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Abstract

How far have we come in mitigating perfor-
mance disparities across genders in multilin-
gual speech recognition? We compare the
impact on gender disparity of different fine-
tuning algorithms for automated speech recog-
nition across model sizes, languages and gen-
der. We look at both performance-focused
and fairness-promoting algorithms. Across lan-
guages, we see slightly better performance for
female speakers for larger models regardless
of the fine-tuning algorithm. The best trade-
off between performance and parity is found
using adapter fusion. Fairness-promoting fine-
tuning algorithms (Group-DRO and Spectral
Decoupling) hurt performance compared to
adapter fusion with only slightly better per-
formance parity. LoRA increases disparities
slightly. Fairness-mitigating fine-tuning tech-
niques led to slightly higher variance in perfor-
mance across languages, with the exception of
adapter fusion.

1 Introduction

Automatic Speech Recognition (ASR) systems
have become ubiquitous in our daily lives, power-
ing virtual assistants, dictation software, customer
service interactions, and more. However, these sys-
tems are not always equally effective for all users,
and gender disparity in their performance is a sig-
nificant concern (Tatman, 2017).

One key factor contributing to gender disparity
in ASR performance is the way in which these sys-
tems are trained. If the training data predominantly
consist of male voices, for example, ASR systems
may exhibit higher error rates when transcribing
female speech. Or vice versa. The downstream so-
cietal impact of gender disparity in ASR systems is
multifaceted. It can exacerbate existing inequalities
by hindering access to information and services for
certain social groups. In professional settings, in-
accurate transcription can impede communication

Figure 1: Augmenting Whisper with adapter fusion for
better performance and gender parity. Adapter fusion
is over three adapters – one trained with a vanilla loss
(ERM), one trained with Group-DRO, and one trained
with spectral decoupling (SD).

and productivity, potentially affecting career ad-
vancement opportunities. Finally, the perpetuation
of performance disparities in technology can rein-
force harmful stereotypes and norms, contributing
to broader social inequalities.

Mitigating gender disparities is non-trivial. Sev-
eral algorithms have been proposed (Koh et al.,
2021), but they often introduce significant perfor-
mance costs (Kim et al., 2020), and their impact
on gender disparity is often small (Chalkidis et al.,
2022). In this paper, we evaluate their impact on
performance and gender disparity in multilingual
ASR, but we also present a simple technique to
improve the robustness of fairness-improving fine-
tuning methods. Specifically, we augment multilin-
gual Whisper using adapter fusion (Pfeiffer et al.,
2021) over several fairness-promoting strategies;
see Figure 1.

Contributions We evaluate the performance and
gender disparity of four different fine-tuning strate-
gies for multilingual ASR models, two of which
are fairness-promoting. Our baselines are standard
empirical risk minimization (ERM) and so-called
low-rank adaptation (LoRA) (Hu et al., 2022).
The two fairness-promoting algorithms are Group-
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DRO (Sagawa et al., 2020) and spectral decoupling
(Pezeshki et al., 2021). Finally, we evaluate a novel
combination of existing techniques: adapter fusion
over ERM, Group-DRO, and spectral decoupling.
We evaluate all models across 16 languages with
binary gender as our demographic variable, and
find that only adapter fusion reduces gender dis-
parity without incurring a significant performance
drop. In fact, performance improves, and disparity
is reduced. Cross-lingual performance gaps widen
a bit, however.

2 Fairness-Promoting Finetuning

Standard expected risk minimization (ERM) fine-
tuning in automatic speech recognition (ASR)
and fairness-promoting fine-tuning techniques like
Group-DRO (Sagawa et al., 2020), spectral decou-
pling (Pezeshki et al., 2021), and adapter fusion
(Pfeiffer et al., 2021) serve different purposes and
address different aspects of model performance.
ERM fine-tuning, our baseline technique, mini-
mizes the expected risk or the expected value of
a loss function over the data distribution. In ASR,
this typically involves reducing the word error rate
(WER). ERM fine-tuning involves iteratively updat-
ing the parameters of the ASR model using a gra-
dient descent-based optimization algorithm, such
as stochastic gradient descent (SGD) or Adam, to
minimize the loss function.

Fairness-promoting fine-tuning techniques aim
to increase performance parity in ASR systems by
addressing disparities in model predictions across
different demographic variables (e.g., gender, race,
age). Group-DRO (Sagawa et al., 2020) modifies
the standard fine-tuning objective to optimize for
performance parity by minimizing the worst-case
error across multiple demographic groups, ensur-
ing that no particular group is disproportionately
affected by the model’s predictions. Spectral decou-
pling (Pezeshki et al., 2021) involves modifying the
training process to remove unwanted biases from
the learned representations, by decoupling sensitive
features from the predictive features in the model.

The fairness-promoting techniques differ from
ERM fine-tuning in their explicit attention to per-
formance parity, often introducing additional con-
straints or modifications to the training process to
achieve more equitable model outcomes. While
ERM fine-tuning seeks to optimize the overall per-
formance of the ASR system, fairness-promoting
techniques specifically target performance dispari-

ties across social groups.
Adapter fusion fine-tunes a pre-trained model

by adding small neural adapters to the model ar-
chitecture, which are specifically trained to miti-
gate performance disparities and improve empirical
fairness in the model’s predictions while retain-
ing the knowledge learned from the pre-training
phase. The adapter fusion model explored here
combines ERM, Group-DRO and spectral decou-
pling adapters by adding an extra adapter layer.

3 Experiments

Model Whisper (Radford et al., 2022) is a family
of ASR models developed by OpenAI. The mod-
els vary in size from 39M parameters in the ’tiny’
model to 1.55B parameters in the ’large’ model,
and they are all trained on 680,000 hours of web
data across 97 languages. We focus on Whisper-
large because it achieves the highest performance
for all groups, but we provide results for all model
sizes in Table 3 of the Appendix.

Data We use VoxPopuli1 – a multilingual, open
source dataset – to evaluate the performance
and gender disparity of different fine-tuning and
fairness-promoting strategies. VoxPopuli is a col-
lection of speeches given in the European Parlia-
ment between 2009–2020, and metadata about the
speakers demographic information is included. Our
study of gender disparity is limited by the avail-
ability of only the binary genders in this dataset.
We use data from 16 languages: English, Slovene,
Lithuanian, Italian, French, Polish, Romanian, Ger-
man, Finnish, Dutch, Croatian, Hungarian, Slovak,
Czech, Spanish, and Estonian. The Whisper mod-
els performed relatively poorly out of the box on
this data, so we report word error rates for fine-
tuned models only.

LoRA and ERM baselines We use two different
baselines. Our LoRA baseline introduce low-rank
parameterization to the adapter layers added on
top of the pre-trained model. Low-rank param-
eterization reduces the number of parameters re-
quired to adapt the pre-trained model, making it
more computationally efficient, yet aims to main-
tain the expressiveness of the adapted model. By
constraining the parameters to be low-rank, LoRA
like sparsity-promoting regularizers encourages the

1https://huggingface.co/datasets/facebook/
voxpopuli
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adapter layers to capture essential task-specific in-
formation. Our ERM baseline adapter layers train
additional layers on top of the pre-trained Whis-
per model. The purpose of these layers is to adapt
the pre-trained model’s representations to better
suit the VoxPopuli data and increase performance.
ERM focuses on minimizing the empirical risk,
which is the average loss over the training dataset.

Group-DRO and Spectral Decoupling Our two
fairness-promoting fine-tuning strategies are also
implemented as adapter layers. Unlike the base-
line adapters, these strategies specifically target and
mitigate group disparity, in our case, across gen-
ders. All adapter strategies use the same number
of parameters; see Table 2 for the Appendix for
hyper-parameters.

Adapter fusion Inspired by the adapter fusion
framework presented in Pfeiffer et al. (2021), we in-
troduce adapter fusion layers to adjudicate between
three adapters: one trained with empirical risk min-
imization, one trained with group-distributionally
robust optimization, and one trained with spectral
decoupling.

Protocol We rely on the standard VoxPopuli
splits. For each fine-tuning strategy, we fine-
tune a new model for each language. All hyper-
parameters are optimized on held-out (develop-
ment) data, by doing grid search over a limited
set of values; see Table 2 of the Appendix for hy-
perparameters.

Adapter ♀ ♂ ♀+♂ ∆

LoRA 12.4 13.3 12.9 0.9
ERM 9.9 10.5 10.3 0.6

Group-DRO 10.3 10.5 10.4 0.2
SD 10.4 10.8 10.6 0.4

Fusion 9.4 10.0 9.7 0.6

Table 1: Word Error Rates for Whisper-large with
adapters, averaged across 16 languages. Delta indicates
the performance disparity between the binary genders.

Results The full set of results is presented in
Table 3 of the Appendix, but the summary for
Whisper-large – averaging across the 16 languages
– is presented in Table 1. We generally see slightly
better performance for female speakers than for
male speakers. Group-DRO and spectral decou-
pling perform on par with standard ERM fine-

tuning, but with the added benefit of lower perfor-
mance disparity. LoRA also performs comparably,
but exhibits higher gender disparity, and Adapter
fusion reaches the best performance for both gen-
ders, but with higher disparity (∆) than in Group-
DRO and Spectral Decoupling. These trends are
observed across all model sizes, but performance
is slightly better for larger models, see Figure 2
for performance examples across the 5 Whisper
models on English and German VoxPopuli.

4 Discussion

Fairness and (two flavors of) regularization We
saw that LoRA exhibits higher performance dispari-
ties than vanilla empirical risk minimization. Since
low-rank adaptation is a form of regularization,
this seems at odds with previous work suggesting
that regularization mitigates performance dispari-
ties (Sagawa et al., 2020; Petren Bach Hansen et al.,
2022). The incongruency is only apparent: It is
well-known that sparsity-promoting regularization
– like LoRA – hurts robustness (Sutton et al., 2006;
Globerson and Roweis, 2006; Søgaard, 2013),
while ℓ2-regularization, ℓ∞-regularization, noise in-
jection (Bishop, 1995), and drop-out (Wager et al.,
2013) often improve robustness. The work cited
above (Sagawa et al., 2020; Petren Bach Hansen
et al., 2022) both use ℓ2-regularization.

Rawlsian fairness Whether fairness is best mea-
sured by the absolute performance of the worst-off
group (Rawlsian fairness) or by the relative perfor-
mance differences across groups (egalitarian fair-
ness) is a philosophical question (Jørgensen and
Søgaard, 2023), but we note that in our case, this
has direct consequences for what approach to rec-
ommend: Group-DRO or Adapter Fusion? Adapter
fusion has superior performance, also for the worst
off group, so it is preferable on Rawls’ account.
The egalitarian would prefer something like Group-
DRO, however, since cross-group differences (∆)
are smaller. Note that minimizing cross-group dif-
ferences is preferable even to leveling down (Parfit,
2002) from an egalitarian perspective.

Linguistic fairness Fairness is usually measured
across social groups defined by the Cartesian prod-
uct of a set of protected attributes. However, global
technologies can serve some language communi-
ties better than others (Lent et al., 2021; Wang et al.,
2022; Paz, 2014). This goes for both error rates and
disparities (Cabello Piqueras and Søgaard, 2022;
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Figure 2: Word error rates with our best performing architecture, adapter fusion, on five languages over model sizes
(x-axis).

Figure 3: Standard deviations for performance across
languages

Ramesh et al., 2023). If Whisper or other mul-
tilingual ASR models consistently exhibit much
higher error rates or disparities on data in specific
languages, their speakers will be disadvantaged.
The standard deviations of performances across 16
languages for Whisper-large are given in Figure 3.
Fine-tuning cuts more than half of the standard de-
viation across languages. The fact that adapter fu-
sion leads to the lowest disparity across languages,
is promising. Cross-lingual performance gaps such
as the ones observed here are still worrying and
call for more research; see also Rust and Søgaard
(2023) for discussion.

The pros and cons of stacked architectures
Adapter fusion adds additional layers of param-

eters to adjudicate between the three adapter layers
trained with different objectives. If we add param-
eters, we slow down inference time, but on the
upside, fine-tuning adapter layers is inexpensive
in comparison to fine-tuning encoder or decoder
layers of the original Whisper model. Stacking is
cheaper than voting in this respect, since we do
not have to fine-tune with three different objectives.
Finally, the slow inference time can be improved
by adapter pruning (Rücklé et al., 2021), without
compromising fairness.

5 Conclusions

In this paper, we evaluated the impact on perfor-
mance and gender disparity of different fine-tuning
algorithms in automated speech recognition, in-
cluding fairness-promoting ones. Our analysis
considered model size, language, gender. In gen-
eral, we saw better performance for female speak-
ers for larger models and significant performance
gaps across languages. Fairness-promoting fine-
tuning algorithms (Group-DRO and spectral decou-
pling) hurt performance with some improvements
in performance parity. LoRA increases disparities
slightly. We find the highest performance with
acceptable parity in a novel, fairness-promoting
variant of adapter fusion, which had positive ef-
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fects on performance, group fairness, as well as
parity in performance between languages.

Limitations

While we cover 16 languages, our study is lim-
ited to mostly Indo-European, higher-resource lan-
guages. English, Slovene, Lithuanian, Italian,
French, Polish, Romanian, German, Dutch, Croat-
ian, Slovak, Czech, and Spanish are Indo-European.
Hungarian, Finnish, and Estonian are Finno-Ugric
languages. It is important to extend studies such
as ours to more language families; see, e.g., Abra-
ham et al. (2020). Our dataset only contains binary
gender (M/F), and as a result our results are lim-
ited to these genders only. While we compare two
fairness-promoting fine-tuning strategies, we leave
out others, e.g., automatic, worst-case aware cur-
riculum learning (de Lhoneux et al., 2022). Such
algorithms could also be combined using adapter
fusion. Obviously, it would be relevant to replicate
our findings on other multilingual ASR datasets,
and it is extremely important to extend studies such
as ours to more demographic variables (race, age,
language proficiency, impairments, etc.) and to in-
vestigate the performance on intersections of these
attributes.
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A Appendix
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FUSION ERM G-DRO SD Epochs

Language learning rate drop out lambda_erm lambda_dro lambda_spectral lambda_erm lambda_dro lambda_spectral

English 1.00E-06 0.05 0.8 0.8 0.003 0.5 0.5 0.003 30
German 1.00E-06 0.05 0.8 0.8 0.003 0.5 0.5 0.003 30
French 1.00E-06 0.05 0.8 0.8 0.003 0.5 0.5 0.003 30
Spanish 1.00E-06 0.05 0.8 0.8 0.003 0.5 0.5 0.003 30
Italian 1.00E-06 0.05 0.8 0.8 0.03 0.5 0.5 0.03 30
Romanian 1.00E-05 0.05 0.9 0.9 0.04 0.5 0.5 0.03 30
Hungarian 1.00E-05 0.05 0.9 0.9 0.04 0.5 0.5 0.04 30
Polish 1.00E-04 0.05 0.8 0.8 0.04 0.5 0.5 0.04 30
Czech 1.00E-05 0.05 0.8 0.8 0.04 0.5 0.5 0.03 30
Dutch 1.00E-04 0.05 0.8 0.8 0.04 0.5 0.5 0.04 30
Finnish 1.00E-05 0.05 0.8 0.8 0.03 0.5 0.5 0.04 30
Croatian 1.00E-056 0.05 0.8 0.8 0.03 0.5 0.5 0.04 30
Slovak 1.00E-05 0.05 0.8 0.8 0.03 0.5 0.5 0.04 30
Slovene 1.00E-04 0.05 0.8 0.8 0.03 0.8 0.8 0.03 40
Estonian 1.00E-06 0.05 0.8 0.8 0.05 0.8 0.8 0.05 40
Lithuanian 1.00E-04 0.05 0.8 0.8 0.03 0.8 0.8 0.04 40

Table 2: Hyper-parameters.

Language LoRA ERM G-DRO SD Fusion

English ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 17.85 13.24 15.43 12.79 12.42 12.52 12.47 12.15 12.23 13 12.21 12.66 13.52 12.96 13.12
base 16.39 13.98 15.18 10.45 11.99 11.23 10.43 13.22 11.9 12 13.1 12.5 11.01 11.44 11.23
small 13.58 13.3 13.44 10.41 10.31 10.3 12 11.56 11.8 11.43 11.04 11.33 10.11 10 10
medium 9.31 9.2 9.26 8.06 8.11 8.09 8.1 8.24 8.18 8.66 9.57 9.12 7.37 7.51 7.46
large 10.05 8.49 8.96 7.32 7.45 7.37 7.65 8 7.9 7.88 8.01 7.96 7.16 7.47 7.44

Slovene ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 35.31 40.21 37.8 21.22 26.43 26 25.31 26.11 25.8 26 27.11 27 24.02 28.11 26
base 22.34 36.73 29.6 19.56 23.16 22 21 23.11 22 21.13 24.11 22.66 20 27.11 24
small 21.28 35.3 28.9 20 23.78 21.9 18.56 18.89 18.73 18.46 18.54 18.66 18.75 25 21.9
medium 21.19 33.45 27.3 17.45 18.86 18.17 17.64 18.9 18.28 17.63 18.79 18.22 12.85 13.31 13.16
large 20.15 20.55 20.25 12.17 12.56 12.36 12.56 13.15 12.78 12.48 13.22 12.82 12.12 12.41 12.26

Lithuanian ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 71.42 69.67 70.48 50 50.12 50 51.1 53 52.22 49.91 53.2 51.6 51.12 55.34 53.23
base 59.67 65.71 62.31 36.12 41 39 36 40.19 38 37.03 41.1 39 35.21 41.1 37.78
small 49.34 50.95 50.6 26.76 34.16 30.66 35.09 36.07 35.76 35.09 36.16 35.72 26.43 33.36 30
medium 17.19 19.43 18.4 16.59 17.67 17.11 17.42 17.51 17.47 16.25 17.55 17 16.75 17.55 16.34
large 17.34 18.11 17.6 13.63 14.14 13.89 13.75 14.23 14 13.75 14.24 14 12.13 12.79 12.58

Italian ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 20.42 19.34 20 18 17.15 17.6 17.86 18 17.94 18.93 19.19 19.08 15.24 16.11 15.66
base 16.71 19.12 17.92 17.03 17.54 17.26 16.27 17.25 16.66 18.72 19.04 18.78 14.72 15.11 14.86
small 13.03 14.88 14.54 11.86 13.75 12.95 12.03 13.45 12.67 13.87 14.15 14.01 12.35 13.56 13.25
medium 12.92 14.78 14.45 10.33 11.13 10.8 10.66 11.23 11 10.5 11.02 10.8 10.26 11 10.55
large 8.61 16.21 12.52 8.56 10 9.3 9 10.15 9.6 8.97 10.76 10 7.35 9.96 8.7

French ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 12.54 13.67 14.37 12.32 12.92 12.77 11.8 12.66 12.44 11.57 12.75 12.46 11.46 12.13 12.96
base 11.49 12.27 12.01 11.16 11.54 11.36 11.75 12.08 11.91 11.75 12.08 11.91 10.94 11.86 11.52
small 11.5 12.13 11.81 11 11.42 11.24 10.98 11.54 11.3 11.59 12.03 11.82 10.59 11.34 10.96
medium 9.98 9.72 9.86 8.99 9.43 9.21 9 9.27 9.17 9.12 9.31 9.22 8.75 9.16 8.9
large 9.5 9.63 9.57 8.73 9.1 9 8.99 9.31 9.14 9.01 9.22 9.13 8.56 9.02 8.8

Polish ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 15.8 15.06 15.11 13.45 13.76 13.6 13.72 14.19 13.67 13.7 14.28 13.9 14.91 14.89 14.9
base 11.24 11.46 11.29 9.21 9 9.11 10.14 9.08 9.24 9.48 11.48 10.36 8.91 8.93 9
small 9.8 9.37 9.59 8.55 8.89 8.7 8.56 9 8.9 8.91 9 8.96 8.75 9 8.87
medium 9.78 9.28 9.54 8.51 8.45 8.49 9 8.52 8.84 9 8.75 8.88 8.61 8.5 8.85
large 9.57 9.03 9.31 8.45 8.33 8.4 8.91 8.43 8.66 9.14 8.79 8.87 6.33 6.17 6.46

Romanian ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 48.01 52.71 50.34 28.14 33 30.5 29.19 30.33 30 29 31.12 30 24.67 30.21 27.45
base 29.76 33.17 31.5 16.12 16.31 16.22 16.06 16.11 16.08 16.24 16.35 16.3 15.67 17.03 16.32
small 27.44 27.96 29.23 12.25 12.58 12.41 12.66 13.11 12.89 12.61 13.54 13.07 12.18 13 12.6
medium 9.1 10.71 10 9.81 10 9.9 9.75 10.12 9.94 9.75 10.12 9.94 9 10.23 9.62
large 8.98 9.05 9.22 7.52 8.93 8.55 8.13 9.48 8.81 8.24 9.51 8.86 7.74 8.27 8

German ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 10.72 13.62 11.57 10.13 12.2 11.14 10.21 12.22 11.22 11.12 12.23 11.66 9.65 11.45 10.55
base 10.65 16.63 13.34 9.68 10.44 10.07 9.59 10.63 10.13 10.14 10.44 10.3 9.14 10.55 9.85
small 10.47 12.88 11.7 9.55 10.32 9.94 9.43 10.83 10.21 9.43 10.96 10.2 9.09 10.32 9.71
medium 9.55 10.8 10.17 9.34 10.25 9.8 9.31 10.76 10.06 9.61 10.65 10.15 8.75 9.83 9.54
large 9.26 10.55 9.9 8.73 9.25 9 9.21 9.78 9.51 9.34 9.98 9.68 8.07 8.46 8.32

Table 3: Word error rates (male, female, all) for five fine-tuning algorithms. D-GRO and SD are fairness-promoting.
Fusion is our contribution.
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Language LoRA ERM G-DRO SD Fusion

Finnish ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 16 17.23 16.62 15 13.55 15.27 14.3 15.34 15.4 15.4 15.64 15.6 15.85 14 15.16
base 10.63 8.89 9.8 10.43 8.55 9.46 10.61 8.75 9.68 10.66 9 9.83 10.23 8.77 9.55
small 10.48 8.83 9.66 10.38 8.32 9.44 10.36 9 9.61 10.4 8.73 9.59 10.16 8.74 9.44
medium 10.22 8.83 9.52 9.47 9.34 9.4 9.43 9.27 9.31 9.47 9.17 9.25 9.44 9.01 9.23
large 10.12 8.56 9.4 9.17 8.66 8.91 9 8.9 8.95 9 8.88 8.95 9.46 8.48 9.08

Dutch ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 21.17 24.35 22.04 20.53 23.24 22.54 19.78 19.32 19.52 19.37 19.17 19.31 16.52 17.04 16.68
base 16.78 19.81 18.3 11.25 12.57 11.91 10.91 11 10.96 10.98 11.71 11.35 11.23 12.61 11.9
small 15.11 16.21 15.66 10.71 11.13 10.93 10.54 11.12 10.8 10.54 11.12 10.8 10.65 11 10.85
medium 11.65 12.74 12.2 9.81 9.99 9.9 9.73 10 9.86 9.81 10.19 10 9.98 10.12 10
large 10.98 11.15 11 9.65 9.78 9.71 8.89 9 8.94 9.19 10 9.6 9.56 10.01 9.79

Croatian ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 17.71 17.88 17.8 16.65 18.07 17.37 15.53 16.24 15.88 15.16 17 16.08 17 17.65 17.33
base 16.32 17.72 17 16.21 17 16.6 15.45 16.14 15.78 15.45 16.14 15.78 16.15 16.55 16.38
small 16.39 17.51 16.76 16.1 17 16.55 14.39 16.18 15.3 15 16.41 15.7 13.45 16.95 14.92
medium 16.34 17 16.67 15.19 16.3 16.38 15.18 15.14 15.18 15.35 16 15.5 13.35 15.46 14.46
large 15.92 16.98 16.21 11.75 12.21 12 12.05 13.24 13 12.05 13.24 13 12.32 13.12 12.8

Hungarian ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 48.46 54.06 50.49 34.72 41.68 36.41 38.06 41.07 38.24 42.06 53.17 42.14 43.41 46.24 44.34
base 27.67 26.76 27.21 20 19.78 19.89 20 21.31 20.65 19 19.81 19.4 21.18 22.57 21.8
small 19.76 18.78 19.3 19.56 19.9 19.74 19.67 20 19.39 19.01 19.56 19.28 18.18 19 18.6
medium 19.34 18.17 21.31 14.31 13.44 13.43 13.55 13.29 13.32 14.12 13.75 13.65 14.51 14.44 14.48
large 12.32 11.46 11.9 10.64 10.55 10.6 10.6 10.47 10.54 10.79 10.66 10.75 10.55 10.21 10.33

Slovak ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 22.21 21.9 22.2 20.18 19.81 19.87 21.18 24.16 20.65 22.35 26.13 25.12 22.01 20.35 21.39
base 26.71 27.46 26.23 18.87 23.41 21.23 23.9 22.34 22.82 22.98 22.31 22.51 18.76 22.49 20.74
small 25.34 25.59 25.41 18.46 19.01 18.74 17.82 20.19 19 17.89 21.16 19.55 17.46 18.1 17.8
medium 16.16 17.32 16.8 13.99 14.41 14.32 15.19 16 15.6 15.39 16 15.8 14.52 16 15.43
large 12.39 14.41 13.79 10.38 10.42 10.41 10.26 9.56 9.8 10.57 12 11.3 8.87 9.41 9.25

Czech ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 26.15 30.62 29.42 14.96 15.58 15.41 15.11 16.11 16.15 16.04 16.65 16.35 24.61 29.85 27.24
base 15.41 24.78 20.62 15.35 16.13 15.75 16 16.1 16.05 16.19 16.47 16.34 15.3 16.03 15.29
small 18.12 19.65 18.51 14.9 15.61 15.26 15 15.43 15.22 15.01 15.83 15.44 14.81 15.79 15.26
medium 15.84 18.81 17.33 15 15.43 15.25 14.99 15.93 15.47 15 16.01 15.51 14.86 15.37 15.23
large 15.71 18.61 17.18 11.69 12.61 12.2 12 13.19 12.6 12.15 13.04 12.6 11.44 12.31 11.89

Spanish ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 10.59 10.58 10.59 10.21 10 10.11 10.24 10.13 10.18 10.24 10.13 10.18 10.19 9.98 10.09
base 10.7 9.91 10.31 9.51 9.07 9.3 9.91 9.31 9.66 9.81 9.32 9.57 9.12 8.91 9.01
small 10.75 9.21 10 9.44 9.21 9.3 9.74 9.52 9.65 9.66 9.02 9.36 10 8.75 8.87
medium 10.72 8.85 9.31 8.54 10.21 9.38 9.49 8.89 9.2 9.5 9 9.27 9.21 8.31 8.66
large 10.68 8.71 9.24 9.41 8.61 9.02 9.24 8.64 8.94 9.34 8.44 9 9.01 8.66 8.49

Estonian ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂ ♀ ♂ ♀+♂

tiny 55.35 54.06 56.09 33.01 28.52 31 30 32.41 31.21 32.14 33.54 32.9 23.26 21.22 22.25
base 55.37 54.13 54.13 19.75 17.43 18.98 33.34 29.24 32.07 32.15 29.91 31.29 13.72 13.52 13.65
small 43.75 41.69 42.46 20.59 18.89 19.7 31.15 28.34 29.8 31.82 29 30.42 13.96 12.21 13.37
medium 20 19.17 19.6 15.47 15.31 15.4 16.16 15.68 16.01 16.16 15.14 15.66 12.66 11.35 12.04
large 18 19.8 19.41 12.94 14.48 13.96 12.03 14.55 13.31 14.56 16 15.3 11.07 12.3 11.89

Table 4: Word error rates (male, female, all) for five fine-tuning algorithms. D-GRO and SD are fairness-promoting.
Fusion is our contribution.
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