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Abstract

In recent years, multimodal large language
models (MLLMs) have garnered significant
attention from both industry and academia.
However, there is still considerable debate
on constructing MLLM architectures, partic-
ularly regarding the selection of appropriate
connectors for perception tasks of varying gran-
ularities. This paper systematically investi-
gates the impact of connectors on MLLM
performance. Specifically, we classify con-
nectors into feature-preserving and feature-
compressing types. Utilizing a unified clas-
sification standard, we categorize sub-tasks
from three comprehensive benchmarks, MM-
Bench, MME, and SEED-Bench, into three task
types: coarse-grained perception, fine-grained
perception, and reasoning, and evaluate the
performance. Our findings reveal that feature-
preserving connectors excel in fine-grained per-
ception tasks due to their ability to retain de-
tailed visual information. In contrast, feature-
compressing connectors, while less effective in
fine-grained perception tasks, offer significant
speed advantages and perform comparably in
coarse-grained perception and reasoning tasks.
These insights are crucial for guiding MLLM
architecture design and advancing the optimiza-
tion of MLLM architectures.

1 Introduction

Large language models (LLMs) have made sig-
nificant advances in recent years, demonstrating
remarkable capabilities in understanding and gen-
erating text (Brown et al., 2020; Su et al., 2022;
Jiang et al., 2023; Bai et al., 2023; Touvron et al.,
2023; Zhang et al., 2024; Su et al., 2024). Recently
multimodal large language models (MLLMs) have
emerged as a hot topic in both academia and in-
dustry due to their potential to handle multiple
modalities, such as text and vision, in a unified
framework (Wang et al., 2023; Alayrac et al., 2022;
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Gao et al., 2024). However, training a unified ar-
chitecture from scratch across different modalities
is often resource-intensive and time-consuming,
making it feasible only for a limited number of
large companies with substantial computational re-
sources (Team, 2024; Zhou et al., 2024). As a
result, researchers commonly adopt a connector-
based approach, which fully leverages the exist-
ing powerful capabilities of a pre-trained language
model (Li et al., 2023b; Liu et al., 2024b). This
connector bridges the gap by transforming visual
information from the encoder into vector represen-
tations that the LLM can process and understand.
Through this method, the pre-trained text-based
LLM is empowered to perceive and interpret visual
data, enabling it to perform a wide range of visual
tasks without requiring a complete retraining of the
model from scratch (Yin et al., 2023).

Designing an optimal MLLM architecture re-
mains a crucial and intriguing research area. While
prior studies (Karamcheti et al., 2024; McKinzie
et al., 2024; Laurencçon et al., 2024) have inves-
tigated various factors affecting MLLM perfor-
mance, a significant gap persists in the detailed
examination of the key component: the connector.

We categorize connectors into two types:
feature-preserving connectors, which retain vi-
sual feature details by maintaining patch numbers,
and feature-compressing connectors, which re-
duce computational load by abstracting patches
into a specified number. Different studies have con-
flicting views: Lin et al. (2023); Chen et al. (2024)
contends that feature-compressing connectors are
suitable for coarse-grained perception tasks but per-
form weakly on fine-grained perception tasks. In
contrast, McKinzie et al. (2024) observes little dif-
ference between the two. Although these studies
provide experimental evidence, further exploration
is needed to understand how connectors perform
across varying perception granularities.

To address this gap, this paper aims to meticu-
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Figure 1: Comparison of radar chart performance at 224, 336, and 448 resolutions across coarse-grained perception,
fine-grained perception, and reasoning tasks on MMBench. Each task includes four sub-tasks: Image Quality, Image
Scene, Image Style, and Image Topic for coarse-grained perception; Action Recognition, Celebrity Recognition,
Object Localization, and OCR for fine-grained perception; and Function Reasoning, Identity Reasoning, Social
Relation, and Structuralized Image-Text Understanding for reasoning tasks.

lously investigate the effects of various connectors
on tasks of different perception granularities. Build-
ing on the construction guidelines of MMBench
(Liu et al., 2023), we evaluate the impact of con-
nectors on the performance of MLLMs across three
task types: coarse-grained perception, fine-grained
perception, and reasoning. Our extensive experi-
ments thoroughly explore connector performance
across these varying perception granularities. Sev-
eral noteworthy conclusions are drawn from testing
on three multitask benchmarks. Figure 1 shows the
performance of different connectors on the three
tasks as well as the corresponding sub-tasks. Our
main contributions are summarized as follows:

1. We conduct a comprehensive analysis of dif-
ferent connectors from multiple perspectives,
including loss curves, compressed token num-
ber, image resolution, and performance met-
rics across tasks of different granularities.

2. We demonstrate that feature-compressing con-
nectors significantly underperform in fine-
grained perception tasks compared to feature-
preserving connectors, while maintaining
comparable performance in coarse-grained
perception tasks.

3. We analyze the impact of different pooling
methods within feature-compressing connec-
tors, revealing that simpler pooling methods
generally lead to more effective training and
better overall performance.

2 Related Work

Connectors play a crucial role in aligning multi-
modal data within MLLMs, with various types.
Based on whether the patch number of visual fea-
tures is retained or reduced, we classify connectors
into two categories: feature-preserving connectors
and feature-compressing connectors.LLaVA (Liu
et al., 2024b) employs a single-layer linear pro-
jection as its connector, whereas LLaVA-1.5 (Liu
et al., 2024a) enhances this design by adding a
GELU activation function and an extra linear pro-
jection. These feature-preserving connectors are
designed to retain the details of visual features.
Emu2 (Sun et al., 2024) uses a local average pool-
ing strategy to standardize visual features into a uni-
form number of patches. BLIP-2 (Li et al., 2023b)
utilizes the Q-Former, a cross-attention connec-
tor that uses a fixed number of learnable queries
to interact with visual features, enabling global
weighted pooling. HoneyBee (Cha et al., 2024)
introduces the C-Abstractor, which utilizes convo-
lutional neural networks to perform local weighted
pooling based on Emu2’s local average pooling,
effectively extracting local features. These feature-
compressing connectors adjust the length of feature
patch number, thereby optimizing computational
resources while reserving key information.

To explore the impact of various components
and parameters in MLLMs on performance, numer-
ous studies have been conducted. Karamcheti et al.
(2024) rigorously investigates MLLMs along key
design axes, such as optimization procedures, im-
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age processing, pretrained visual representations,
language models, and scaling properties. MM1
(McKinzie et al., 2024) aim to identify impor-
tant design principles and lessons for constructing
MLLMs through comprehensive ablation studies
on architecture components, data choices, and train-
ing procedures. Additionally, Idefics2 (Laurencçon
et al., 2024) conducts extensive experiments around
pre-trained models, architecture choice, data, and
training methods to bring experimental clarity to
core design choices in building MLLMs.

Their findings offer useful initial insights but
require a more detailed analysis of task-specific
performance for greater depth and applicability.
Specifically, they lack a comprehensive examina-
tion of tasks with varying granularities, such as
coarse-grained perception, fine-grained perception,
and reasoning (Liu et al., 2023).

To address this, our paper thoroughly investi-
gates the effects of various connectors on MLLMs,
focusing on their performance across the aforemen-
tioned tasks. This comprehensive analysis aims to
deepen our understanding of connectors’ impact
and guide targeted connector selection in future
model design stages based on specific tasks.

3 Taxonomy of Connectors

3.1 Preliminaries

Multimodal large language models (MLLMs) gen-
erally consist of three key components: a visual
encoder E, a connector C, and an LLM. For a
given visual input V , the encoder E extracts visual
features f ∈ RP×dv , where P is the number of vi-
sual patches and dv is the channel dimension. The
connector C, which is a crucial component, then
aligns these visual features with the word embed-
ding space as follows:

C : RP×dv → RQ×D

x = C(f)
(1)

Here, x ∈ RQ×D represents the visual tokens that
are input into the LLM, where Q is the number
of visual tokens and D is the hidden size of the
LLM. We categorize connectors into two types:
feature-preserving connectors, where P = Q, and
feature-compressing connectors, where P > Q.

3.2 Feature-Preserving Connector

Feature-preserving connectors maintain the patch
number of visual features (i.e., P = Q) and are

typically composed of components such as linear
layers and activation layers. While they can retain
detailed information, the computational complexity
of the model grows exponentially with the visual
token number. Existing feature-preserving connec-
tors can be classified into linear and nonlinear types
based on whether they include nonlinear operations.
For example, the connector in LLaVA (Liu et al.,
2024b) can be classified into linear type because it
only contains a linear layer, as shown below:

x = Wf (2)

where W ∈ Rdv×D is a trainable projection matrix,
that maps the visual features f ∈ RP×dv to the
word embedding space. The connector used in
LLaVA-1.5 (Liu et al., 2024a) can be classified
into the nonlinear type because it incorporates an
activation function and an additional linear layer
on top of the basic linear type, as shown below:

x = W (2)ϕ(W (1)f) (3)

where W (1) ∈ Rdv×D and W (2) ∈ RD×D are
trainable projection matrices, and ϕ denotes a non-
linear activation function GELU. The inclusion of
the activation function allows the nonlinear connec-
tors to capture more intricate patterns and depen-
dencies in the data, enhancing the model’s ability
to manage complex visual-textual relationships.

3.3 Feature-Compressing Connector
Feature-compressing connectors reduce the num-
ber of visual tokens Q through various strategies,
aiming to preserve visual information while opti-
mizing computational efficiency. Based on MM1
(McKinzie et al., 2024), we categorize feature-
compressing connectors into three types: average
pooling, attention pooling, and convolutional map-
ping, as shown in Figure 2. They generally operate
in two steps. The first step involves using a pooling
operation P to reduce the patch number P of visual
feature f to Q (Q < P ) as follows:

f ′ = P(f) (4)

where f ′ ∈ RQ×dv represents the compressed vi-
sual features. The second step is consistent with
the feature-preserving connector, where the com-
pressed visual features f ′

v are projected into the
word embedding space using a transformation T :

x = T (f ′) (5)

where T can be a multi-layer perception (MLP) or
convolutional layer that maps f ′ to x ∈ RQ×D.
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Figure 2: The structure of different visual-language connectors. The upper part of the figure shows the overall
structure of various connectors, while the lower part provides a simplified visualization during compression. (a)
The Average Pooling-based connector compresses features by averaging visual tokens within local windows (b)
The Attention Pooling-based connector uses cross-attention between learnable queries and visual tokens to abstract
visual tokens into a certain number of compressed tokens. Each compressed token is derived from all visual tokens
with weighted contributions. (c) The Convolutional Mapping-based connector uses convolution operations to
enhances local context modeling while reducing the number of tokens. Each compressed token is derived from the
visual tokens within local windows with weighted contributions.

Average Pooling This type of connector uses av-
erage pooling as P to reduce the number of tokens.
For a given set of n feature patches in f , the average
pooling operation can be formulated as follows:

f ′
i =

1

n

n∑

j=1

f(i−1)n+j (6)

where f ′
v,i represents the i-th averaged feature

patch in f ′ and f(i−1)n+j represents the j-th feature
patch in the i-th group of f . After obtaining the
compressed visual features f ′, we directly apply
the connector from LLaVA-1.5 as the transforma-
tion T to project f ′ into the word embedding space.

Attention Pooling This type of connector uses
cross-attention as P to reduce the number of tokens.
The patch number P is compressed by performing
cross-attention between a set of learnable queries
Q ∈ RQ×dc and the visual features f , resulting
in f ′ ∈ RQ×dc , where dc is the hidden size of
the cross-attention. The cross-attention mechanism
can be formulated as follows:

K = Wkf, V = Wvf

A = softmax
(
QK⊤
√
dc

)

f ′
i =

P∑

j=1

AijVj

(7)

where K,V ∈ RP×dc are the key and value ma-
trices obtained by projecting the visual features f

using the projection matrices Wk,Wv ∈ Rdv×dc ,
respectively. A ∈ RQ×P is the attention weight
matrix, and Aij represents the attention weight be-
tween the i-th query and the j-th visual feature.
The compressed visual feature f ′

i is obtained by
weighted summation of the value vectors Vj . After
obtaining the compressed visual features f ′, the
transformation T is consistent with the approach
used in average pooling connector.

Convolutional Mapping This type of connec-
tor uses a combination of convolutional layers and
average pooling as P to reduce the number of to-
kens. The patch number P is compressed by first
applying convolutional layers followed by average
pooling, resulting in f ′ ∈ RQ×dv , where dv is
the channel dimension of the visual features. The
transformation T is then applied using additional
convolutional layers to project the compressed vi-
sual features into the word embedding space. The
overall process can be formulated as follows:

f ′
i =

1

n

n∑

j=1

(
Wj · f(i−1)n+j

)

xi =
K∑

k=−K

W ′
k · f ′

i+k

(8)

where xi represents the i-th projected visual token,
obtained by applying convolutional layers repre-
sented by weights W ′

k over the compressed features
f ′
i+k. For simplification, the initial convolutional
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layers and average pooling are represented as a
local weighted average, denoted by Wj .

Characteristics Average pooling is a simple
and efficient feature-compressing connector that
quickly reduces patch numbers without adding
any parameters, making it easy to train. How-
ever, it may lead to the loss of local information,
reducing its effectiveness in fine-grained percep-
tion tasks. Attention pooling, utilizing a global
weighted mechanism, retains more global informa-
tion and offers a higher theoretical performance
limit. Despite this, it has higher computational
complexity and the most additional parameters due
to the learnable queries and projection matrices,
making it the most challenging to train. Further-
more, it may struggle with fine-grained tasks be-
cause the attention mechanism can find it difficult
to preserve local image information (Dosovitskiy
et al., 2020; Park and Kim, 2022). Convolutional
mapping effectively preserves local details and in-
volves a moderate number of parameters, striking
a balance between parameter efficiency and the
ability to capture fine-grained details. However, it
lacks the capability to intuitively capture global fea-
tures. These characteristics are intuitive, but their
actual effectiveness and trade-offs need to be em-
pirically validated through extensive experiments
across tasks with varying perception granularities.

4 Experimental Settings

In this section, we present the experimental set-
tings employed in our study, including the criteria
for perception granularity (4.1), the benchmarks
utilized for evaluation (4.2), and the specific imple-
mentation details of our models (4.3). Each aspect
is carefully detailed to ensure a comprehensive un-
derstanding of our experiment.

4.1 Perception Granularity

The partition criterion for coarse-grained and fine-
grained perception vary across different bench-
marks. For example, MMBench categorizes tasks
like ‘Image Style’ and ‘Image Scene’ under coarse-
grained perception, which focuses on the global
attributes and overall context of the image, while
tasks like ‘Object Localization’ fall under fine-
grained perception, focusing on the local details
and specific features within the image. MME also
differentiates between coarse-grained perception
and fine-grained perception tasks, but its criteria

focus more on testing the knowledge resources of
MLLM, rather than the perspective of spatial scope.

For instance, the task of ‘Object Localization’
in MME is considered a coarse-grained perception
task and ‘Scene Recognition’ is classified as a fine-
grained perception task. However, in MMBench,
they will be divided into coarse-grained perception
task and fine-grained perception task, respectively.
Figure 3 further illustrates this discrepancy. The
left image is selected from the ‘Color’ sub-task,
which is categorized as a coarse-grained percep-
tion task in MME. However, it actually focuses on
local image details, which would reclassify it as a
fine-grained perception task in MMBench. Con-
versely, the right image is selected from the ‘Scene’
sub-task, which is categorized as a fine-grained
perception task in MME, but it actually focuses
on the overall context of the image, making it a
coarse-grained perception task in MMBench.

Parent Task: Coarse-grained perception
Sub-Task: color
Question: “Is there a skateboard with red
wheels in the image? Please answer yes or no.“

Parent Task: Fine-grained perception
Sub-Task: scene
Question: “Is this photo taken in a place of
hangar indoor? Please answer yes or no.“

Figure 3: Examples of conflicting partition criterion for
perception granularity in the MME benchmark.

Many methods exhibit conflicting views on the
ability of different connectors to handle different
granularities (Lin et al., 2023; Chen et al., 2024;
McKinzie et al., 2024). To explore this issue, based
on MMBench, we define coarse-grained percep-
tion as the ability to perceive image-level features,
such as overall concepts and context. In contrast,
fine-grained perception refers to object-level de-
tails within the image, such as identifying specific
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features of individual objects. By analyzing per-
formance in coarse-grained and fine-grained per-
ception tasks, we can determine whether feature-
preserving connectors and feature-compressing
connectors excel in specific perception tasks. Ad-
ditionally, by examining reasoning tasks, we can
more accurately assess the impact of different types
of connectors on the model’s ability to understand
and integrate multimodal information.

4.2 Benchmarks

To explore and evaluate various types of connec-
tors, we utilize three well-established benchmarks
with sub-task labels: MMBench (Liu et al., 2023),
MME (Fu et al., 2023), and SEED-Bench (Li et al.,
2023a). We reference the coarse-grained and fine-
grained perception tasks defined above to reclassify
the sub-tasks of MME and SEED-Bench. Detailed
information on the sub-tasks reclassification can
be found in Table 4, Table 5, and Table 6 in Ap-
pendix A.

4.3 Implementation Details

Given the focus of this paper on comparing con-
nectors, we largely adhere to the configuration of
LLaVA-1.5, with exceptions for connector modifi-
cations and using LLaMA 2 (Touvron et al., 2023)
as the LLM. The visual encoder utilized is CLIP
ViT-L/14 (Radford et al., 2021) with resolutions
of 224 and 336. We keep the learning rate, batch
size, training phases, and data usage consistent
with LLaVA-1.5. For images with a resolution of
448, we refer to MM1 and employ position embed-
ding interpolation to adapt CLIP ViT-L/14 from a
resolution of 336 to 448. Considering that LoRA-
based LLaVA-1.5 performs on par with the fully
fine-tuning setting across the three benchmarks, we
opt for the LoRA approach (Hu et al., 2021) to
save computational resources. Refer to Table 7 in
Appendix B for detailed connector configurations.

5 Results

To verify the ability of different connectors to per-
ceive different image granularities and assess rea-
soning capabilities, we evaluate the performance of
feature-preserving and feature-compressing con-
nectors with different image resolutions across
three key tasks: coarse-grained perception, fine-
grained perception, and reasoning.

5.1 Effects of Feature-Preserving Connector
To assess the performance of feature-preserving
connectors, we compare the linear type (referred to
as the linear connector) with the nonlinear type (re-
ferred to as the two-layer MLP connector) across
three tasks: coarse-grained perception, fine-grained
perception, and reasoning. As shown in Figure 4,
using two-layer MLP connector consistently out-
perform the linear connector in all task groups at a
resolution below 448.

224 336 448

67.5

70.0

72.5

75.0

Coarse-grained Perception

224 336 448
50

55

60

65

Fine-grained Perception

224 336 448
56

57

58

59

60

Reasoning

Two-layer MLP Linear

Figure 4: Comparison of two-layer MLP and linear
connectors on coarse-grained, fine-grained perception,
and reasoning tasks at resolutions of 224, 336, and 448.

When the resolution is increased to 448, al-
though the linear connector performs on par with
the two-layer MLP connector in fine-grained per-
ception, it suffers a substantial performance drop in
other tasks, particularly in reasoning. We hypothe-
size that a linear mapping may struggle balancing
both perception and reasoning at high resolution. In
contrast, the reasoning ability is further enhanced
when using two-layer MLP with higher resolution.

5.2 Impact of Compressed Token Number
The compressed token number Q is an important
parameter. We compare two widely used values:
64 and 144. We fix the resolution at 336 and evalu-
ate average pooling, Q-Former, and C-Abstractor
across three tasks. The results are shown in Fig-
ure 5. It can be seen that while 144 tokens generally
provide a slight improvement in performance over
64 tokens, the difference is not substantial, indicat-
ing that both 64 and 144 tokens are adequate for
robust image information extraction.

Additionally, to further demonstrate the impact
of the compressed token number, we present the
loss curves of different feature-compressing con-
nectors with different compressed token numbers
during the pretraining and finetuning stages in Fig-
ure 6 in Appendix C.1. It can be observed that the
loss curves from 144 tokens show marginally better
convergence than those from 64 tokens, especially
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Figure 5: Analysis of the impact of different compressed
token numbers on the performance of coarse-grained
perception (C), fine-grained perception (F), and reason-
ing (R) tasks.

for C-Abstractor. Considering this slight perfor-
mance gain, we ultimately choose 144 tokens as
the standard setting for feature-compressing con-
nectors for subsequent comparisons.

5.3 Impact of Image Resolution

We further explore the effect of image resolution on
the metric performance of feature-preserving and
feature-compressing connectors. Detailed experi-
ments and analyses, as shown in Table 1, reveal that
increasing the resolution from 224 to 336 enhances
performance across all connector types for the three
tasks, with the most significant improvements ob-
served in fine-grained perception tasks, followed
by coarse-grained perception tasks, and the least
improvement in reasoning tasks. However, further
increasing the resolution from 336 to 448 yields
only marginal performance gains. Specifically, for
feature-preserving connectors, the resolution in-
crease from 224 to 336 results in improvements of
12.6% in fine-grained perception, 2.5% in coarse-
grained perception, and 2.3% in reasoning tasks.
For feature-compressing connectors, the improve-
ments are 13.9%, 9.2%, and 4.3%, respectively.
When the resolution is increased from 336 to 448,
the performance changes for the former are 2.5%,
0.2%, and 0.6%, while for the latter, the changes
are -0.5%, -1.0%, and 0.9%. We attribute this to the
diminishing returns of higher resolutions and the
current insufficient training data to support them.

Figure 6 in Appendix C.1 clearly illustrates the
loss curves of all connectors at different resolutions.
It can be seen that in most cases, increasing the
resolution from 224 × 224 to 336 × 336 generally

Connectors C F R

Two-layer MLP
224 72.9 53.83 57.51
336 75.36 66.43 59.83
448 75.59 66.13 60.42

Average pooling
224 70.11 53.47 57.56
336 74.54 59.37 58.59
448 74.29 64.84 60.53

Q-Former
224 59.29 42.71 51.97
336 67.99 54.09 57.29
448 69.62 52.83 56.99

C-Abstractor
224 64.93 49.33 55.05
336 74.12 63.11 59.39
448 73.05 62.62 60.31

Table 1: Comparison of two-layer MLP, average pooling
with 144 tokens, C-Abstractor with 144 tokens, and Q-
Former with 144 tokens on coarse-grained perception
(C), fine-grained perception (F), and reasoning (R) tasks.

results in a decrease in training loss. However,
when the resolution is further increased from 336
× 336 to 448 × 448, only the fine-tuning loss of the
two-layer MLP decreases, while the others either
remain unchanged or increase. This observation is
consistent with the evaluation metrics.

Connectors C F R

Average pooling 74.29 64.84 60.53
Q-Former 69.62 52.83 56.99
C-Abstractor 73.05 62.62 60.31

Table 2: Comparison of feature-compressing connectors
at 448 resolution on coarse-grained perception (C), fine-
grained perception (F), and reasoning (R) tasks, each
with the same compressed token number 144.

5.4 Effects of Feature-Compressing
Connector

To explore the impact of different feature-
compressing connectors on model performance, we
conduct a detailed comparison on the three tasks
under the settings of 448×448 resolution and 144
compressed token number, as shown in Table 2.
Overall, the performance of average pooling and C-
Abstractor is similar, while Q-Former performs sig-
nificantly worse. Specifically, for coarse-grained
perception tasks, Q-Former does not show as large
a performance gap compare to other connectors as
it does in fine-grained perception tasks. This might
be because, the self-attention mechanism disrupts
the original positional information which is impor-
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tant in fine-grained perception tasks. However, this
does not fully explain why Q-Former also performs
poorly in coarse-grained perception tasks. To ex-
plain this phenomenon, we present the training loss
curves at Figure 6 in Appendix C.1. The curves
show that Q-Former’s loss decreases more slowly
than the losses from other connectors. This indi-
cates that Q-Former is more challenging to train,
likely due to insufficient training data to support
such a complex mechanism.

In summary, simple average pooling suffices for
most tasks as LLMs can implicitly extract image
information from visual tokens. Extensive interfer-
ence in token extraction at the projector stage is
not necessary. Complex connectors like Q-Former
may require more aligned data for better results.

6 Suggestions for Connector Selection

In Section 5, we extensively discuss the perfor-
mance of different connectors across various tasks.
To consider efficiency and effectiveness simulta-
neously during the connector selection phase, we
present the training times for models under differ-
ent connectors in Table 3. It was observed that
with increasing image resolution, the training costs
for feature-compressing connectors change only
slightly, whereas those for feature-preserving con-
nectors significantly increase.

Based on the above evidences, we offer several
recommendations for choosing connectors:

1. At an image resolution of 224, using a two-
layer MLP is advisable as it significantly out-
performs other connectors across the three
tasks while maintaining a acceptable compu-
tational resource demand.

2. At an image resolution of 336, if the focus is
on coarse-grained perception and reasoning
tasks, the C-Abstractor and average pooling
are recommended for their balance between
efficiency and effectiveness. If fine-grained
perception tasks are a priority, the two-layer
MLP may be more suitable.

3. At an image resolution of 448, the token count
for the two-layer MLP reaches 1024, which
leads to excessive consumption of computa-
tional resources. Under these circumstances,
C-Abstractor and average pooling 144tks
emerge as more optimal choices. Specifically,
the C-Abstractor reduces the training time by
80% in the pre-training stage and 51% in the

fine-tuning stage compared to the two-layer
MLP. This drastic reduction in training time
not only makes the C-Abstractor and average
pooling connectors more efficient but also sig-
nificantly lowers the computational cost, mak-
ing them highly suitable for scenarios with
limited resources. The substantial decrease in
training time at this high resolution highlights
the importance of choosing the right connector
to balance performance and resource usage.

These guidelines aim to assist in selecting the
most appropriate connector, aligning with specific
task requirements and resource availability.

Resolution Connectors Tokens Stage Time (hours)

224

Two-layer MLP 256 1 2.0
256 2 11.3

C-Abstractor 144 1 0.8 (↓60%)
144 2 8.0 (↓29%)

336

Two-layer MLP 576 1 3.6
576 2 11.9

C-Abstractor 144 1 1.2 (↓67%)
144 2 8.0 (↓33%)

448

Two-layer MLP 1024 1 6.5
1024 2 16.5

C-Abstractor 144 1 1.3 (↓80%)
144 2 8.1 (↓51%)

Table 3: Training time for different connectors. Stage
1 refers to the pre-training stage, and Stage 2 refers to
the fine-tuning stage. All training is conducted in an
environment with 8 A800 GPUs.

7 Conclusion

In this paper, we conduct extensive experi-
ments to evaluate commonly used connectors in
MLLMs. Our findings indicate that although
feature-preserving connectors generally offer the
best performance, their advantage over feature-
compressing connectors diminishes as resolution
increases, while their computational costs rise expo-
nentially. Among feature-compressing connectors,
average pooling and C-Abstractor outperform Q-
Former, consistently delivering better results across
all resolutions and task granularities. Our results
clearly demonstrate that the choice of connector
depends on the resolution, task granularity, and
computational budget. Based on these findings, we
offer guidance on selecting connectors to balance
both effectiveness and efficiency.

Limitations

In alignment with the base configuration of LLaVA-
1.5, our approach involves using positional encod-
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ing interpolation to scale images from 336x336
to 448x448, rather than employing a visual en-
coder that natively supports the 448x448 resolution.
This method may lead to suboptimal results. An-
other limitation is that our training data also comes
from LLaVA-1.5, resulting in a relatively small to-
tal number of training samples, only 1.23 M. In
contrast, the InstructBLIP (Dai et al., 2024) with
use Q-Former as connector has 130.2 M training
samples. This significant difference in the number
of training samples might render our conclusions
inapplicable in scenarios with a large volume of
training data. In the future, we could explore this
discrepancy using a larger set of training samples.
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Appendix

We provide some additional information as supple-
mentary material. This appendix is divided into
three sections:

• Details of sub-task reclassification for MME
versus SEED-Bench are presented in Ap-
pendix A;

• Experimental details are presented in Ap-
pendix B;

• Additional results are presented in Ap-
pendix C;

A Sub-Task Reclassification

The parent tasks for sub-tasks of SEED-Bench and
MME before and after reclassification are shown in
Table 4, Table 5 respectively. Table 6 shows all the
sub-tasks of MMBench, MME, and SEED-Bench
and their reclassified parent tasks.

B Experimental Details

In this section, we further present the experimental
settings, specifically the detailed list of training
configurations for different connectors, as shown
in Table 7.

C Additional Results

This section provides additional experimental re-
sults and analyses to supplement the findings pre-
sented in the main text. We include detailed eval-
uations of loss curves and comprehensive results
from additional benchmarks to provide a more thor-
ough understanding of the performance of different
connectors.

C.1 Loss curves for different connectors

Loss curves of the model with different connectors
are shown in Figure 6. The loss curves provide
several insights that corroborate the findings in the
main text: 1. For feature-compressing connectors,
the difficulty of convergence increases with the
number of parameters and complexity, following
the trend: Q-Former > C-Abstractor > Average
pooling. 2. When comparing different compressed
token numbers, their convergence curves are very
similar, with 144 tokens performing slightly better
than 64 tokens. 3. Among the image resolutions
of 224, 336, and 448, the resolution of 336 often
shows significant improvement over 224, but the

5676



(a) The training loss curves of Two-Layer MLP-based model

(b) The training loss curves of Mean Pooling-based model

(c) The training loss curves of Q-Former-based model

(d) The training loss curves of C-Abstractor-based model

Figure 6: Loss curves of different connectors during the pretrain and finetune stages. The left plot shows the training
loss during the pretrain stage, and the right plot shows the loss during the finetune stage. The legend in the upper
right corner follows the format: connector class-image size-token number (e.g., C-Abstractor-224-144, where the
connector is C-Abstractor, the image resolution is 224×224, and the number of tokens is 144). It can be observed
that for feature-compressing connectors, the number of tokens has little effect on the loss, while image resolution
significantly impacts the model.
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Original Parent Task Original Sub-Task New Parent Task

Spatial Understanding

Scene Understanding Coarse-grained Perception
Instance Identity Fine-grained Perception
Instance Attribute Fine-grained Perception
Instance Location Fine-grained Perception
Instance Counting Fine-grained Perception
Spatial Relation Fine-grained Perception

Instance Interaction Fine-grained Perception
Visual Reasoning Fine-grained Perception
Text Recognition Fine-grained Perception

Table 4: Sub-Task Reclassification for SEED-Bench.

Original Parent Task Original Sub-Task New Parent Task

Perception (Coarse-grained)

Existence Fine-grained Perception
Count Fine-grained Perception

Position Fine-grained Perception
Color Fine-grained Perception

Perception (Fine-grained)

Poster Coarse-grained Perception
Celebrity Fine-grained Perception

Scene Coarse-grained Perception
Landmark Coarse-grained Perception
Artwork Coarse-grained Perception

Perception (OCR) OCR Fine-grained Perception

Table 5: Sub-Task Reclassification for MME.

difference between 448 and 336 is not pronounced,
with each resolution occasionally outperforming
the other in different scenarios.

C.2 Evaluation results on more benchmarks
To achieve a more extensive and comprehensive
comparison, aligning with other works, we con-
duct experiments on 9 additional benchmarks with-
out sub-task information. These benchmarks in-
clude TextVQA (Singh et al., 2019), POPE (Li
et al., 2023c), VQAv2 (Goyal et al., 2017), Sci-
enceQA (Lu et al., 2022), GQA (Hudson and Man-
ning, 2019), RefCOCO, RefCOCO+, RefCOCOg
(Kazemzadeh et al., 2014), and VizWiz (Gurari
et al., 2018). The results are shown in Table 8.
The metrics used are Exact Match for TextVQA,
F1-Score for POPE, Accuracy for VQAv2, GQA,
ScienceQA, MMBench, and VizWiz, and CIder for
RefCOCO. For SEED-Bench, Accuracy is calcu-
lated only on image data.
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Tasks From Sub-Tasks

Coarse

MMBench

Image Quality
Image Topic

Image Emotion
Image Scene
Image Style

MME

Artwork
Landmark

Posters
Scene

SEED-Bench Scene Understanding

Fine-grained

MMBench

OCR
Celebrity Recognition
Object Localization

Attribute Recognition
Action Recognition

Attribute Comparison
Spatial Relationship

MME

OCR
Celebrity

Color
Count

Existence
Position

SEED-Bench

Instance Identity
Instance Attribute
Instance Location
Instance Counting

Spatial Relationship
Instance Interaction

Reasoning

MMBench

Function Reasoning
Identity Reasoning

Physical Property Reasoning
Future Prediction

Image-Text Understanding
Nature Relation

Physical Relation
Social Relation

MME

Code Reasoning
Commonsense Reasoning

Numerical Calculation
Text Translation

SEED-Bench Visual Reasoning

Table 6: Sub-Tasks of MMBench, MME, and SEED-Bench and Their Reclassified Parent Tasks
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Connector Type Subclass Resolution Token Number

Feature-Preserving
Linear

224, 336, 448
-

Nonlinear -

Feature-Compressing
Average Pooling

224, 336, 448
64, 144

Attention Pooling 64, 144
Convolutional Mapping 64, 144

Table 7: Connector Configurations.

Resolution Projectors TextVQA POPE VQAv2 ScienceQA GQA MMEP MMB SEED Refcoco Refcoco+ Refcocog VizWiz

244

Linear 46.88 81.06 69.54 63.97 50.29 1227.7 50.94 53.53 15.96 15.58 46.07 53.3
Two-layers MLP 49.08 81.89 73.26 64.77 53.8 1309.91 55.67 58.3 23.2 23.03 52.79 55.26

Average pooling 64tks 46.66 80.53 70.52 64.61 52.25 1294.79 53.78 56.3 20.09 19.43 49.14 55.63
Average pooling 144tks 49.61 82.03 73.17 64.18 53.75 1333.86 54.04 58.63 23.44 23.32 54.57 54.7

Q-Former 64tks 34.47 83.07 58.33 58.29 35.8 1050.59 36.77 46.09 8.82 8.34 32.22 24.04
Q-Former 144tks 33.49 76.98 57.81 60.53 28.36 1127.66 37.2 45.8 2.66 2.49 13.41 18.06
C-Abstactor 64tks 42.29 80.15 66.55 63.1 51.39 1228.72 48.79 52.74 18.45 17.74 50.65 53.9

C-Abstactor 144tks 43.65 81.19 66.46 63.57 50.89 1204.11 48.45 52.87 9 8.75 38.11 52.87

336

Linear 56.16 86.06 78.41 70.08 62.53 1431.73 65.38 65.74 28.64 27.62 63.03 55.58
Two-layers MLP 56.37 85.63 78.65 70.97 63.24 1486.42 65.12 67.08 28.65 28.15 62.82 56.22

Average pooling 64tks 50.99 84.01 74.76 69.77 59.21 1388.58 63.05 61.49 24.73 23.77 57.97 51.84
Average pooling 144tks 53.88 85.03 76.4 70.17 60.14 1457.42 63.4 63.98 28.88 28.71 60.3 53.54

Q-Former 64tks 45.34 80.97 67.48 70.41 53.82 1244.26 57.73 53.73 25.5 24.81 57.14 49.88
Q-Former 144tks 46.87 76.07 67.16 70.88 53.34 1240.74 58.59 53.09 29.6 27.99 57.28 49.52
C-Abstactor 64tks 54.34 85.21 76.77 70.05 60.38 1360 63.49 62.55 25.35 24.51 61.22 54.37

C-Abstactor 144tks 54.36 85.07 76.77 71.4 61.07 1450.46 63.57 63.42 28.76 28.6 60.71 55.13

448

Linear 55.73 84.92 77.65 68.56 60.93 1458 63.74 65.03 29.98 29.44 62.17 54.41
Two-layers MLP 56.32 84.55 78.97 69.42 61.28 1516.15 65.12 66.74 28.75 28.66 62.56 57.93

Average pooling 64tks 50.54 82.97 75.07 70.01 59.19 1422.03 62.29 62.19 27.98 27.89 62.01 56.76
Average pooling 144tks 54.32 84.55 68.3 69.42 60.57 1474.24 63.48 64.91 27.83 27.58 64.05 53.28

Q-Former 64tks 45.41 81.72 67.26 69.37 52.28 1281.34 56.96 54.49 27.4 26.51 55.07 46.98
Q-Former 144tks 44.82 81.2 66.3 69.49 52.34 1236.01 57.82 52.86 26.39 25.71 56.07 50.88
C-Abstactor 64tks 50.44 83.02 74.65 69.72 58.3 1374.8 62.71 61.67 25.99 25.7 57.41 54.62

C-Abstactor 144tks 51.9 84.51 75.71 69.7 59.55 1433.33 63.23 62.49 27.98 27.75 59.85 55.3

Table 8: Performance of different connectors across 12 datasets at resolutions of 224, 336, and 448. Here, MMEP

denotes the MME-Perception tasks, MMB stands for MMBench, and SEED indicates SEED-Bench.
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