (Kaplan et al., 2020; Bahri et al.,
2021) have proposed a power-law relationship be-
tween loss and various factors like the number of
non-embedding parameters, training tokens, and
compute budget across different magnitudes. No-
tably, Kaplan et al. (2020) found that increasing the
model size by 8 times only requires a roughly 5x
increase in data to avoid penalties. In contrast to
earlier findings, Hoffmann et al. (2022) implements
optimized training configurations, which include
the use of training tokens and learning rate sched-
ules, and recommends scaling training tokens in
proportion to model size. Additionally, research
by Bi et al. (2024) explores the scaling laws of
batch size and learning rate in relation to model
scale (non-embedding FLOPs per token), offering
a more precise estimation. They propose an alloca-
tion strategy for scaling up models and data based
on dataset quality. While some studies (Li et al.,
2024; McCandlish et al., 2018) link the optimal
batch size to gradient noise scale and optimizer
type, recent attention has shifted towards Mixture
of Expert (MoE) models due to their potential cost
savings. Fedus et al. (2022) investigates the scaling
properties of MoE Models and suggest that having
more parameters (experts) with a fixed computa-
tional budget accelerates training and surpasses
dense Transformer baselines. On the other hand,

Yun et al. (2024) incorporate the hyperparameter
E (number of experts) into existing scaling laws,
revealing diminishing returns with increasing ex-
pert numbers. However, a systematic investigation
into the scaling laws of MoE Models’ hyperparame-
ters and the transferability of scaling laws between
Dense Models and MoE Models remains lacking,
which will be the focus of our work.

With the increasing size of models in deep learn-
ing, hyperparameter estimation has gained signif-
icant attention due to the huge costs associated
with hyperparameter tuning. In training large lan-
guage models, several key hyperparameters require
careful consideration and selection. Previous re-
search has offered valuable insights that inspire
our approach. For instance, McCandlish et al.
(2018) highlights the trade-off between training
speed and efficiency, focusing on the critical batch
size, which can be measured by the gradient noise
scale. Other studies (Goyal et al., 2017; Granziol
et al., 2022; Li et al., 2024) propose a linear scaling
rule for adjusting learning rates as a function of
minibatch size for SGD optimizers, while a square
root scaling rule is suggested for adaptive optimiz-
ers. Some works focus on optimal hyperparameter
transfer. For instance, unlike traditional Bayesian
Optimization (BO)-based methods (Horváth et al.,
2021; Perrone et al., 2018), recent studies (Yang
et al., 2022, 2023) emphasize transferring hyper-
parameters across model scales. They introduce a
novel zero-shot strategy known as Maximal Update
Parametrization (µP), demonstrating that optimal
hyperparameter choices for smaller models remain
effective for larger ones. However, there is a lack
of research on hyperparameter transfer across MoE
Models and Dense Models. Our work specifically
emphasizes critical hyperparameters transfer such
as resource allocation, learning rate, and batch size,
and their transfer rules for Dense Models and MoE
Models.

C Details of Differentiation

Given the loss function:

L̂(N,D,E) =
A

NαEγ
+

B

Dβ
+ σ (16)

and the constraint:

C = ND (17)

where N , D, C and E are the model scale (non-
embedding FLOPs per token) and the number of
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training tokens, compute budget and the number of
experts respectively. A, B, α, β, γ are all coeffi-
cients. σ is the noise of the dataset, which is the
minimum loss value for model.

We can substitute D = C
N into the loss function.

Next, we differentiate L̂ with respect to N :

L̂(N,
C

N
,E) =

A

NαEγ
+

BNβ

Cβ
+ σ (18)

Next, we differentiate L̂ with respect to N :

dL̂

dN
=

d

dN

(
A

NαEγ
+

BNβ

Cβ
+ σ

)
(19)

The Nopt and Dopt are the critical point when L
achieves the minimum loss value. Set the derivative
to zero to find the critical points:

− αA

Nα+1Eγ
+

βBNβ−1

Cβ
= 0 (20)

Therefore,

Nopt(C) =

(
αA

βBEγ

) 1
α+β

C
β

α+β (21)

Using the constraint C = ND, we find Dopt:

Dopt(C) =
C

Nopt
(22)

Dopt(C) =
C

(
αA

βBEγ

) 1
α+β

C
β

α+β

(23)

Therefore,

Dopt(C) =

(
αA

βBEγ

)− 1
α+β

C
α

α+β (24)
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