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Abstract

The inability to utilise future contexts and the
pre-determined left-to-right generation order
are major limitations of unidirectional language
models. Bidirectionality has been introduced
to address those deficiencies. However, a cru-
cial shortcoming of bidirectional language mod-
els is the potential inconsistency of their con-
ditional distributions. This fundamental flaw
greatly diminishes their applicability and hin-
ders their capability of tractable sampling and
likelihood computation. In this work, we intro-
duce a class of bidirectional language models,
called latent language models, that are consis-
tent by definition and can be efficiently used
both for generation and scoring of sequences.
We define latent language models based on
the well-understood formalism of bisequential
decompositions from automata theory. This
formal correspondence allows us to precisely
charaterise the abilities and limitations of a sub-
class of latent language models, called rational
language models. As a result, we obtain that
latent language models are exponentially more
concise and significantly more expressive than
unidirectional language models.

1 Introduction

Recently, language models (Bengio et al., 2003;
Mikolov et al., 2010; Brown et al., 2020) have es-
tablished themselves as the primary approach for
solving natural language processing tasks (Devlin
et al., 2019; Raffel et al., 2020; Brown et al., 2020).
They have also exhibited noteworthy capabilities
in computer programming (Chen et al., 2021; Fried
et al., 2023) and commonsense and mathematical
reasoning (Wei et al., 2022; Zhou et al., 2023).

Language models are traditionally differentiated
based on the contextual conditioning that they use
for token prediction. Unidirectional (or autore-
gressive) language models, such as those based on
recurrent neural networks (RNNs) (Mikolov et al.,

2010) as well as the Transformer-based GPT mod-
els (Radford et al., 2019; Brown et al., 2020), con-
dition the prediction of a given token only on its
left context. On the other hand, bidirectional (or
masked) language models, such as those based on
bidirectional RNNs (Arisoy et al., 2015; Mousa and
Schuller, 2017) as well as the Transformer-based
BERT (Devlin et al., 2019; Liu et al., 2019) and
T5 (Raffel et al., 2020; Xue et al., 2021), predict
tokens based on both their left and right contexts.

Naturally, because of the access to richer con-
textual information, bidirectional language models
have proven to produce stronger learned represen-
tations (Devlin et al., 2019; Raffel et al., 2020). In
this regard, Brown et al. (2020) speculate that the
inability of GPT-3 to benefit from future contexts
could explain its inferior performance on certain
tasks where bidirectionality is important. Addition-
ally, several studies have brought attention to the
importance of the order in which sequences are pro-
cessed (Vinyals et al., 2015; Ford et al., 2018). To
this end, both empirical (Emelianenko et al., 2019;
Li et al., 2021) and theoretical (Lin et al., 2021) re-
sults have implied that, as opposed to bidirectional
language models, the pre-determined left-to-right
order used by unidirectional language models is
often suboptimal for tasks that require exploration,
planning or strategic lookahead (Yao et al., 2023).

Despite of the aforementioned advantages of
bidirectional language models, it is currently un-
clear how to tractably ensure the consistency of
their conditional distributions.1 In other words, it is
non-trivial to guarantee the existence of a joint dis-
tribution whose conditionals coincide with those of
a given bidirectional language model (Goyal et al.,
2022; Torroba Hennigen and Kim, 2023; Young
et al., 2024). Furthermore, even if such a joint
distribution exists, it is often computationally ex-

1On the other hand, for unidirectional language models, Du
et al. (2023) have given sufficient conditions for consistency
that can be easily enforced.
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pensive to access it explicitly. Those fundamental
flaws of bidirectional language models greatly hin-
der their applicability for sampling (Ghazvininejad
et al., 2019) and likelihood computation (Salazar
et al., 2020), and often lead to self-contradictory
behavior during inference (Young et al., 2024).

In this work, we introduce a class of bidirectional
language models that are consistent by definition
and can be efficiently used both for generation and
scoring of sequences. To achieve this, we con-
sider language modelling from the point of view
of automata theory (Eilenberg, 1974; Sakarovitch,
2009; Mihov and Schulz, 2019). Svete and Cot-
terell (2023) have already explored the relations
between unidirectional language models and se-
quential transducers. We extend their work by con-
sidering the bidirectional formalism of bisequential
decompositions (Elgot and Mezei, 1965). By exam-
ining how bisequential decompositions represent
probability distributions, we derive a class of bidi-
rectional language models that we call latent lan-
guage models. This formal correspondence allows
us to precisely charaterise the abilities and limita-
tions of a subclass of latent language models, called
rational language models. As a result, we obtain
that latent language models are exponentially more
concise and significantly more expressive than uni-
directional language models. We argue that such
knowledge about the abilities and limitations of
language models is essential whenever we require
formal guarantees of the correctness and consis-
tency of their outputs.

2 Factorisations of Language Models

Given a finite set Σ, we shall use Σ∗ to denote the
set of finite sequences of elements of Σ and ϵ to
denote the empty sequence. In this case, Σ is called
an alphabet, the elements of Σ are called letters and
the elements of Σ∗ are called words. Additionally,
given a word α, we shall write |α| for the length
of α, αi for the i-th letter of α, α≤i (or α<i+1) for
the prefix α1α2 · · ·αi and α≥i (or α>i−1) for the
suffix αiαi+1 · · ·α|α|. Lastly, we shall naturally
extend concatenation of words to sets of words.
Definition 2.1. Let Σ be an alphabet. A language
model over Σ is a discrete probability distribution
over Σ∗; i.e., a function P : Σ∗ → [0, 1] such that2

∑

α∈Σ∗
P(α) = 1. (1)

2As usual, we assume that P is extended to the power set
P(Σ∗) of Σ∗ by countable additivity.

The support of a real-valued function f is the set

Supp(f) :=
{
α ∈ Dom(f) | f(α) ̸= 0

}
.

We call a probability distribution P over X positive
if Supp(P) = X . Naturally, a family of positive
probability distributions is also called positive.

In practice, it is not difficult to model a function
from Σ∗ to [0, 1] (e.g., with a logistic curve). How-
ever, satisfying the normalisation constraint (1) is
non-trivial due to the infinitarity of Σ∗. Conse-
quently, in this section, we consider how language
models can be factorised into families of finite con-
ditional probability distributions that can then be
modelled efficiently (e.g., with a softmax-based
linear prediction head (Bengio et al., 2003)).

2.1 Prefix Factorisations
Unidirectional language models are typically de-
fined in terms of finite local probability distribu-
tions conditioned solely on the left context.
Definition 2.2. Let Σ be an alphabet. A prefix fac-
torisation over Σ is a family (ϕα)α∈Σ∗ of discrete
probability distributions over Σ$ := Σ ∪ $.3

The value ϕα(a) is intended to be interpreted as
the probability of the current letter being a given
that α is the word formed by the previous letters.4

Definition 2.3. Let Φ := (ϕα)α∈Σ∗ be a prefix
factorisation over Σ. Φ is called consistent if there
exists a language model P over Σ that is compatible
with Φ; i.e., for α ∈ Σ∗ and a ∈ Σ,5

P(αΣ∗) ̸= 0 =⇒
{
P(αaΣ∗ | αΣ∗) = ϕα(a)

P(α | αΣ∗) = ϕα($)
.

Now, it is apparent that we can use the distribu-
tions of a consistent prefix factorisation to define,
via the chain rule of probability, its unique compati-
ble language model (see Appendix B.1 for a proof).
Furthermore, the chain rule provides an efficient
method for sampling and scoring of words.
Definition 2.4. Let Φ := (ϕα)α∈Σ∗ be a prefix
factorisation over Σ. The prefix model generated
by Φ is the function M : Σ∗ → [0, 1] defined as

M(α) :=
( |α|∏

i=1

ϕα<i(αi)
)
ϕα($).

3We shall use $ to denote a special end-marker letter that
is considered not to be a member of any declared alphabet.

4Similarly, the value ϕα($) is intended to be interpreted as
the probability of the word ending after α.

5We note that αΣ∗ is the set of all words over Σ that begin
with α. Thus, P(αaΣ∗ | αΣ∗) is the probability of a word to
begin with αa given that it begins with α, and P(α | αΣ∗) is
the probability of a word to be α given that it begins with α.

5725



Theorem 2.1. A prefix factorisation Φ over Σ is
consistent if and only if the prefix model M gener-
ated by Φ is a language model over Σ. In this case,
M is the only language model compatible with Φ.

In the literature, the term ‘unidirectional lan-
guage model’ is commonly used to mean ‘a pre-
fix model’, which raises some formal issues since
the class of language models and the class of pre-
fix models do not coincide. It is easily observed
that every language model is compatible with a
consistent prefix factorisation and thus is a prefix
model. However, the converse is true only under
certain conditions as described by Du et al. (2023).
Fortunately, those conditions are satisfied in most
practical settings (e.g., when the prefix model
is represented by a Transformer (Vaswani et al.,
2017) or a bounded RNN (Elman, 1990; Hochre-
iter and Schmidhuber, 1997; Cho et al., 2014) with
a softmax-based linear prediction head).

2.2 Confix Factorisations
Bidirectional language models, such as BERT, T5
and their RNN-based alternatives, represent a fam-
ily of finite local probability distributions condi-
tioned both on the left and the right contexts.
Definition 2.5. Let Σ be an alphabet. A confix6

factorisation over Σ is a family (ϕα,β)α,β∈Σ∗ of
discrete probability distributions over Σ.7,8

Intuitively, the value ϕα,β(a) could be inter-
preted as the probability of the current letter being
a given that α and β are the words formed by the
previous and the following letters, respectively.
Definition 2.6. Let Φ := (ϕα,β)α,β∈Σ∗ be a confix
factorisation over Σ. Φ is called consistent if there
exists a language model P over Σ that is compatible
with Φ; i.e., for α, β ∈ Σ∗ and a ∈ Σ,

P(αΣβ) ̸= 0 =⇒ P(αaβ | αΣβ) = ϕα,β(a).

Next, we consider whether the distributions of
a consistent confix factorisation Φ can be used to
define a language model that is compatible with
Φ. A classical result by Besag (1974) shows that
the distributions of a consistent positive confix fac-
torisation can be used to express the quotients of
the probabilities of words of equal length (see Ap-
pendix B.2 for a proof).

6A confix (or a circumfix) is a pair of a prefix and a suffix.
7To be more precise, BERT and T5 actually represent joint

distributions over multiple masked positions in a word by
conditioning on the remaining letters. Here, for the sake of
simplicity, we assume that there is a single masked position.

8See also Remark B.3 in Appendix B.2.

Proposition 2.1. Let P be a language model over Σ
that is compatible with a positive confix factorisa-
tion (ϕα,β)α,β∈Σ∗ . Then, for α ∈ Σ∗ and β ∈ Σ|α|,

P(α) = P(β)
|α|∏

i=1

ϕα<i,β>i
(αi)

ϕα<i,β>i
(βi)

.

Nevertheless, the distributions of a consistent
confix factorisation contain no information about
the distribution of the word lengths. Hence, in
order to define a language model P over Σ that is
compatible with a given confix factorisation, it is
necessary to additionally specify the probabilities
of the events Σn for n ∈ N.

Definition 2.7. A complete confix factorisation
over Σ is a tuple (Φ,PL), where Φ is a positive
confix factorisation over Σ and PL is a probability
distribution over N. (Φ,PL) is consistent if there
exists a language model P over Σ that is compatible
with (Φ,PL); i.e., P is compatible with Φ and

(∀n ∈ N)
(
P(Σn) = PL(n)

)
.

Now, Proposition 2.1 implies that we can use the
distributions of a consistent complete confix factori-
sation to express its unique compatible language
model (see Appendix B.2 for a proof).

Definition 2.8. Let (Φ,PL) be a complete confix
factorisation over Σ such that Φ := (ϕα,β)α,β∈Σ∗ .
The confix model generated by (Φ,PL) is the func-
tion M : Σ∗ → [0,∞) defined as

M(α) :=
PL

(
|α|

)
∑

β∈Σ|α|
∏|α|

i=1

ϕα<i,β>i
(βi)

ϕα<i,β>i
(αi)

. (2)

Theorem 2.2. Let (Φ,PL) be a consistent complete
confix factorisation over Σ. Then, the confix model
generated by (Φ,PL) is the only language model
over Σ that is compatible with (Φ,PL).

Unfortunately, the intractable sum in the denom-
inator makes the expression in (2) inapplicable for
generation and scoring. More importantly, com-
plete confix factorisations lack an easy to enforce
condition that implies their consistency. Thus, it is
unclear how one could guarantee the existence of
an underlying compatible language model.

3 Sequential Language Models

In this section, we consider language modelling
with sequential transducers. We argue that they
provide a meaningful abstraction of unidirectional
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language models. Thus, attaining deeper knowl-
edge of the properties of sequential transducers
could lead to better understanding of the abilities
and limitations of unidirectional language models.

3.1 Transducers
Definition 3.1. A monoid is a tuple (M, ◦, e),
where M is a set, called the carrier, ◦ is an as-
sociative binary operation on M and e ∈ M is a
neutral element for ◦ (that is, a ◦ e = e ◦ a = a).

In this work, we shall consider the free monoid
Σ∗ := (Σ∗, ·, ϵ), where · denotes concatenation,
and the probability monoid R[0,1] :=

(
[0, 1], ·, 1

)
,

where · denotes multiplication.

Definition 3.2. A (Σ,M)-transducer is a tuple
(Σ,M, Q, I,F,∆), where Σ is an alphabet;M is a
monoid with carrier M ; Q is a finite set (of states);
I,F : Q→M are the initial and final output func-
tions; I := Dom(I) and F := Dom(F) are the sets
of initial and final states; and ∆ ⊆ Q×Σ×M×Q
is a finite transition relation.9

Definition 3.3. Let T :=
(
Σ, (M, ◦, e), Q, I,F,∆

)

be a transducer. The generalised transition relation
∆∗ ⊆ Q× Σ∗ ×M ×Q is the set of all tuples

(q0, a1a2 · · · an,m1 ◦m2 ◦ · · · ◦mn, qn)

such that
(
(qi−1, ai,mi, qi)

)n
i=1

is a finite sequence
of transitions. The behaviour of T is the relation
JT K from Σ∗ to M that maps α ∈ Σ∗ to

⋃

(i,f)∈I×F

{
I(i) ◦m ◦ F(f) | (i, α,m, f) ∈ ∆∗}.

We shall say that T represents (or realises) JT K.

Definition 3.4. Two transducers are called equiva-
lent if their behaviours coincide. A function from
Σ∗ toM is called rational if it can be realised by a
(Σ,M)-transducer.10

3.2 Sequential Transducers
Since we are interested in the efficient representa-
tion of functions and, in particular, language mod-
els, we shall focus primarily on deterministic trans-
ducers (Schützenberger, 1977) because they enable
the computation of JT K(α) in O

(
|α|

)
time.

Definition 3.5. Let T := (Σ,M, Q, I,F,∆) be
a transducer. T is called sequential if I = (i, ι)
and, for every (p, a) ∈ Q × Σ, there is at most
one (m, q) ∈ M × Q such that (p, a,m, q) ∈ ∆.

9, 10See Appendix C.1 for a justification of the definition.

Thus, if T is sequential, we define the transition
function δ : Q× Σ→ Q and the transition output
function λ : Q × Σ → M such that δ(p, a) := q
and λ(p, a) := m if and only if (p, a,m, q) ∈ ∆.
Furthermore, we define the generalised transition
function δ∗ : Q × Σ∗ → Q and the generalised
transition output function λ∗ : Q× Σ∗ →M such
that δ∗(p, α) := q and λ∗(p, α) := m if and only
if (p, α,m, q) ∈ ∆∗. Lastly, if T is sequential, we
shall also denote it as

(
Σ,M, Q, (i, ι),F, δ, λ

)
.

Consequently, the behaviour of a sequential
transducer T is a function that can be expressed as

JT K(α) = ι ◦ λ∗(i, α) ◦ F
(
δ∗(i, α)

)
.

Definition 3.6. A function from Σ∗ toM is called
sequential if it can be realised by a sequential
(Σ,M)-transducer.

Note that unidirectional language models based
on saturated RNNs (Merrill, 2019) or RNNs us-
ing the Heaviside activation (Svete and Cotterell,
2023) are in fact sequential because they transition
between a finite number of states in a deterministic
manner.11 Similarly, unidirectional Transformer-
based language models are sequential functions
because of the boundedness of the lengths of their
contexts (Vaswani et al., 2017) (if N is the maxi-
mum context length, then the number of states is
bounded by |Σ|N ). This connection with language
models that are used in practice motivates the con-
sideration of sequential (Σ,R[0,1])-transducers.12

3.3 Stochastic Sequential Transducers
Definition 3.7. A sequential (Σ,R[0,1])-transducer
T is probabilistic if JT K is a probability distribu-
tion over Σ∗; and stochastic if ι = 1 and

(∀q ∈ Q)
(
F(q) +

∑

a∈Σ
λ(q, a) = 1

)
.

Obviously, probabilistic sequential transducers
represent exactly the class of sequential language
models. Likewise, stochastic sequential transduc-
ers realise a subclass of sequential prefix models.
Indeed, every stochastic sequential transducer T
defines a prefix factorisation

ϕα(a) :=

{
λ
(
δ∗(i, α), a

)
if a ∈ Σ

F
(
δ∗(i, α)

)
if a = $

11A similar argument could be made for any RNN whose
activation function maps onto a finite set. In that sense, all
deployed RNN language models are sequential transducers,
albeit with a very large state space.

12When working with sequential (Σ,R[0,1])-transducers,
we shall implicitly assume that F, δ and λ are total functions.
In this case, it follows that δ∗, λ∗ and JT K are also total.
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that generates JT K (see Appendix C.2). Compared
to probabilistic sequential transducers, the main
advantage of stochastic sequential transducers is
the fact that they are extremely efficient at sam-
pling since each of their states defines a probability
distribution over Σ$.13

Despite of the fact that stochastic sequential
transducers cannot realise all sequential prefix mod-
els, they can represent the class of sequential lan-
guage models. In fact, when applied to a proba-
bilistic sequential transducer, the classical canon-
isation construction of Mohri et al. (2008) (see
Appendix C.3) produces an equivalent sequential
transducer that is stochastic (see Appendix C.4).

Theorem 3.1. Every probabilistic sequential trans-
ducer is equivalent to a stochastic one.

Hence, in order to represent sequential language
models, it is sufficient to consider only stochastic
sequential transducers and thus work with tractable
and easy to sample from finite distributions. Next,
we show that we can also easily avoid the stochastic
sequential transducers that are not probabilistic.

Theorem 3.2. A stochastic sequential transducer
T is probabilistic if and only if every accessible
state of T is co-accessible.14

The condition from Theorem 3.2 is a corollary
of a classical result about absorbing Markov chains
(see Appendix C.5). The condition is trivially satis-
fied if the transition and final outputs of every state
define a positive distribution over Σ$. In practice,
this is true whenever the softmax activation is used
(see Appendix C.6 for further discussion).

3.4 Limitations of Sequential Transducers
Unlike regular languages, which can be recognised
by deterministic automata, not all rational language
models can be represented by sequential transduc-
ers. Thus, in order to obtain better understand-
ing of the representational limitations of sequential
transducers, we characterise the class of language
models that they can realise (see Appendix C.7).

Definition 3.8. Let α, β ∈ Σ∗. The prefix distance
between α and β is defined as

dp(α, β) := |α|+ |β| − 2|α ∧ β|,

where ∧ is the longest common prefix operation.
13In this case, the probability of $ is represented by the final

output of the corresponding state.
14In this setting, a state q is called accessible if there exists

a word α such that δ∗(i, α) = q and ιλ∗(i, α) ̸= 0; and co-
accessible if there exists a word α such that δ∗(q, α) ∈ F and
λ∗(q, α)F

(
δ∗(q, α)

)
̸= 0.

q1 1− 2p

0 | p 1 | p

Figure 1: Sequential transducer realising P and P(α⊤).

Theorem 3.3. A rational language model P over
Σ is sequential if and only if

{
P(α)
P(β)

∣∣∣ α, β ∈ Supp(P) ∧ dp(α, β) ≤ n
}

is finite for all n ∈ N.

Intuitively, since (Σ∗, dp) is a metric space, The-
orem 3.3 states that sequential language models
map bounded sets of words into finite sets of prob-
abilities (see Section 4.1 for a rational language
model that violates this constraint). To alleviate the
above-mentioned limitations of sequential trans-
ducers, we could also consider the class of co-
sequential functions, which can be represented by
a sequential transducer that scans the input from
right to left and then reverses the output.

Definition 3.9. For a word α, we define the reverse
of α as α⊤ := α|α| · · ·α1, and, for a real number
x, we define the reverse of x as x⊤ := x. We call a
function f from Σ∗ to Γ∗ orR[0,1] co-sequential if
f(α) = g(α⊤)⊤ for some sequential function g.

Co-sequential functions are rational. Moreover,
they are complementary to sequential functions.
Indeed, in a fixed integer base, multiplication by
a given integer can be implemented by a sequen-
tial transducer if and only if it reads from right to
left, while it is the converse that is true for divi-
sion. Nevertheless, sequential and co-sequential
language models do not exhaust the whole class of
rational language models (see Section 4.1).

4 Rational Language Models

In this section, we consider bidirectional language
modelling with a pair of right-to-left and left-to-
right sequential transducers. We show that, com-
pared to single independent sequential transducers,
such bidirectional representations are exponentially
more concise and significantly more expressive be-
cause they can realise any rational language model.

4.1 Motivating Example
Let Σ := {0, 1} and p ∈ (0, 0.5). Consider the
language model P over Σ such that

P(α) := (1− 2p)p|α|.
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q 10

q01− 2p0

q11− 2p1

0 | w

1 | 1−
w

0 | p0 1 | p0

0 | p1 1 | p1

Figure 2: Sequential transducer representing P(α⊤).

It is easy to see that this language model is both
sequential and co-sequential (see Figure 1).

Now, let us consider language models that are
more discriminative with respect to the last letter.
In particular, for α ∈ Σ∗ and i ∈ Σ, let

Pi(αi) := (1− 2pi)p
|α|
i ,

where pi ∈ (0, 0.5). The language models Pi have
supports Σ∗i and are just as easy to represent as P.
However, this is not the case for their mixture

P(α) := wP0(α) + (1− w)P1(α),

where w ∈ (0, 1). Indeed, on input αi a sequential
transducer T that represents P should anticipate
the last letter i in order to distinguish P0 from P1.
However, if p0 ̸= p1, T would be unable to tell
whether the probability of αi is

w(1− 2p0)p
|α|
0 or (1− w)(1− 2p1)p

|α|
1

until it scans the last letter. It should be intuitively
clear that T cannot resolve this uncertainty with
finite memory.15 On the other hand, a sequential
transducer that scans the input in reverse would
begin with the last letter i and could immediately
determine the correct distribution Pi (see Figure 2).
Thus, P is co-sequential but not sequential. Of
course, one can symmetrically construct a language
model that is sequential but not co-sequential.

Next, we show that there are rational language
models that are neither sequential nor co-sequential.
To achieve this, we make both the first and the last
letter of an input word crucial for determining its
probability. Formally, for α ∈ Σ∗ and i, j ∈ Σ, let

Pij(iαj) := (1− 2pij)p
|α|
ij ,

where pij ∈ (0, 0.5). Now, consider the mixture

P̃(α) :=
∑

i,j∈Σ
wijPij(α), (3)

15While the presented argument is quite informal, a rigorous
proof, by means of Theorem 3.3, is given in Appendix D.1.

where wij ∈ (0, 1) sum to 1. It should be clear
that, if pij are pairwise distinct, then P̃ is neither
sequential nor co-sequential (see Appendix D.1).
However, by using two sequential transducers – a
right-to-left and a left-to-right one, we can eas-
ily represent this language model (see Figure 3).
Indeed, suppose that the right-to-left sequential
transducer runs first and scans the input β := iαj
in reverse. The first letter it reads is j and subse-
quently it augments each of the letters of β with
the additional feature j; that is, it transforms β into
γ := (β1, j)(β2, j) · · · (β|β|, j). This helps the left-
to-right transducer because it runs on γ and once
it reads (β1, j) = (i, j) it can uniquely identify the
language model Pij that should be simulated.

4.2 Bisequential Decompositions
The example above motivates the study of the well-
established notion of a bisequential decomposition.

Definition 4.1. A bisequential decomposition of
f : Σ∗ →M is a tuple (Γ, η, g), where

(i) Γ is an alphabet;

(ii) η : Σ∗ → Γ∗ is a co-sequential function;

(iii) g : Γ∗ →M is a sequential function;

(iv) f = η ◦ g.16

We say that a tuple (Γ, Tη, Tg) is a representation
of the bisequential decomposition (Γ, η, g) if Tη
and Tg are sequential transducers such that

JTηK(α⊤)⊤ = η(α) and JTgK = g.

In the previous section, we described a bisequen-
tial decomposition of the language model in (3). In
fact, the decomposition had a very particular form;
namely, Γ = Σ× Σ and η preserved the input and
augmented it with additional features.

Definition 4.2. A bisequential decomposition
(Γ, η, g) of a function from Σ∗ to M is called stan-
dard if Γ = Σ× Γ′ and η ◦ πΣ∗ = idΣ∗ .17

It is well-known that the class of functions that
admit a bisequential decomposition is exactly the
class of rational functions (Elgot and Mezei, 1965).
Thus, for language models we obtain the following.

Theorem 4.1. A language model is rational if and
only if it admits a bisequential decomposition. In
this case, it also admits a standard decomposition.

16We define (η ◦ g)(α) := g
(
η(α)

)
.

17πΣ∗ is the projection function from (Σ× Γ′)∗ to Σ∗ and
idΣ∗ is the identity function on Σ∗.
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One way to think of a bisequential decomposi-
tion (Γ, η, g) of a language model P is the follow-
ing: Γ is a set of regular features, the co-sequential
function η encodes an input word α into a sequence
of features and the function g computes, based on
those features, the probability of α. On the other
hand, given a standard bisequential decomposition
(Γ, η, g) of a language model P, the function g can
be viewed as a generator. Indeed, since P = η ◦ g
and η is injective, it follows that g1Im(η) is a lan-
guage model over Γ.18 Furthermore, due to the
special form of η, sampling from P is equivalent to
sampling from g1Im(η) and projecting onto Σ∗.

Theorem 4.2. Let (Γ, η, g) be a standard bisequen-
tial decomposition of P : Σ∗ → [0, 1]. Then, P is a
language model over Σ if and only if g1Im(η) is a
sequential language model over Γ.

For a formal verification of Theorem 4.2, see Ap-
pendix E.1. Now, Theorem 3.1 implies that, if we
want to represent rational language models, it is suf-
ficient to consider only representations (Γ, Tη, Tg)
of standard bisequential decompositions where Tg
is stochastic. Moreover, recalling Theorem 3.2, we
could easily guarantee that the represented function
is a language model by making sure that every ac-
cessible state of the stochastic Tg is co-accessible.

4.3 Conciseness of Decompositions
Next, we note that even in the cases where a lan-
guage model P is (co-)sequential, P might admit
an exponentially more concise representation as
a bisequential decomposition. For example, this
occurs when Supp(P) is difficult to be recognised.

Consider, the class PΣ,n of language models P
over Σ such that

Supp(P) =
⋃

a,b∈Σ
aΣnaΣ∗bΣnb.

Theorem 4.3. Every sequential transducer that
represents (either sequentially of co-sequentially)
a language model from PΣ,n has Ω

(
|Σ|n

)
states.

Regardless of the direction, such a sequential
transducer should check that the letters at positions
1 and n+2 in α and α⊤ match. Intuitively, in order
to do that, it has to maintain the last n+ 1 scanned
letters, which requires Ω

(
|Σ|n

)
states.

Theorem 4.4. There exist (co-)sequential language
models in PΣ,n that admit a bisequential decom-

181Im(η) is the indicator function of the image Im(η) of η.
Thus, g1Im(η)(α) equals g(α) if α ∈ Im(η), and 0 otherwise.

position with a representation (Γ, Tη, Tg) such that
Tη and Tg have O

(
n|Σ|

)
states.

Intuitively, a representation (Γ, Tη, Tg) of a bise-
quential decomposition of a language model from
PΣ,n could function as follows. The encoder Tη
could co-sequentially verify that the letters at posi-
tions 1 and n+2 of α⊤ coincide. To do so, it needs
to remember the first letter of α⊤ and count to n+1.
This can be achieved with O

(
n|Σ|

)
states. Simi-

larly, the generator Tg could sequentially check
that the letters at positions 1 and n+ 2 of α match
with O

(
n|Σ|

)
states. For a formal treatment of the

arguments presented above, see Appendix D.2.

4.4 Expressiveness of Decompositions
The example from Section 4.1 might misleadingly
suggest that rational language models that are not
sequential (or co-sequential) can capture only local
features from the ending (or the beginning) of a
word. This is not true and the following theorem,
whose proof can be found in Appendix D.3, shows
that rational language models are closed under ar-
bitrary mixing and regular conditioning.

Theorem 4.5. Letw ∈ (0, 1), L ⊆ Σ∗ be a regular
language and P1,P2 be language models over Σ.

(i) If P1 is (co-)sequential, then P1 is rational.

(ii) If P1 is rational and P1(L) ̸= 0, then the con-
ditional language model P1(• | L) is rational.

(iii) If P1 and P2 are rational with disjoint sup-
ports, then so is the mixture wP1+(1−w)P2.

Note that regular languages are closed under
union and complement; that is, they form an al-
gebra19. This is why conditioning on such sets
is both probabilistically sound and algorithmically
tractable. Other natural classes of formal languages,
such as the context-free languages, lack those prop-
erties. Furthermore, for the context-sensitive lan-
guages, the problem whether L ̸= ∅ is not de-
cidable, which means that it is algorithmically in-
tractable to verify if the conditional language model
P1(• | L) is well-defined.

Next, we shed some light on the structure of a
standard bisequential decomposition (Γ, η, g) of a
language model P over Σ, where Γ := Σ× Γ′. In
particular, the following theorem describes a set of
useful additional features Γ′ that can be maintained
by the encoder η and then used by the generator g to
output, via the chain rule, the correct probabilities.

19However, they do not form a σ-algebra
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Theorem 4.6. Let P be a language model over Σ.
Then, P is rational if and only if there exists a finite
partition {Li}ni=1 of Σ∗ such that, for 1 ≤ i ≤ n,
Li is regular and

{
P( • α | Liα)

}
α∈Σ∗ is finite.

As the proof of Theorem 4.6 in Appendix D.4
reveals, the additional features can be defined as

Γ′ :=
{(

P( • α | Liα)
)n
i=1

∣∣ α ∈ Σ∗
}
.

Then, a representation (Γ, Tη, Tg) of (Γ, η, g) can
be constructed such that

(i) the encoder Tη has states Γ′, which enables it
to preserve the input α and maintain in a co-
sequential manner the appropriate additional
feature fj :=

(
P( • α>j | Liα>j)

)n
i=1

;

(ii) given the encoding η(α) =
(
(αj , fj)

)|α|
j=1

, the
generator Tg maintains in a sequential manner
the set Lij that contains the prefix α<j ;

(iii) using the information about Lij as well as the
feature fj , the generator Tg correctly outputs
P(Lij+1α≥j | Lijα>j) on input (αj , fj).

Thus, via the chain rule, the generator can sequen-
tially compute P(α).

4.5 Minimal Co-sequential Lookahead
A natural question that arises from the discussion
above is about the minimal co-sequential lookahead
or the minimal information from the future that is
required in order to represent a rational language
model P. Quantitatively, it should correspond to the
number of states of the minimal sequential trans-
ducer Tη such that (Γ, Tη, Tg) is a representation
of a bisequential decomposition of P. The follow-
ing theorem gives the answer to this question (see
Appendix D.5 for a proof).

Theorem 4.7. Let P be a positive language model
over Σ. Then, ≡P ⊆ Σ∗ × Σ∗, defined as

α ≡P β ⇐⇒
{
P(γα)
P(γβ)

∣∣∣ γ ∈ Σ∗
}

is finite,

is a left congruence of finite index. Furthermore,
if (Γ, Tη, Tg) is a representation of a bisequential
decomposition of P, then Tη has at least |Σ∗/≡P|
states and this bound is tight.20

Obviously, sequential language models require
no co-sequential lookahead. Thus, the left congru-
ence ≡P of a sequential language model P should

20With Σ∗/≡P we denote the equivalence classes of ≡P.

have a single equivalence class. This observation
clearly illustrates the difference in expressivity be-
tween the sequential and the rational language mod-
els (see Appendix D.5 for a formal verification).

5 Latent Language Models

The study of bisequential decompositions in Sec-
tion 4 suggests that for language modelling it might
be beneficial to map (via an encoding function η)
the input probability space Σ∗ onto a latent proba-
bility space Γ∗ where the corresponding probability
measure P could be easier to represent. To make
sure that the composition η ◦ P is a probability
measure on Σ∗, we have to ensure that no prob-
ability mass in the latent space ‘leaks’ onto inac-
cessible elements (that is, Supp(P) ⊆ Im(η)) and
that the encoding function η does not map different
elements of Σ∗ onto a single latent element with
non-zero probability (that is, η should be injective
on η−1

(
Supp(P)

)
). Indeed, those properties are

sufficient for η ◦ P to be a language model over Σ.
In this case, we also have that η is a bijection from
η−1

(
Supp(P)

)
to Supp(P); thus, sampling from

η ◦ P is equivalent to sampling γ ∈ Supp(P) from
P and then computing η−1(γ).

5.1 Latent Decompositions
The discussion above motivates the following defi-
nition of a latent decomposition.

Definition 5.1. A latent decomposition of
f : Σ∗ → [0, 1] is a tuple (Γ, η, g), where

(i) Γ is an alphabet;

(ii) η : Σ∗ → Γ∗ is a function that is injective on
η−1

(
Supp(g)

)
and Supp(g) ⊆ Im(η);

(iii) g : Γ∗ → [0, 1] is a sequential function;

(iv) f = η ◦ g.

A latent language model is a language model that
admits a latent decomposition.

Note that latent decompositions generalise stan-
dard bisequential decompositions by relaxing the
constraints on the encoder. Indeed, if (Γ, η, g) is a
standard bisequential decomposition of a language
model P, then (Γ, η, g1Im(η)) is a latent decompo-
sition of P. Thus, we can conclude the following.

Theorem 5.1. Every rational language model is a
latent language model.

Naturally, we can also generalise Theorem 4.2
to the class of latent decompositions.
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Theorem 5.2. Let (Γ, η, g) be a latent decompo-
sition of P : Σ∗ → [0, 1]. Then, P is a language
model over Σ if and only if g is a sequential lan-
guage model over Γ.

For detailed proofs, see Appendix E.1.

5.2 Expressiveness of Latent Decompositions
Next, we argue that latent language models provide
a meaningful generalisation of rational language
models. To this end, we note that standard bise-
quential decompositions are as expressive as non-
standard ones (see Theorem 4.1). However, this is
not the case for standard latent decompositions.

Definition 5.2. A latent decomposition (Γ, η, g) of
a function from Σ∗ to [0, 1] is called standard if
Γ = Σ× Γ′ and η ◦ πΣ∗ = idΣ∗ .

In fact, suppose that (Σ× Γ′, η, g) is a standard
latent decomposition. Then, Im(η) is the graph of
the function η ◦πΓ′∗ . Without loss of generality, as-
sume that Im(η) = Supp(g). Since g is sequential,
it follows that Im(η) is regular. Therefore, η ◦ πΓ′∗

is a rational function. This implies that η is rational
and thus η ◦ g is also rational.

Theorem 5.3. Every latent language model that
admits a standard latent decomposition is rational.

Nevertheless, non-standard latent decomposi-
tions are strictly more expressive. Indeed, con-
sider the language model P that assigns probability
1/2n+1 to anbn. Obviously, P is not rational be-
cause Supp(P) = {anbn}n∈N is not a regular lan-
guage. However, g

(
(ab)n

)
:= 1/2n+1 is a sequen-

tial language model. Thus,
(
{a, b}, η, g

)
, where

the encoder η(anbn) := (ab)n drastically simpli-
fies the support P, is a latent decomposition of P.

Theorem 5.4. Latent language models are strictly
more expressive than rational language models.

For a more formal and detailed treatment of the
arguments presented above, see Appendix E.2.

5.3 Comparison with Other Latent Models
Finally, we compare latent language models with a
couple of other well-established latent models.

First, we consider vq-wav2vec (Baevski et al.,
2020). Similarly to a latent language model, vq-
wav2vec consists of an encoder η that maps from
an input space Σ∗ to a latent space Γ∗, and a lan-
guage model P over Γ. However, in vq-wav2vec,
η is not restricted to be injective, which leads to
several issues. First, classical maximum likelihood
estimation cannot be used to train the composition

η ◦ P because of the existence of a degenerate op-
timum in which the encoder collapses; that is, η
maps all elements of Σ∗ to a single latent element
γ ∈ Γ∗ and P places all of the probability mass on
γ. This necessitates the use of more indirect and in-
efficient contrastive estimation methods (Gutmann
and Hyvärinen, 2012; van den Oord et al., 2019).
Furthermore, η ◦ P is not guaranteed to be a lan-
guage model and, even if it is, P cannot be used to
efficiently sample from η ◦ P.

Second, we consider Discrete Flows (Tran et al.,
2019), which are comprised of a bijective encoder
η : Σ∗ → Γ∗ and a sequential language model over
Γ; i.e., Discrete Flows are latent language models.
Tran et al. (2019) propose two types of encoders.
The bipartite encoder η := η(1) ◦ η(2) ◦ · · · ◦ η(l) is
such that, for α ∈ Σ∗, 1 ≤ i ≤ |α| and 1 ≤ j ≤ l,

η(j)(α)i :=

{
αi if i ≡ j (mod 2)

f (j)(α(j), αi) otherwise
.

In the expression above, α(j) denotes the concate-
nation of the letters αi such that i ≡ j (mod 2).
Therefore, each layer η(j) of a bipartite encoder η
preserves the letters α(j) of the input α and mod-
ifies the remaining letters based on α(j). Further-
more, in order for η(j) to be bijective, f (j) is chosen
such that α(j) and f (j)(α(j), αi) uniquely identify
αi. Lastly, note that Discrete Flows correspond to
a subclass of non-standard latent decompositions
that can represent non-rational language models.
In fact, a sufficiently deep multi-layer bipartite en-
coder can implement the mapping anbn 7→ (ab)n.
For further empirical evidence of the advantages of
Discrete Flows, we refer to Tran et al. (2019).

In addition, we compare latent language models
with discrete diffusion language models such as
D3PM (Austin et al., 2021) in Appendix E.3.

6 Conclusion

We introduced a class of consistent bidirectional
language models, called latent language models,
that allow for efficient sampling and scoring of se-
quences. We defined latent language models based
on the well-understood formalism of bisequential
decompositions. This formal correspondence al-
lowed us to precisely charaterise the abilities and
limitations of a subclass of latent language models,
called rational language models. As a result, we
showed that latent language models are exponen-
tially more concise and significantly more expres-
sive than unidirectional language models.
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Limitations

The primary focus of this paper is the characterisa-
tion of the representational capacity and concise-
ness of rational language models, which constitute
a strict subclass of latent language models. Conse-
quently, the question about the expressive power
of the full class of latent language models remains
unanswered. In other words, it is not clear how
latent language models relate to other classes of
formal languages; for example, whether they also
subsume the class of (deterministic) context-free
language models. Furthermore, we do not explore
the limitations of latent language models. While
a straightforward constraint that latent language
models impose is that their images should be ratio-
nal sets, further work is required to obtain deeper
understanding of the limits of their capabilities.

Another notable limitation is that we do not as-
sess the learnability of latent language models; that
is, we do not consider the problem of searching for
such models via gradient-based or other optimisa-
tion methods. A latent language model consists of
a latent encoder η and a unidirectional language
model g. It is well known that unidirectional lan-
guage models, such as g, are effectively learnable.
However, it is not obvious if η and g could also be
jointly optimised and if so what is an appropriate
parametric family for η.

Lastly, we do not explore the applicability of
latent language models to natural language pro-
cessing tasks. That is, it remains to be empirically
verified whether the increased expressive power of
latent language models could lead to better down-
stream task performance when compared to classi-
cal unidirectional language models.
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A Related Work

The problem of characterising the consistent prefix factorisations is tackled by Du et al. (2023). They
give an easy to enforce condition that is sufficient for consistency. Moreover, the authors show that many
of the models used in practice to represent prefix factorisations satisfy this property. In particular, the
authors demonstrate that all prefix factorisations realised by Transformers or RNNs (such as GRU and
LSTM) with a softmax prediction head are in fact consistent.

Nevertheless, we are not aware of the existence of such results for confix factorisations. Goyal et al.
(2022); Torroba Hennigen and Kim (2023) acknowledge the problem of ensuring the consistency of
confix factorisations as well as the intractability of sampling from them. To this end, Goyal et al. (2022)
attempt to sidestep the issue by interpreting confix factorisations as energy-based models and deriving
a different incompatible distribution from them. Similarly, Torroba Hennigen and Kim (2023) explore
methods for deriving incompatible joint distributions from confix factorisation. However, they focus only
on distributions over two-letter alphabets.

Several studies (Vinyals et al., 2015; Ford et al., 2018) have suggested that the order in which sequences
are processed is important for language modelling. Furthermore, there have been many different proposals
for achieving bidirectionality by learning the decoding order (Brantley et al., 2019; Stern et al., 2019; Gu
et al., 2019; Li et al., 2021). Nonetheless, each of those solutions requires either expensive beam search
or variational inference for decoding. Moreover, many of the methods do not allow for efficient scoring
of sequences. The only bidirectional models we are aware of that achieve both efficient generation and
scoring are the Discrete Flows by Tran et al. (2019), which are in fact a special case of the latent language
models that we introduce.

We note that Svete and Cotterell (2023) have already explored the connection between unidirectional
language models and sequential transducers. The authors show that unidirectional language models
based on Heaviside RNNs are as expressive as sequential transducers. However, we are not aware of
similar developments for bidirectional models. More importantly, we do not know of other works that
have attempted to define bidirectional language models in a principled way and have explored their
expressive power and representational conciseness in terms of formal abstractions from automata and
formal language theory.

B Factorisations of Language Models

B.1 Language Modelling with Prefix Factorisations

In this appendix, we describe in more details the correspondence between the language models that
are compatible with a given prefix factorisation Φ and the prefix model generated by Φ. We begin by
considering several basic properties of prefix factorisations.21

Definition B.1. Let Σ be an alphabet and A ⊆ Σ∗. For n ∈ N, we define the sets An, A<n and A≤n as

An :=

{
ϵ if n = 0

An−1A otherwise
, A<n :=

n−1⋃

i=0

Ai and A≤n := A<n ∪An.

Definition B.2. Let (ϕα)α∈Σ∗ be a prefix factorisation over Σ. For every α ∈ Σ∗, we use ϕ∗α to denote
the extension of ϕα to Σ∗$≤1 defined as

ϕ∗α(β) :=
|β|∏

i=1

ϕαβ<i
(βi).

Remark B.1. Now, given a prefix factorisation (ϕα)α∈Σ∗ over Σ, the prefix model M that is generated by
it can be expressed as

M(α) = ϕ∗ϵ (α$).
21In accord with general use, we shall identify a singleton set with the element that it contains and omit the braces.
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Proposition B.1. Let (ϕα)α∈Σ∗ be a prefix factorisation over Σ. Then, for α, β ∈ Σ∗ and γ ∈ Σ∗$≤1,

ϕ∗α(βγ) = ϕ∗α(β)ϕ
∗
αβ(γ).

Proof. Follows directly from Definition B.2.

Remark B.2. Given a prefix factorisation (ϕα)α∈Σ∗ , we additively extend every f ∈ ⋃
α∈Σ∗{ϕα, ϕ∗α} to

P
(
Dom(f)

)
as

f(A) :=
∑

α∈A
f(α).

Proposition B.2. Let (ϕα)α∈Σ∗ be a prefix factorisation over Σ. Then,

(∀α ∈ Σ∗)
(
ϕ∗α(Σ

∗$) ≤ 1
)
.

Proof. Let α ∈ Σ∗. First, we prove by induction on n that

(∀n ∈ N)
(
ϕ∗α(Σ

≤n$) + ϕ∗α(Σ
n+1) = 1

)
. (4)

For n = 0, we have that

ϕ∗α(Σ
≤0$) + ϕ∗α(Σ) = ϕα($) + ϕα(Σ) = ϕα(Σ$) = 1.

Suppose the statement holds for n ∈ N. Then,

ϕ∗α(Σ
≤n+1$) + ϕ∗α(Σ

n+2) = ϕ∗α(Σ
≤n$) + ϕ∗α(Σ

n+1$) + ϕ∗α(Σ
n+1Σ)

= ϕ∗α(Σ
≤n$) + ϕ∗α(Σ

n+1Σ$)

= ϕ∗α(Σ
≤n$) +

∑

β∈Σn+1

ϕ∗α(β)�����:1
ϕαβ(Σ$)

= ϕ∗α(Σ
≤n$) + ϕ∗α(Σ

n+1)

= 1.

Now, since ϕ∗α(Σ
∗$) is the limit of the partial sums

(
ϕ∗α(Σ

≤n$)
)
n∈N, from (4), we obtain that

ϕ∗α(Σ
∗$) = lim

n→∞
ϕ∗α(Σ

≤n$) ≤ lim
n→∞

(
ϕ∗α(Σ

≤n$) + ϕ∗α(Σ
n+1)

)
= 1.

Proposition B.3. Let (ϕα)α∈Σ∗ be a prefix factorisation over Σ and α ∈ Σ∗ be such that ϕ∗ϵ (α) ̸= 0 and
ϕ∗α(Σ

∗$) < 1. Then, (
∀0 ≤ n ≤ |α|

)(
ϕ∗ϵ (α≤n) ̸= 0 ∧ ϕ∗α≤n

(Σ∗$) < 1
)
.

Proof. We proceed by downward induction on n. For n = |α|, the statement is true by assumption.
Suppose that the statement holds for n > 0. Then, it is obvious that ϕ∗ϵ (α<n) ̸= 0. Furthermore,

ϕ∗α<n
(Σ∗$) = ϕα<n($) + ϕα<n(αn)ϕ

∗
α≤n

(Σ∗$) +
∑

a∈Σ\αn

ϕα<n(a)ϕ
∗
α<na(Σ

∗$).

However, ϕ∗α≤n
(Σ∗$) < 1 by the inductive hypothesis and ϕ∗α<na(Σ

∗$) ≤ 1 by Proposition B.2. There-
fore, we conclude that

ϕ∗α<n
(Σ∗$) < ϕα<n($) + ϕα<n(αn) +

∑

a∈Σ\αn

ϕα<n(a) = ϕα<n(Σ$) = 1.

Proposition B.4. Let Φ := (ϕα)α∈Σ∗ be a prefix factorisation over Σ andM be the prefix model generated
by Φ. Then, M is a language model if and only if

(∀α ∈ Σ∗)
(
ϕ∗ϵ (α) ̸= 0 =⇒ ϕ∗α(Σ

∗$) = 1
)
.
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Proof. Assume that M is a language model and let α ∈ Σ∗ be such that ϕ∗ϵ (α) ̸= 0. Now, suppose that
ϕ∗α(Σ

∗$) ̸= 1. Then, ϕ∗α(Σ
∗$) < 1 by Proposition B.2. Therefore, Proposition B.3 implies that

∑

β∈Σ∗
M(β) =

∑

β∈Σ∗
ϕ∗ϵ (β$) = ϕ∗ϵ (Σ

∗$) < 1,

which contradicts the fact that M is a language model. Thus, ϕ∗α(Σ
∗$) = 1.

The backward direction is trivial since ϕ∗ϵ (ϵ) = 1 ̸= 0 by definition and ϕ∗ϵ (Σ
∗$) = 1 is equivalent to

M being a language model.

Theorem B.1. A prefix factorisation Φ over Σ is consistent if and only if the prefix model M generated
by Φ is a language model over Σ. In this case, M is the only language model compatible with Φ.

Proof. Let Φ := (ϕα)α∈Σ∗ be a prefix factorisation and M be the prefix model generated by Φ.
First, assume that Φ is consistent and let P be a language model that is compatible with Φ. Then, for

α ∈ Σ∗, the chain rule implies that22

M(α) =
( |α|∏

i=1

ϕα<i(αi)
)
ϕα($) =

( |α|∏

i=1

P(α≤iΣ
∗ | α<iΣ

∗)
)
P(α | αΣ∗) = P(α).

Therefore, M is a language model. Furthermore, since P is arbitrary, every language model that is
compatible with Φ coincides with M ; that is, M is the only language model compatible with Φ.

Now, assume that M is a language model. Let α ∈ Σ∗ be such that M(αΣ∗) ̸= 0. Then, since

M(αΣ∗) =
∑

β∈Σ∗
M(αβ) =

∑

β∈Σ∗
ϕ∗ϵ (α)ϕ

∗
α(β$) = ϕ∗ϵ (α)

∑

β∈Σ∗
ϕ∗α(β$) = ϕ∗ϵ (α)ϕ

∗
α(Σ

∗$),

it follows that ϕ∗ϵ (α) ̸= 0. Therefore, Proposition B.4 implies that, for a ∈ Σ,

M(αaΣ∗ | αΣ∗) =
M(αaΣ∗)
M(αΣ∗)

= ���ϕ∗ϵ (α)ϕα(a)ϕ
∗
αa(Σ

∗$)

���ϕ∗ϵ (α)�����: 1
ϕ∗α(Σ

∗$)
= ϕα(a)ϕ

∗
αa(Σ

∗$) = ϕα(a),

where the last equality holds because ϕ∗αa(Σ
∗$) = 1 whenever ϕα(a) ̸= 0. Similarly, we derive that

M(α | αΣ∗) =
M(α)

M(αΣ∗)
= ���ϕ∗ϵ (α)ϕα($)

���ϕ∗ϵ (α)�����: 1
ϕ∗α(Σ

∗$)
= ϕα($).

Therefore, Φ is consistent and M is compatible with Φ.

B.2 Language Modelling with Confix Factorisations

In this appendix, we describe in more details the correspondence between the language models that are
compatible with a given complete confix factorisation (Φ,PL) and the confix model generated by (Φ,PL).
Additionally, we demonstrate that, unlike prefix factorisations, there exist inconsistent complete confix
factorisations whose confix models are language models.
Remark B.3. Note that, according to Definition 2.5, there are no confix factorisations over ∅ because there
are no probability distributions over ∅. Nevertheless, we shall extend Definition 2.5 by considering the
empty family as the confix factorisation over ∅.
Remark B.4. The extension of Definition 2.5 leads to the following additional amendments.

22Note that, for
(
P(α≤iΣ

∗ | α<iΣ
∗)
)|α|
i=1

and P(α | αΣ∗) to be defined and the derivation of M(α) = P(α) to be valid, it is
necessary that P(αΣ∗) ̸= 0. However, even if P(αΣ∗) = 0, M(α) = P(α) still holds since P(α) = 0 because P(α) ≤ P(αΣ∗),
and M(α) = 0 because there exists 1 ≤ i ≤ |α| such that P(α<iΣ

∗) ̸= 0 and ϕα<i(αi) = P(α≤iΣ
∗ | α<iΣ

∗) = 0.
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(i) A complete confix factorisation over Σ is a tuple (Φ,PL) such that Φ is a positive confix factorisation
over Σ and PL is a probability distribution over NΣ, where

NΣ :=
{
|α| | α ∈ Σ∗} =

{
0 if Σ = ∅
N otherwise

.

(ii) Let P be a language mode over Σ and PL is a probability distribution over NΣ. We say that P is
compatible with PL if

(∀n ∈ NΣ)
(
P(Σn) = PL(n)

)
.

(iii) Let (Φ,PL) is a complete confix factorisation over Σ. (Φ,PL) is called consistent if there exists a
language model P over Σ that is compatible with (Φ,PL); i.e., P is compatible with both Φ and PL.

By considering complete confix factorisations, we restrict our attention only to positive confix factorisa-
tion. However, not every language model is compatible with a positive confix factorisation.

Proposition B.5. Let P be a language model over Σ. Then, P is compatible with a positive confix
factorisation over Σ if and only if, for every n ∈ NΣ,

(∃α ∈ Σn)
(
P(α) = 0

)
⇐⇒ P(Σn) = 0. (5)

Proof. Assume that P is compatible with the positive confix factorisation Φ := (ϕα,β)α,β∈Σ∗ . The
backward direction of (5) holds trivially; thus, we focus on the forward direction. We note that, since
P(Σ0) = P(ϵ), the forward direction of (5) holds trivially for n = 0. In what follows, we consider the
case where n > 0.

Let α ∈ Σ∗ \ ϵ be such that P(α) = 0. We prove by induction on i that
(
∀0 ≤ i ≤ |α|

)(
P(Σiα>i) = 0

)
.

Note that, when i = |α|, we obtain that P(Σ|α|) = 0 (that is, the forward direction of (5) holds for n > 0).
For i = 0, it is obvious that P(Σiα>i) = P(α) = 0. Now, assume that P(Σiα>i) = 0 for 0 ≤ i < |α|,

and suppose that P(Σi+1α>i+1) ̸= 0. Then, there exists β ∈ Σi such that P(βΣα>i+1) ̸= 0 and

P(βα>i) = P(βΣα>i+1)P(βα>i | βΣα>i+1) = P(βΣα>i+1)ϕβ,α>i+1
(αi+1) ̸= 0.

However, this contradicts with P(βα>i) ≤ P(Σiα>i) = 0. Therefore, P(Σi+1α>i+1) = 0.
Next, assume that (5) holds. Consider the confix factorisation Φ := (ϕα,β)α,β∈Σ∗ defined, for α, β ∈ Σ∗,

as follows:

(i) if P(αΣβ) ̸= 0, then ϕα,β := P(α • β | αΣβ);

(ii) if P(αΣβ) = 0, then let ϕα,β be an arbitrary positive probability distribution over Σ.

Now, for α, β ∈ Σ∗, if P(αΣβ) ̸= 0, then, for a ∈ Σ,

P(αaβ) ̸= 0 and ϕα,β(a) = P(αaβ | αΣβ) = P(αaβ)
P(αΣβ)

̸= 0;

otherwise, if P(αΣβ) = 0, then ϕα,β is positive by definition.

Proposition B.6. Let P be a language model over Σ that is compatible with a positive confix factorisation
(ϕα,β)α,β∈Σ∗ over Σ. Then, for α ∈ Σ∗ and β ∈ Σ|α|,

P(α) = P(β)
|α|∏

i=1

ϕα<i,β>i
(αi)

ϕα<i,β>i
(βi)

. (6)
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Proof. Let α ∈ Σ∗ and β ∈ Σ|α|. First, assume that P(α) ̸= 0. Then, from Proposition B.5, it follows
that P(Σ|α|) ̸= 0. Now, we prove by downward induction on 0 ≤ j ≤ |α| that

P(α) = P(α≤jβ>j)

|α|∏

i=j+1

ϕα<i,β>i
(αi)

ϕα<i,β>i
(βi)

. (7)

Note that, when j = 0, (7) is equivalent to (6).
For j = |α|, (7) holds trivially. Now, assume that (7) is true for 0 < j ≤ |α|. Then,

P(α) = P(α≤jβ>j)

|α|∏

i=j+1

ϕα<i,β>i
(αi)

ϕα<i,β>i
(βi)

= P(α<jΣβ>j)P(α≤jβ>j | α<jΣβ>j)

|α|∏

i=j+1

ϕα<i,β>i
(αi)

ϕα<i,β>i
(βi)

= P(α<jβ≥j)
P(α≤jβ>j | α<jΣβ>j)

P(α<jβ≥j | α<jΣβ>j)

|α|∏

i=j+1

ϕα<i,β>i
(αi)

ϕα<i,β>i
(βi)

= P(α≤j−1β>j−1)

|α|∏

i=j

ϕα<i,β>i
(αi)

ϕα<i,β>i
(βi)

.

Next, assume that P(α) = 0. Then, P(Σ|α|) = 0 by Proposition B.5, which implies that P(β) = 0 and
thus (6) holds.

Definition B.3. Let Φ := (ϕα,β)α,β∈Σ∗ be a positive confix factorisation over Σ. For α ∈ Σ∗ and n ∈ NΣ,
we define

Φα :=
1

∑
β∈Σ|α|

∏|α|
i=1

ϕα<i,β>i
(βi)

ϕα<i,β>i
(αi)

and Φn :=
∑

β∈Σn

Φβ.

Proposition B.7. Let P be a language model over Σ that is compatible with a complete confix factorisation
(Φ,PL) over Σ. Then, for α ∈ Σ∗,

P(α) = PL

(
|α|

)
Φα.

Furthermore, for n ∈ NΣ such that PL(n) ̸= 0,

(∀α ∈ Σn)
(
Φα = P(α | Σn)

)
and Φn = 1.

Proof. Let Φ =: (ϕα,β)α,β∈Σ∗ and α ∈ Σ∗. Then, from Proposition B.6, it follows that, for β ∈ Σ|α|,

P(β) = P(α)
|α|∏

i=1

ϕα<i,β>i
(βi)

ϕα<i,β>i
(αi)

.

Summing over β ∈ Σ|α|, we obtain that

P(Σ|α|) = P(α)
∑

β∈Σ|α|

|α|∏

i=1

ϕα<i,β>i
(βi)

ϕα<i,β>i
(αi)

,

which can be rearranged as

P(α) =
P(Σ|α|)

∑
β∈Σ|α|

∏|α|
i=1

ϕα<i,β>i
(βi)

ϕα<i,β>i
(αi)

= PL

(
|α|

)
Φα.

Furthermore, if PL

(
|α|

)
̸= 0, then P(Σ|α|) ̸= 0,

Φα =
P(α)

P(Σ|α|)
= P(α | Σ|α|) and Φ|α| =

∑

α∈Σ|α|

Φα =
∑

α∈Σ|α|

P(α | Σ|α|) = 1.
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Theorem B.2. Let (Φ,PL) be a consistent complete confix factorisation over Σ. Then, the confix model
generated by (Φ,PL) is the only language model over Σ that is compatible with (Φ,PL).

Proof. Let P be a language model over Σ that is compatible with (Φ,PL) (such a language model exists
since (Φ,PL) is consistent). Now, Proposition B.7 implies that P coincides with the confix model M
generated by (Φ,PL). Therefore, M is the only language model that is compatible with (Φ,PL).

Next, we show that, unlike prefix factorisations, there exist inconsistent complete confix factorisations
whose confix models are language models. The main reason for this deficiency is that, as we shall show,
Φn can take on values that are less than and greater than one when n ≥ 2. We begin by noting that
Φ0 = Φ1 = 1 for every positive confix factorisation Φ over Σ.

Proposition B.8. Let Φ be a positive confix factorisation over Σ. Then, Φ0 = Φ1 = 1.

Proof. Let Φ =: (ϕα,β)α,β∈Σ∗ . Then,

Φ0 =
∑

α∈Σ0

1
∑

β∈Σ0

ϕ∗
α,β(β)

ϕ∗
α,β(α)

=
1

���ϕ∗
ϵ,ϵ(ϵ)

���ϕ∗
ϵ,ϵ(ϵ)

= 1,

Φ1 =
∑

α∈Σ1

1
∑

β∈Σ1

ϕ∗
α,β(β)

ϕ∗
α,β(α)

=
∑

a∈Σ

1
∑

b∈Σ
ϕϵ,ϵ(b)
ϕϵ,ϵ(a)

=
∑

a∈Σ

ϕϵ,ϵ(a)∑
b∈Σ ϕϵ,ϵ(b)

= 1.

Now, we consider the particular case where |Σ| = 2 and n ≥ 2. We note that the following result can
be further extended to alphabets with more than two letters. However, in this work, we do not pursue this
direction.

Proposition B.9. Let ⩽> ∈ {<,=, >}, Σ be an alphabet such that |Σ| = 2, and n ∈ N be such that n ≥ 2.
Then, there exists a positive confix factorisation Φ over Σ such that Φn

⩽
> 1.

Proof. First, we consider the case where n = 2. Let Σ =: {a, b} and Φ := (ϕα,β)α,β∈Σ∗ be a positive
confix factorisation over Σ. We begin by observing that

Φ2 =
∑

α∈Σ2

1
∑

β∈Σ2

ϕ∗
α,β(β)

ϕ∗
α,β(α)

=
∑

α1,α2∈Σ

1
∑

β1,β2∈Σ
ϕϵ,β2

(β1)ϕα1,ϵ(β2)

ϕϵ,β2
(α1)ϕα1,ϵ(α2)

=
∑

α1,α2∈Σ

1

∑
β2∈Σ

ϕα1,ϵ(β2)

ϕϵ,β2
(α1)ϕα1,ϵ(α2)���������: 1∑

β1∈Σ ϕϵ,β2(β1)

=
∑

α1,α2∈Σ

ϕα1,ϵ(α2)
∑

β2∈Σ
ϕα1,ϵ(β2)

ϕϵ,β2
(α1)

=
∑

α1∈Σ
���������: 1∑

α2∈Σ ϕα1,ϵ(α2)
∑

β2∈Σ
ϕα1,ϵ(β2)

ϕϵ,β2
(α1)

=
∑

α1∈Σ

1
∑

β2∈Σ
ϕα1,ϵ(β2)

ϕϵ,β2
(α1)

.

Then, by letting ϕϵ,a = ϕa,ϵ, we obtain that

∑

α1∈Σ

1
∑

β2∈Σ
ϕα1,ϵ(β2)

ϕϵ,β2
(α1)

=
1

ϕa,ϵ(a)
ϕϵ,a(a)

+
ϕa,ϵ(b)
ϕϵ,b(a)

+
1

ϕb,ϵ(a)
ϕϵ,a(b)

+
ϕb,ϵ(b)
ϕϵ,b(b)

=
ϕϵ,a(a)ϕϵ,b(a)

ϕa,ϵ(a)ϕϵ,b(a) + ϕa,ϵ(b)ϕϵ,a(a)
+

ϕϵ,a(b)ϕϵ,b(b)

ϕb,ϵ(a)ϕϵ,b(b) + ϕb,ϵ(b)ϕϵ,a(b)

=
����ϕϵ,a(a)ϕϵ,b(a)

����ϕϵ,a(a)ϕϵ,b(a) + ϕϵ,a(b)����ϕϵ,a(a)
+

ϕϵ,a(b)ϕϵ,b(b)

ϕb,ϵ(a)ϕϵ,b(b) + ϕb,ϵ(b)ϕϵ,a(b)

=
ϕϵ,b(a)

(
ϕb,ϵ(a)ϕϵ,b(b) + ϕb,ϵ(b)ϕϵ,a(b)

)
+ ϕϵ,a(b)ϕϵ,b(b)

(
ϕϵ,b(a) + ϕϵ,a(b)

)
(
ϕϵ,b(a) + ϕϵ,a(b)

)(
ϕb,ϵ(a)ϕϵ,b(b) + ϕb,ϵ(b)ϕϵ,a(b)

) .
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Finally, we note that Φ2
⩽
> 1 if and only if

((((((((((((((((((

ϕϵ,b(a)
(
ϕb,ϵ(a)ϕϵ,b(b) + ϕb,ϵ(b)ϕϵ,a(b)

)
+XXXXϕϵ,a(b)ϕϵ,b(b)

(
ϕϵ,b(a) + ϕϵ,a(b)

)

⩽
>

(
����ϕϵ,b(a) +

XXXXϕϵ,a(b)
)(
ϕb,ϵ(a)ϕϵ,b(b) + ϕb,ϵ(b)ϕϵ,a(b)

)
,

which is equivalent to (
ϕϵ,a(a)− ϕϵ,b(a)

)(
ϕϵ,b(a)− ϕb,ϵ(a)

) ⩽
> 0.

Thus, it is obvious that Φ can be chosen so that it satisfies the statement of the proposition for n = 2.
Next, we consider the case where n > 2. Let Φ := (ϕα,β)α,β∈Σ∗ be a positive confix factorisation over

Σ such that, for α, β ∈ Σn and σ ∈ Σ,

(∀2 ≤ i ≤ n− 1)
(
ϕα<i,β>i

(σ) = 1
|Σ|

)
and (∀γ ∈ Σn−2)(ϕϵ,γσ = ϕϵ,σ ∧ ϕσγ,ϵ = ϕσ,ϵ).

Then, we have that

Φn =
∑

α∈Σn

1
∑

β∈Σn

ϕ∗
α,β(β)

ϕ∗
α,β(α)

=
∑

α∈Σn

1

∑
β∈Σn

ϕα<1,β>1
(β1)((((((((((∏n−1

i=2 ϕα<i,β>i
(βi)

)
ϕα<n,β>n (βn)

ϕα<1,β>1
(α1)((((((((((∏n−1

i=2 ϕα<i,β>i
(αi)

)
ϕα<n,β>n (αn)

=
∑

α∈Σn

1
∑

β∈Σn
ϕϵ,βn (β1)ϕα1,ϵ(βn)

ϕϵ,βn (α1)ϕα1,ϵ(αn)

=
∑

α1,α2∈Σ

����|Σ|n−2

∑
β1,β2∈Σ ����|Σ|n−2 ϕϵ,β2

(β1)ϕα1,ϵ(β2)

ϕϵ,β2
(α1)ϕα1,ϵ(α2)

= Φ2.

Now, from the case where n = 2, it follows that Φ can be chosen so that Φn
⩽
> 1.

Proposition B.10. Let (⩽>n
)∞n=2 be a sequence of elements of {<,=, >} and Σ be an alphabet such that

|Σ| = 2. Then, there exists a positive confix factorisation Φ such that

(∀n ≥ 2)(Φn
⩽
>n

1). (8)

Proof. If Φ := (ϕα,β)α,β∈Σ∗ is a positive confix factorisation over Σ, then we know that Φn, for n ≥ 2,
is defined only in terms of the probability distributions ϕα,β for α, β ∈ Σ∗ such that |αβ| = n− 1. Now,
from Proposition B.9, it follows that there is a positive confix factorisation Φ over Σ that satisfies (8).

Theorem B.3. There exists a complete confix factorisation (Φ,PL) over Σ that is inconsistent and the
confix model generated by (Φ,PL) is a language model over Σ.

Proof. Let Σ := {a, b}. We will show that there exists a complete confix factorisation (Φ,PL) over Σ
such that the confix model generated by (Φ,PL) is a language model over Σ that is not compatible with
(Φ,PL). Thus, from Theorem B.2, it would follow that (Φ,PL) is inconsistent.

Let Φ be a positive confix factorisation over Σ such that

Φ2 < 1, Φ3 > 1 and
(
∀n ∈ N \ {2, 3}

)
(Φn = 1).

The existence of such a confix factorisation follows from Proposition B.10.
Let PL be a length distribution such that PL(2),PL(3) ∈ (0, 1] and

PL(2)

PL(3)
=

Φ3 − 1

1− Φ2
or equivalently PL(2)Φ2 + PL(3)Φ3 = PL(2) + PL(3).

It is straightforward to verify that such a length distribution exists.
Now, consider the confix model M that is generated by (Φ,PL) and observe that

∑

α∈Σ∗
M(α) =

∑

n∈N

∑

α∈Σn

M(α) =
∑

n∈N

∑

α∈Σn

PL(n)Φα =
∑

n∈N
PL(n)Φn

= PL(2)Φ2 + PL(3)Φ3︸ ︷︷ ︸
PL(2)+PL(3)

+
∑

n∈N\{2,3}
PL(n)��>

1
Φn =

∑

n∈N
PL(n) = 1.

Consequently, M is a language model over Σ. However, from Proposition B.7, it follows that M is not
compatible with (Φ,PL) because PL(2) ̸= 0 and Φ2 ̸= 1 (also, PL(3) ̸= 0 and Φ3 ̸= 1).
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C Sequential Language Models

C.1 Real-Time Transducers
In the literature, transducers are typically allowed to have ϵ transitions and transducers that do not have ϵ
transitions are called real-time (Mihov and Schulz, 2019). Additionally, a relation is called rational if
it can be realised by a transducer. When it comes to representing functions, transducers and real-time
transducers have the same expressive power (Mihov and Schulz, 2019, Proposition 4.4.8). However,
real-time transducers cannot realise every rational relation. Indeed, they can represent only those rational
relations that are not infinitely ambiguous.23 In this work, our focus is on representing language models;
that is, we are primarily interested in the class of rational functions and not the class of rational relations.
Thus, we shall consider only real-time transducers and call them simply ‘transducers’.

C.2 Representational Capacity of Stochastic Sequential Transducers
In this appendix, we describe in more details the representational capacity of stochastic sequential
transducers. More precisely, we prove that the behaviours of stochastic sequential transducers correspond
to a subclass of sequential prefix models.

Definition C.1. Let T :=
(
Σ,R[0,1], Q, (i, 1),F, δ, λ

)
be a stochastic sequential transducer. The prefix

factorisation (ϕα)α∈Σ∗ associated with T is defined as

ϕα(a) :=

{
λ
(
δ∗(i, α), a

)
if a ∈ Σ

F
(
δ∗(i, α)

)
if a = $

.

Proposition C.1. Let T :=
(
Σ,R[0,1], Q, (i, 1),F, δ, λ

)
be a stochastic sequential transducer and

(ϕα)α∈Σ∗ be the prefix factorisation associated with T . Then,

(∀α, β ∈ Σ∗)
(
ϕ∗α(β) = λ∗

(
δ∗(i, α), β

))
.

Proof. For every α ∈ Σ∗, the statement follows by a straightforward induction on |β|.
Proposition C.2. Let T be a stochastic sequential transducer and Φ be the prefix factorisation associated
with T . Then, JT K coincides with the prefix model generated by Φ.

Proof. Let T =:
(
Σ,R[0,1], Q, (i, 1),F, δ, λ

)
, Φ =: (ϕα)α∈Σ∗ and M be the prefix model generated by

Φ. Then, Proposition C.1 implies that, for α ∈ Σ∗,

M(α) = ϕ∗ϵ (α)ϕα($) = λ∗
(
δ∗(i, ϵ), α

)
F
(
δ∗(i, α)

)
= JT K(α).

Remark C.1. It should be noted that the converse statement does not hold. That is, there exist sequential
prefix models that cannot be represented by a stochastic sequential transducer. Nevertheless, as we shall
see in Appendix C.4, the sequential prefix models that we care about (that is, the sequential language
models) can all be realised by stochastic sequential transducers.

Proposition C.3. Let Φ := (ϕan)n∈N be a prefix factorisation defined as

ϕan(a) :=
1 + 2n+1

2 + 2n+1
and ϕan($) :=

1

2 + 2n+1
.

Then, the prefix model generated by Φ is a sequential function that cannot be represented by a stochastic
sequential transducer.

Proof. Let M be the prefix model generated by Φ. We can verify by induction on n that

(∀n ∈ N)
(
M(an) =

1

2n+2

)
.

23A relation R ⊆ X × Y is infinitely ambiguous if
{
y ∈ Y | (x, y) ∈ R

}
is infinite for some x ∈ X .
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Indeed, for n = 0,

M(ϵ) = ϕϵ($) =
1

2 + 20+1
=

1

22
.

Now, suppose that the statement holds for n ∈ N. Then,

M(an+1) = ϕ∗ϵ (a
n)ϕan(a)ϕan+1($) =

M(an)

ϕan($)
ϕan(a)ϕan+1($)

=
�����
2 + 2n+1

2n+2

�����
1 + 2n+1

�����
2 + 2n+1

1

2������
(1 + 2n+1)

=
1

2n+3
.

Thus, M is not a language model because

∑

n∈N
M(an) =

∑

n∈N

1

2n+2
=

1

2
. (9)

Next, we note that M can be realised by the sequential transducer
(
a,R[0,1], q,

(
q, 12

)
,
(
q, 12

)
,
(
(q, a), q

)
,
(
(q, a), 12

))
.

However, if we suppose thatM can be represented by a stochastic sequential (a,R[0,1])-transducer T , then
every accessible state of T should be co-accessible because Supp(M) = a∗. Therefore, by Theorem C.4,
M should be a language model, which leads to a contradiction with (9). Thus, M cannot be represented
by a stochastic sequential (a,R[0,1])-transducer.

C.3 Canonisation of Sequential Transducers

In this appendix, we review a construction by Mohri et al. (2008), known in the literature as weight-
pushing, that builds from a sequential transducer an equivalent canonical one. In essence, the construction
consists of pushing the outputs of the transitions and the outputs of the final states ‘towards the initial
state as much a possible’.

Definition C.2. LetM := (M, ◦, e) be a monoid.M is called commutative if

(∀a, b ∈M)(a ◦ b = b ◦ a).

An element z ∈M is called an absorbing element ofM if

(∀a ∈M)(a ◦ z = z ◦ a = z).

Definition C.3. A semiring is a tuple K := (K,⊕,⊙, 0, 1), where

(i) K is a set, called the carrier of K;

(ii) (K,⊕, 0) is a commutative monoid, denoted K⊕;

(iii) (K,⊙, 1) is a monoid, denoted K⊙, with an absorbing element 0;

(iv) ⊙ distributes over ⊕; that is, for any a, b, c ∈ K, it holds that

(a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c),
a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c).

Remark C.2. Let K := (K,⊕,⊙, 0, 1) be a semiring. Whenever we write
⊕

i∈I ki for some family
(ki)i∈I of elements of K, we will implicitly assume that K is equipped with a partial infinitary sum
operation, written

⊕
, such that
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(i)
⊕

is consistent with the finitary sum of K; that is, if I = {i1, i2, . . . , in}, then
⊕

i∈I
ki = ki1 ⊕ ki2 ⊕ · · · ⊕ kin ;

(ii)
⊕

is associative; that is, for any partition (Ij)j∈J of I ,

⊕

j∈J

⊕

i∈Ij
ki =

⊕

i∈I
ki;

(iii) ⊙ distributes over
⊕

; that is, for any l ∈ K,

l ⊙
(⊕

i∈I
ki

)
=

⊕

i∈I
(l ⊙ ki) and

(⊕

i∈I
ki

)
⊙ l =

⊕

i∈I
(ki ⊙ l).

Note that we do not require the infinitary sum operation to be total (that is, for K to be complete). Hence,
all equalities in the equations above are conditional; that is, the left and right hand sides are either both
defined and equal or are both undefined.

Definition C.4. A semiring (K,⊕,⊙, 0, 1) is called weakly left-divisible24 if for every family (ki)i∈I of
elements of K such that

⊕
i∈I ki ∈ K \ 0 and every j ∈ I , there exists a unique element of K, denoted(⊕

i∈I ki
)−1 ⊙ kj , such that

(⊕

i∈I
ki

)
⊙
((⊕

i∈I
ki

)−1
⊙ kj

)
= kj .

Remark C.3. For convenience, in what follows, we shall assume that the F, δ and λ functions of sequential
transducers are total.

Definition C.5. Let K := (K,⊕,⊙, 0, 1) be a semiring and T :=
(
Σ,K⊙, Q, (i, ι),F, δ, λ

)
be a sequen-

tial transducer. The sum of T with respect to K, written JT K⊕, is defined as

JT K⊕ :=
⊕

α∈Σ∗
JT K(α)

whenever the infinitary sum exists.

Definition C.6. Let T :=
(
Σ, (M, ◦, e), Q, (i, ι),F, δ, λ

)
be a sequential transducer. For every q ∈ Q,

we define the sequential transducer

Tq :=
(
Σ, (M, ◦, e), Q, (q, e),F, δ, λ

)
.

Proposition C.4. Let K := (K,⊕,⊙, 0, 1) be a semiring and T :=
(
Σ,K⊙, Q, (i, ι),F, δ, λ

)
be a

sequential transducer. Then,

JT K⊕ = ι⊙ JTiK⊕ and (∀q ∈ Q)
(
JTqK⊕ =

⊕

a∈Σ
λ(q, a)⊙ JTδ(q,a)K⊕

)
.

Definition C.7. Let K := (K,⊕,⊙, 0, 1) be a semiring and T :=
(
Σ,K⊙, Q, (i, ι),F, δ, λ

)
be a sequen-

tial transducer. We say that T is summable with respect to K if the sums JTqK⊕ exist for all q ∈ Q.
Moreover, T is strictly summable with respect to K if it is summable with respect to K and

(∀q ∈ Q)
(
JTqK⊕ ̸= 0

)
.

24Mohri et al. (2008) call those semirings weakly left-divisible and cancellative. Here, for the sake of conciseness, we call
them simply weakly left-divisible.
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Definition C.8. Let K := (K,⊕,⊙, 0, 1) be a semiring and T :=
(
Σ,K⊙, Q, (i, ι),F, δ, λ

)
be a sequen-

tial transducer. We say that T is canonical with respect to K if

(∀q ∈ Q)
(
JTqK⊕ = 1

)
.

Proposition C.5. Let K := (K,⊕,⊙, 0, 1) be a semiring and T :=
(
Σ,K⊙, Q, (i, ι),F, δ, λ

)
be a

canonical with respect to K sequential transducer. Then,

(∀q ∈ Q)
(
F(q)⊕

⊕

a∈Σ
λ(q, a) = 1

)
.

Definition C.9. Let T :=
(
Σ,K⊙, Q, (i, ι),F, δ, λ

)
be a sequential transducer that is strictly summable

with respect to the weakly left-divisible semiring K := (K,⊕,⊙, 0, 1). The canonical form of T with
respect to K is defined as the sequential transducer

(
Σ,K⊙, Q, (i, ι′),F′, δ, λ′

)
, where

(i) ι′ := ι⊙ JTiK⊕;

(ii) F′ :=
{(
q, JTqK−1

⊕ ⊙ F(q)
) ∣∣ q ∈ Q

}
;

(iii) λ′ :=
{(

(q, a), JTqK−1
⊕ ⊙

(
λ(q, a)⊙ JTδ(q,a)K⊕

)) ∣∣∣ (q, a) ∈ Q× Σ

}
.

Theorem C.1. Let T be a sequential transducer that is strictly summable with respect to the weakly
left-divisible semiring K and T ′ be the canonical form of T with respect to K. Then, T ′ is equivalent to
T and canonical with respect to K.

C.4 From Probabilistic to Stochastic Sequential Transducers
In this appendix, we show that every probabilistic sequential transducer is equivalent to a stochastic
sequential transducer. Hence, every sequential language model is a sequential prefix model. The proof is
based on an application of the canonisation construction from Appendix C.3 with respect to the semiring
R+

[0,∞)
:=

(
[0,∞),+, ·, 0, 1

)
. Note thatR[0,1] is a submonoid ofR[0,∞) :=

(
[0,∞), ·, 1

)
. Thus, in what

follows, we shall also view probabilistic and stochastic transducers as (Σ,R[0,∞))-transducers.

Proposition C.6. R+
[0,∞) is a weakly left-divisible semiring.

Proof. For every family (xi)i∈I of elements of [0,∞) such that
∑

i∈I xi ̸= 0, we know that
∑

i∈I xi has
a multiplicative inverse y and

(∀j ∈ I)
((∑

i∈I
xi

)
· (y · xj) = xj

)
.

Proposition C.7. Every probabilistic sequential transducer that is canonical with respect toR+
[0,∞) is

stochastic.

Proof. Let T :=
(
Σ,R[0,∞), Q, (i, ι),F, δ, λ

)
be a probabilistic sequential transducer that is canonical

with respect toR+
[0,∞). Then,

ι
canonical

= ιJTiK+
Proposition C.4

= JT K+
probabilistic

= 1.

Additionally, Proposition C.5 implies that

(∀q ∈ Q)
(
F(q) +

∑

a∈Σ
λ(q, a) = 1

)
.
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Remark C.4. Let T be a probabilistic sequential transducer. Consider the sequential transducer T ′

obtained from T by removing all states that are not co-accessible, adding a new state qc with final output
1 and then completing the transition functions with transitions to qc with output 0. Now, it is not hard to
verify that T ′ is equivalent to T and every state of T ′ is co-accessible. Thus, if T is probabilistic, then T ′

is also probabilistic. Furthermore, if T is stochastic and every accessible state of T is co-accessible, then
T ′ is also stochastic.

Theorem C.2. Every probabilistic sequential transducer is equivalent to a stochastic sequential trans-
ducer.

Proof. Let T be a probabilistic sequential transducer. Without loss of generality, we can assume that
every state of T is co-accessible (see Remark C.4). Then, sinceR+

[0,∞) is positive (that is, a+ b = 0 if
and only if a = b = 0), it follows that T is strictly summable. Therefore, T has a canonical form T ′ (see
Definition C.9) that is equivalent to T and canonical with respect toR+

[0,∞) (see Theorem C.1). Finally,
Proposition C.7 implies that T ′ is a stochastic sequential transducer.

C.5 Characterisation of the Probabilistic Stochastic Sequential Transducers
In this appendix, we describe a simple condition that characterises the stochastic sequential transducers
that are probabilistic. The condition is a consequence of a classical result from the theory of Markov
chains (Norris, 1997). Thus, we proceed by illustrating the correspondence between stochastic sequential
transducers and Markov chains.

Definition C.10. A Markov chain is a tuple (S, µ, P ), where

(i) S is a finite set of states;

(ii) µ ∈ [0, 1]S is a stochastic vector; that is,
∑

i∈S µi = 1;

(iii) P ∈ [0, 1]S×S is a stochastic matrix; that is,
∑

j∈S Pij = 1 for every i ∈ S.

Definition C.11. Let C := (S, µ, P ) be a Markov chain. We say that i ∈ S leads to j ∈ S if
∑

n∈N
(Pn)ij ̸= 0.

Moreover, we say that i ∈ S is absorbing if Pii = 1. Finally, we say that the Markov chain C is absorbing
if every state leads to some absorbing state.

Definition C.12. Let T :=
(
Σ,R[0,1], Q, (i, 1),F, δ, λ

)
be a stochastic sequential transducer. The Markov

chain (S, µ, P ) associated with T is defined as

S := Q ∪ q$, µq :=

{
1 if q = i

0 otherwise
and Ppq :=





∑
a∈Σpq

λ(p, a) if p ∈ Q ∧ q ∈ Q
F(p) if p ∈ Q ∧ q = q$

0 if p = q$ ∧ q ∈ Q
1 if p = q$ ∧ q = q$

,

where q$ ̸∈ Q and Σpq :=
{
a ∈ Σ

∣∣ ((p, a), q
)
∈ δ

}
for p, q ∈ Q.

In the following proposition, we state several straightforward correspondences between stochastic
sequential transducers and the Markov chains associated with them.

Proposition C.8. Let C := (S, µ, P ) be the Markov chain associated with the stochastic sequential
transducer T :=

(
Σ,R[0,1], Q, (i, 1),F, δ, λ

)
. Then,

(i) q$ is an absorbing state in C;

(ii) a state q ∈ Q is co-accessible in T if and only if it leads to q$ in C;
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(iii) if a state q ∈ Q is co-accessible in T , then it is not absorbing in C;

(iv) if every state q ∈ Q is co-accessible in T , then C is an absorbing Markov chain;

(v) if Σ∗
pq :=

{
α ∈ Σ∗ |

(
(p, α), q

)
∈ δ∗

}
for p, q ∈ Q, then

(∀q ∈ Q)
(∑

n∈N
(µPn)q =

∑

α∈Σ∗
iq

λ∗(i, α)
)

and
∑

n∈N
(µPn)q$ =

∑

α∈Σ∗
JT K(α).

Next, we refer to a result from the theory of Markov chains that states that in an absorbing Markov
chain the probability of reaching an absorbing state is 1 (Grinstead and Snell, 1997, Theorem 11.3).

Theorem C.3. Let (S, µ, P ) be an absorbing Markov chain and A be the set of its absorbing states. Then,
∑

i∈A

∑

n∈N
(µPn)i = 1.

Now, using the established correspondences between stochastic sequential transducers and their associ-
ated prefix models (see Appendix C.2) and Markov chains, we can characterise the stochastic sequential
transducers that are probabilistic.

Theorem C.4. A stochastic sequential transducer T is probabilistic if and only if every accessible state
of T is co-accessible.

Proof. Let T :=
(
Σ,R[0,1], Q, (i, 1),F, δ, λ

)
be a stochastic sequential transducer. First, assume that T

is probabilistic and consider the prefix factorisation Φ := (ϕα)α∈Σ∗ that is associated with it. Let q ∈ Q
be an accessible state. Then, there exists α ∈ Σ∗ such that δ∗(i, α) = q and λ∗(i, α) ̸= 0. From the
correspondence between T and Φ (see Proposition C.1), it follows that

ϕ∗ϵ (α) = λ∗(i, α) ̸= 0.

Therefore, since the prefix model generated by Φ is the language model JT K (see Proposition C.2),
Proposition B.4 implies that

∑

β∈Σ∗
λ∗(q, β)F

(
δ∗(q, β)

)
=

∑

β∈Σ∗
ϕ∗α(β)ϕαβ($) =

∑

β∈Σ∗
ϕ∗α(β$) = ϕ∗α(Σ

∗$) = 1.

Thus, there exists β ∈ Σ∗ such that λ∗(q, β)F
(
δ∗(q, β)

)
̸= 0; that is, q is co-accessible.

Now, assume that every accessible state of T is co-accessible. As noted in Remark C.4, we can
assume, without loss of generality, that every state of T is co-accessible. Now, consider the Markov chain
C := (S, µ, P ) associated with T . From Proposition C.8, it follows that C is an absorbing Markov chain
and q$ is its unique absorbing state. Furthermore,

∑

α∈Σ∗
JT K(α)

Proposition C.8
=

∑

n∈N
(µPn)q$

Theorem C.3
= 1;

that is, T is probabilistic.

C.6 Modelling of State Distributions with Softmax
In this appendix, we continue the discussion of the fact that, in practice, all stochastic sequential language
models that use the softmax activation function to define the transition and final output functions are
probabilistic because all of their accessible states are co-accessible.

As already mentioned, unidirectional language models based on saturated RNNs, RNNs using the
Heaviside activation function or Transformers with bounded context length are, in fact, stochastic sequen-
tial transducers. In practice, the state of such a model at time step t (that is, after processing the prefix
α≤t of the input α) is represented by a d-dimensional vector ht ∈ Rd. In order to obtain the probability
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distribution pt over Σ$ that defines the transition and final outputs of ht, a transformation ϕ : Rd → R|Σ$|

and the softmax activation function are applied to ht; that is,

pt := softmax
(
ϕ(ht)

)
.

The softmax activation function is a function from R|Σ$| to the probability simplex

{
x ∈ [0, 1]|Σ$|

∣∣
|Σ$|∑

i=1

xi = 1
}

and is defined, for x ∈ R|Σ$| and 1 ≤ i ≤ |Σ$|, as

softmax(x)i :=
exp(xi)∑|Σ$|
j=1 exp(xj)

. (10)

From (10), it is obvious that pt is a positive probability distribution over Σ$. Thus, Theorem 3.2 implies
that every stochastic sequential transducer that is implemented in such a way is probabilistic.

C.7 Characterisation of Sequential Language Models
In this appendix, we provide a detailed proof of the characterisation of sequential language models.
We consider the more general case of sequential functions from Σ∗ to R[0,1] and show that threy are
characterised by several different properties; namely, uniform finiteness, uniform boundedness and
Lipschitzness. We begin by recalling a result by Mohri (1997, Theorem 9) that characterises the sequential
functions from Σ∗ to S[0,∞) :=

(
[0,∞),+, 0

)
.25

Definition C.13. Let d be a metric on M . A function f : Σ∗ →M is called uniformly bounded26 with
respect to d if

(∀n ∈ N)(∃N ∈ N)
(
∀α, β ∈ Dom(f)

)(
dp(α, β) ≤ n =⇒ d

(
f(α), f(β)

)
≤ N

)
.

Theorem C.5. Let f be a rational function from Σ∗ to S[0,∞). Then, f is sequential if and only if it is
uniformly bounded with respect to the metric

dS : (x, y) 7→ |x− y|.

To transfer this characterisation to the probability monoidR[0,1], we make several observations. First,
we note that it is sufficient to consider only functions from Σ∗ toR(0,1] :=

(
(0, 1], ·, 1

)
.

Proposition C.9. Let f be a rational function from Σ∗ to R[0,1]. Then, f is sequential if and only if
f↾Supp(f) if sequential.

Proof. If f is realised by a sequential transducer, then, by removing the transitions with zero output
and making the initial (final) states with zero initial (final) output non-initial (non-final), we obtain a
sequential transducer that represents f↾Supp(f). Conversely, if f↾Supp(f) is sequential, we can complete
any sequential transducer that realises it in order to obtain a sequential transducer that represents f .

Next, we note that the negative logarithm is an isomorphism fromR(0,1] to S[0,∞).

Definition C.14. LetM1 := (M1, ◦1, e1) andM2 := (M2, ◦2, e2) be monoids. A function h : M1 →M2

is a homomorphism fromM1 toM2 if

h(e1) = e2 and (∀a, b ∈M1)
(
h(a ◦1 b) = h(a) ◦2 h(b)

)
.

An isomorphism fromM1 andM2 is a bijective homomorphism fromM1 toM2.
25We write S instead of R in order to emphasise that the monoid operation is addition and not multiplication.
26Choffrut (1977), Mohri (1997) and Mihov and Schulz (2019) call such functions ‘of bounded variation’. We instead use the

terminology of Reutenauer and Schützenberger (1991).
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An important property of rational and sequential functions is that they are closed with respect to
composition with homomorphisms.

Proposition C.10. Let f be a rational function from Σ∗ toM and h be a homomorphism fromM to
M′. Then, the composition f ◦ h is a rational function from Σ∗ toM′. Furthermore, f ◦ h is sequential
whenever f is sequential.

Proof. Let T := (Σ,M, Q, I,F,∆) be a transducer that realises f . Consider the transducer

h(T ) :=
(
Σ,M′, Q, I ◦ h,F ◦ h,

{(
p, a, h(m), q

) ∣∣ (p, a,m, q) ∈ ∆
})

.

It is easy to verify that Jh(T )K = JT K ◦ h. Thus, f ◦ h is rational. Moreover, if T is sequential, h(T ) is
also sequential. Therefore, f ◦ h is sequential whenever f is sequential.

Additionally, we note that, apart from being and isomorphism, − log is also an isometry from the metric
space (R(0,1], dR), where

dR : (x, y) 7→
∣∣log(x)− log(y)

∣∣,

to the metric space (S[0,∞), dS). Thus, uniform boundedness can be transferred between functions from
Σ∗ toR(0,1] and functions from Σ∗ to S[0,∞).

Proposition C.11. Let f be a rational function from Σ∗ to R(0,1]. Then, f is uniformly bounded with
respect to dR if and only if f ◦ (− log) is uniformly bounded with respect to dS .

Proof. Let g := f ◦ (− log); that is, f = g ◦ (− log)−1, where (− log)−1(x) = exp(−x). It is sufficient
to note that, for α, β ∈ Dom(f),

dR
(
f(α), f(β)

)
= dR

((
g ◦ (− log)−1

)
(α),

(
g ◦ (− log)−1

)
(β)

)

= dR
(
exp

(
−g(α)

)
, exp

(
−g(β)

))

=

∣∣∣∣log
(
exp

(
−g(α)

))
− log

(
exp

(
−g(β)

))∣∣∣∣
=

∣∣−g(α) + g(β)
∣∣

= dS
(
g(α), g(β)

)
.

Now, we can state a characterisation of the sequential functions from Σ∗ toR(0,1].

Theorem C.6. Let f be a rational function from Σ∗ to R(0,1]. Then, f is sequential if and only if it is
uniformly bounded with respect to dR.

Proof. Let g := f ◦ (− log). Now, since − log is an isomorphism, we can conclude that

f is sequential from Σ∗ toR(0,1]
Proposition C.10⇐==========⇒ g is sequential from Σ∗ to S[0,∞)

Theorem C.5⇐==========⇒ g is uniformly bounded with respect to dS

Proposition C.11⇐==========⇒ f is uniformly bounded with respect to dR.

Finally, we note that in Theorem C.6 one can replace the uniform boundedness with Lipschitzness or
uniform finiteness.

Definition C.15. Let d be a metric on M . A function f : Σ∗ →M is called Lipschitz with respect to d if
and only if

(∃L ∈ N)
(
∀α, β ∈ Dom(f)

)(
d
(
f(α), f(β

)
≤ L · dp(α, β)

)
.
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Definition C.16. A function f : Σ∗ → (0, 1] is called uniformly finite if and only if
{
f(α)

f(β)

∣∣∣ α, β ∈ Dom(f) ∧ dp(α, β) ≤ n
}

is finite for all n ∈ N.

It is obvious that every function that is Lipschitz with respect to d is also uniformly bounded with
respect to d. Furthermore, every function that is uniformly finite is also uniformly bounded with respect
to dR. In the class of rational functions, the opposite directions also hold.

Theorem C.7. Let f be a rational function from Σ∗ toR(0,1]. Then, the following are equivalent:

(i) f is sequential;

(ii) f is uniformly bounded with respect to dR;

(iii) f is Lipschitz with respect to dR;

(iv) f is uniformly finite.

Proof. It remains to show that (i) implies (iii) and (iv). To this end, let T :=
(
Σ,R(0,1], Q, (i, ι),F, δ, λ

)

be a sequential transducer that realises f .
Let α, β ∈ Dom(f) and γ, α′, β′ ∈ Σ∗ be such that γ = α ∧ β, α = γα′ and β = γβ′. Then,

f(α)

f(β)
=

�����ιλ∗(i, γ)λ∗
(
δ∗(i, γ), α′)F

(
δ∗
(
δ∗(i, γ), α′))

�����ιλ∗(i, γ)λ∗
(
δ∗(i, γ), β′

)
F
(
δ∗
(
δ∗(i, γ), β′

)) .

Now, if q := δ∗(i, γ), N := min
{
λ(q, a) | (q, a) ∈ Q × Σ

}
and M := min

{
F(q) | q ∈ Q

}
, we can

conclude that

dR
(
f(α), f(β)

)
=

∣∣∣log
(
f(α)

)
− log

(
f(β)

)∣∣∣

=

∣∣∣∣log
λ∗(q, α′)F

(
δ∗(q, α′)

)

λ∗(q, β′)F
(
δ∗(q, β′)

)
∣∣∣∣

≤
∣∣∣∣log

1

λ∗(q, β′)F
(
δ∗(q, β′)

)
∣∣∣∣

≤ |β′| log 1

N
+ log

1

M

≤ dp(α, β) log
1

NM
;

that is, f is Lipschitz with respect to dR.
Furthermore, for n ∈ N, we have that
{
f(α)

f(β)

∣∣∣ α, β ∈ Dom(f) ∧ dp(α, β) ≤ n
}

⊆
{
f(γα)

f(γβ)

∣∣∣ γ ∈ Σ∗ ∧ α, β ∈ Σ≤n ∧ γα, γβ ∈ Dom(f)

}

=

{
λ∗

(
δ∗(i, γ), α

)
F
(
δ∗
(
δ∗(i, γ), α

))

λ∗
(
δ∗(i, γ), β

)
F
(
δ∗
(
δ∗(i, γ), β

))
∣∣∣ γ ∈ Σ∗ ∧ α, β ∈ Σ≤n ∧ γα, γβ ∈ Dom(f)

}

⊆
{
λ∗(q, α)F

(
δ∗(q, α)

)

λ∗(q, β)F
(
δ∗(q, β)

)
∣∣∣ q ∈ Q ∧ α, β ∈ Σ≤n ∧ δ∗(q, α), δ∗(q, β) ∈ F

}

is finite because it is contained in a finite set; that is, f is uniformly finite.

Lastly, we note that Theorem 3.3 is a special case of Theorem C.7 when Proposition C.9 is taken into
consideration.
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D Rational Language Models

D.1 Examples of Rational Language Models

In this appendix, we give formal proofs of the statements from Section 4.1. In particular,

(i) in Proposition D.1, we prove that, when p0 and p1 are distinct, P(α) is a co-sequential but not a
sequential language model;

(ii) in Figure 3, we depict a representation of a bisequential decomposition of the language model P̃(α);

(iii) in Figure 4, we depict a stochastic sequential transducer that is equivalent to the sequential transducer
Tg from Figure 3;

(iv) in Proposition D.2 we prove that, when (pij)i,j∈{0,1} are pairwise distinct, P̃(α) is neither a sequential
nor a co-sequential language model.

Remark D.1. We utilise the following standard graphical representation in order the visualise transduc-
ers (Sakarovitch, 2009): states are depicted as circles (inside of which the name of the state may be
written), each transition (p, α,m, q) is represented by an arrow from p to q with label α | m, initial states
are identified by an incoming arrow labelled with the corresponding initial output and final states are
identified by an outgoing arrow labelled with the corresponding final output.

Proposition D.1. For i ∈ {0, 1}, let pi ∈ (0, 0.5) and Pi be a language model over {0, 1} defined as

Pi(α) :=

{
(1− 2pi)p

|α′|
i if α = α′i

0 otherwise
.

Let w ∈ R \ 0 and P : Σ∗ → R be defined as

P(α) := wP0(α) + (1− w)P1(α).

Then, if p0 ̸= p1, P is a co-sequential function that is not sequential.

Proof. It is obvious that P is a co-sequential function (see Figure 2). Assume that p0 ̸= p1. Then, for
every α ∈ {0, 1}∗, we have that dp(α0, α1) = 2 and

P(α0)
P(α1)

=
wP0(α)

(1− w)P1(α)
=

w(1− 2p0)p
|α|
0

(1− w)(1− 2p1)p
|α|
1

=
w(1− 2p0)

(1− w)(1− 2p1)

(
p0
p1

)|α|
.

Therefore,
{

w(1− 2p0)

(1− w)(1− 2p1)

(
p0
p1

)n ∣∣∣ n ∈ N
}
⊆

{
P(α)
P(β)

∣∣∣ α, β ∈ Supp(P) ∧ dp(α, β) ≤ 2

}
.

Since p0 ̸= p1, the former set is infinite and consequently the latter is also infinite. By Theorem C.7, we
conclude that P is not sequential.

Remark D.2. Note that, if w ∈ (0, 1), then P is a language model. Additionally, if the language models Pi

are defined so that they are discriminative with respect to the first instead of the last letter, then P would
be sequential but not co-sequential when p0 ̸= p1.

Proposition D.2. For i, j ∈ {0, 1}, let pij ∈ (0, 0.5) and Pij be a language model over {0, 1} defined as

Pij(α) :=

{
(1− 2pij)p

|α′|
ij if α = iα′j

0 otherwise
.
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l1

l01

l00

l10

l11

l00

l01

l10

l11

l̃00 1− q00

l̃01 1− q01

l̃10 1− q10

l̃11 1− q11

(0
, 0
)
| w

00

(0,
1)
| w01

(1, 0) | w
10

(1, 1) | w
11

(1, 0) | 1

(0, 0) | 1

(0, 1) | 1

(1, 1) | 1

(1, 0) | 1

(0, 0) | 1

(0, 1) | 1

(1, 1) | 1

(0, 0) | q00

(1, 0) | q00

(1, 1) | q01

(0, 1) | q01

(0, 0) | q10

(1, 0) | q10

(1, 1) | q11

(0, 1) | q11

(0, 0) | q00

(1, 0) | q00

(1, 1) | q01

(0, 1) | q01

(0, 0) | q10

(1, 0) | q10

(1, 1) | q11

(0, 1) | q11

r ϵϵ

r0ϵ

r1ϵ

0 | (0, 0)

1 | (
1, 1

)

0 | (0, 0)

1 | (1, 0)
0 | (0, 1)

1 | (1, 1)

Figure 3: A representation of a standard bisequential decomposition
(
{0, 1}2, η, g

)
of the language model P̃ from

Section 4.1. On the right hand side is the sequential transducer Tη that represents the co-sequential function
η : {0, 1} → {0, 1}2 defined as η(ϵ) := ϵ and η(β) := (β1, j)(β2, j) · · · (β|β|, j) for β = αj. On the left hand
side is the sequential transducer Tg that realises the sequential language model g over {0, 1}2 such that η ◦ g = P̃.
Note that Tg has intentionally not been completed to avoid clutter. Additionally, the sequential transducer Tg is
probabilistic but not stochastic since the transition and final outputs of states lij sum to two instead of one.
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l1

l01

l00

l10

l11

l00

l01

l10

l11

l̃00
1−2q00
1−q00

l̃01
1−2q01
1−q01

l̃10
1−2q10
1−q10

l̃11
1−2q11
1−q11

(0
, 0
)
| w

00

(0,
1)
| w01

(1, 0) | w
10

(1, 1) | w
11

(1, 0) | q00

(0, 0) | 1− q00

(0, 1) | q01

(1, 1) | 1− q01

(1, 0) | q10

(0, 0) | 1− q10

(0, 1) | q11

(1, 1) | 1− q11

(0, 0) | 1− q00

(1, 0) | q00

(1, 1) | 1− q01

(0, 1) | q01

(0, 0) | 1− q10

(1, 0) | q10

(1, 1) | 1− q11

(0, 1) | q11

(0, 0) | q00

(1, 0)
∣∣ q200
1−q00

(1, 1) | q01

(0, 1)
∣∣ q201
1−q01

(0, 0) | q10

(1, 0)
∣∣ q210
1−q10

(1, 1) | q11

(0, 1)
∣∣ q211
1−q11

Figure 4: A stochastic version of the transducer Tg from Figure 3. One can efficiently sample from it and then
project onto Σ∗. As explained in Section 4.2, this corresponds to sampling from the language model P̃.
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Let wij ∈ R \ 0, for i, j ∈ {0, 1}, and P̃ : Σ∗ → R be defined as

P̃(α) :=
∑

i,j∈{0,1}
wijPij(α).

Then, P̃ is a rational function that is neither sequential nor co-sequential whenever (pij)i,j∈{0,1} are
pairwise distinct.

Proof. P̃ is obviously a rational function. Assume that (pij)i,j∈{0,1} are pairwise distinct. Now, Proposi-
tion D.1 implies that

P̃↾0{0,1}∗{0,1} = w00P00 + w01P01

is not sequential. Similarly, P̃↾{0,1}{0,1}∗0 is not co-sequential (see Remark D.2). Since sequential and
co-sequential functions are closed with respect to regular restrictions, it follows that P̃ is neither sequential
nor co-sequential.

Remark D.3. Note that, if wij ∈ (0, 1), for i, j ∈ {0, 1}, and
∑

i,j∈{0,1}wij = 1, then P̃ is a language
model.

D.2 Conciseness of the Representations of Bisequential Decompositions
In this appendix, we give formal proofs of the statements from Section 4.3. Recall that, for an alphabet Σ
and n ∈ N, we use PΣ,n to denote the class of language models P over Σ such that

Supp(P) =
⋃

a,b∈Σ
aΣnaΣ∗bΣnb.

Theorem D.1. Every sequential transducer that represents (either sequentially or co-sequentially) a
language model from PΣ,n has Ω

(
|Σ|n

)
states.

Proof. Let P ∈ PΣ,n and T :=
(
Σ,R[0,1], Q, (i, ι),F, δ, λ

)
be a sequential transducer that represents P

sequentially (by symmetry, a similar argument can be applied when T represents P co-sequentially) .
Suppose that |Q| < |Σ|n+1. Then, for π ∈ ⋃

a∈Σ aΣ
na, there exist α, β ∈ Σn+1 such that

α ̸= β and δ∗(i, πα) = δ∗(i, πβ) =: q.

Let γ, α′, β′ ∈ Σ∗ and a, b ∈ Σ be such that

α = γaα′, β = γbβ′ and a ̸= b.

Now, note that, for every ξ ∈ Σ|γ|,

παξa = πγaα′ξa ∈ Supp(P) and πβξb = πγbβ′ξb ∈ Supp(P)

because |α′ξ| = |α′γ| = n and |β′ξ| = |β′γ| = n. Similarly, παξb, πβξa ̸∈ Supp(P). From

P(παξa) = JT K(παξa) = ιλ∗(i, πα)λ∗(q, ξa)F
(
δ∗(q, ξa)

)
> 0,

P(πβξb) = JT K(πβξb) = ιλ∗(i, πβ)λ∗(q, ξb)F
(
δ∗(q, ξb)

)
> 0,

it follows that all the terms above are non-zero. Consequently,

P(παξb) = JT K(παξb) = ιλ∗(i, πα)λ∗(q, ξb)F
(
δ∗(q, ξb)

)
> 0,

which contradicts with παξb ̸∈ Supp(P). Thus, |Q| ≥ |Σ|n+1.

Theorem D.2. There exist (co-)sequential language models in PΣ,n that admit a bisequential decomposi-
tion with a representation (Γ, Tη, Tg) such that Tη and Tg have O

(
n|Σ|

)
states.
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Proof. Let P be a language model over Σ defined, for a, b ∈ Σ, α, β ∈ Σn and γ ∈ Σ∗, as

P(aαaγbβb) :=
1− |Σ|p
|Σ|2(n+1)

p|γ|,

where p ∈
(
0, 1

|Σ|
)
. It is obvious that P ∈ PΣ,n. Now, consider the sequential transducers Tη and Tg

defined as27

Tη :=
(
Σ,Σ∗, Q, (i, ϵ), (f, ϵ), δ, idDom(δ) ◦ πΣ

)
,

Tg :=
(
Σ,R[0,1], Q, (i, 1),

(
f, 1−|Σ|p

|Σ|2(n+1)

)
, δ,Dom(δ)× p

)
,

where Q :=
(
Σ× {1, 2, . . . , n+ 1}

)
∪ {i, f} and δ : Q× Σ→ Q is defined as

δ(i, a) := (a, 1), δ(f, a) := f and δ
(
(b, j), a

)
:=

{
(b, j + 1) if j ̸= n+ 1

f if (b, j) = (a, n+ 1)
.

It is straightforward to verify that (Σ, Tη, Tg) is a representation of a bisequential decomposition of P
such that both Tη and Tg have O

(
n|Σ|

)
states.

D.3 Closure of Rational Language Models with Respect to Mixing and Regular Conditioning

In this appendix, we prove the closure properties of rational language models stated in Theorem 4.5.

Theorem D.3. Let w ∈ (0, 1), L ⊆ Σ∗ be a regular language and P1,P2 be language models over Σ.
Then,

(i) if P1 is sequential or co-sequential, then P1 is rational;

(ii) if P1 is rational and P1(L) ̸= 0, then the conditional language model P1(• | L) is rational;

(iii) if P1 and P2 are rational with disjoint supports, then so is the mixture wP1 + (1− w)P2.

Proof. (i) Follows by definition.

(ii) Since L is regular, P1↾L is a rational function. Furthermore, P1(L) is non-zero and therefore

P1(• | L) =
1

P1(L)
P1↾L

is a well-defined rational function.28

(iii) It is obvious that wP1 and (1 − w)P2 are rational functions. Since, Supp(P1) and Supp(P2) are
disjoint regular languages,29 it follows that

wP1↾Supp(P1), (1− w)P2↾Supp(P2) and
(
Σ∗ \

(
Supp(P1) ∪ Supp(P2)

))
× 0

are rational functions with disjoint domains. Therefore, their union, which coincides with their
mixture with parameter w, is a rational function.

27Below, we use πΣ to denote the projection from Q× Σ to Σ.
28Note that, given a transducer for P1, we can effectively transform it into an unambiguous transducer and use standard matrix

operations in order to effectively compute P1(L).
29Indeed, given a transducer realising Pi, we can remove all transitions with output 0 along them and make all initial

(final) states with initial (final) output 0 non-initial (non-final). This would not change the outputs along the runs for words
α ∈ Supp(Pi) but the domain of the behaviour of the resulting transducer would be exactly Supp(Pi); thus, proving that
Supp(Pi) is regular.
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D.4 Characterisation of Rational Language Models

In this appendix, we prove Theorem 4.6. To this end, we use the notion of a bimachine (Schützenberger,
1961; Eilenberg, 1974; Mihov and Schulz, 2019). Similarly to representations of bisequential decompo-
sitions, bimachines are deterministic devices that can represent any rational function. Every bimachine
consists of two deterministic automata – a left and a right one – and an output function. Just like the
encoder of a representation of a bisequential decomposition, the right automaton scans the input from right
to left. However, as opposed to the encoder, it does not output any information. Correspondingly, the left
automaton scans the input from left to right. Based on the runs of the two automata, the output function
produces the output. Thus, the main difference between bimachines and representations of bisequential
decompositions is the fact that bimachines treat the left-to-right and right-to-left scans independently and
thus symmetrically, which allows for more transparent arguments.

We start by recalling the formal definition of a bimachine and behaviour of a bimachine. Then, we state
the equivalence of the expressive power of bimachines and bisequential decompositions. Finally, we focus
on the main topic of this section; that is, the proof of Theorem 4.6.

Definition D.1. A (Σ,M)-bimachine is a tuple (M,AL,AR, ψ, ι), where

(i) M := (M, ◦, e) is a monoid;

(ii) AL := (Σ, QL, iL, δL, QL) is a deterministic automaton, called the left automaton;30

(iii) AR := (Σ, QR, iR, δR, QR) is a deterministic automaton, called the right automaton;

(iv) ψ : QL × Σ×QR →M is the output function;

(v) ι ∈M is the initial output.

Definition D.2. Let B := (M,AL,AR, ψ, ι) be a (Σ,M)-bimachine. We extend ψ to a function
ψ∗ : QL × Σ∗ ×QR →M as follows. For states l ∈ QL, r ∈ QR, word α ∈ Σ∗ and 0 ≤ i ≤ |α|, let

li := δ∗L(l, α≤i) and ri+1 := δ∗R
(
r, (α≥i+1)

⊤).

Then, we define

ψ∗(l, α, r) :=
|α|∏

i=1

ψ(li−1, αi, ri+1).

Finally, we define the behaviour of B as the function JBK : Σ∗ →M such that

JBK(α) := ιψ∗(iL, α, iR).

We also say that B represents (or realises) JBK.

Remark D.4. In the notation of Definition D.2, a simple inductive argument shows that, for 0 ≤ i ≤ |α|,

ψ∗(l, α, r) = ψ∗(l, α≤i, ri+1)ψ
∗(li, α≥i+1, r).

Bimachines represent exactly the set of rational functions (Schützenberger, 1961; Eilenberg, 1974;
Mihov and Schulz, 2019). In particular, for language models, we obtain the following.

Theorem D.4. A language model over Σ is rational if and only if it can be represented by a (Σ,R[0,1])-
bimachine.

Now, we have the necessary formal background to prove Theorem 4.6. We begin with a simple auxiliary
proposition.

30This notation signifies that Σ is the alphabet, QL is the set of states, iL is the initial state, δL is the transition function and
all states in QL are final.
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Definition D.3. Let P be a language model over Σ. The relation CP ⊆ P(Σ∗)× Σ∗ × Σ∗ is defined as
(A,α, β) ∈ CP if and only if

P(Aα) = 0 ⇐⇒ P(Aβ) = 0 and P(Aα) ̸= 0 =⇒ P( • α | Aα) = P( • β | Aβ).

Remark D.5. Note that, for every A ⊆ Σ∗, the relation
{
(α, β) ∈ Σ∗ × Σ∗ | (A,α, β) ∈ CP

}
is an

equivalence relation.

Proposition D.3. Let P be a language model over Σ. Then, for every (A,α, β) ∈ CP, it follows that

(∀B ⊆ A)
(
(B,α, β) ∈ CP

)
.

Proof. Let (A,α, β) ∈ CP and B ⊆ A. If P(Bα) ̸= 0 and P(Bβ) ̸= 0, then P(Aα) ̸= 0, P(Aβ) ̸= 0
and, for γ ∈ B,

P(γα | Bα) = P(γα)
P(Bα)

=
P(γα)P(Aα)
P(Aα)P(Bα)

=
P(γα | Aα)
P(Bα | Aα) =

P(γα | Aα)∑
δ∈Σ∗ P(δα | Aα)

=
P(γβ | Aβ)∑

δ∈Σ∗ P(δβ | Aβ) =
P(γβ | Aβ)
P(Bβ | Aβ) =

P(γβ)P(Aβ)
P(Aβ)P(Bβ)

= P(γβ | Bβ).

Furthermore,

P(Bα) ̸= 0 ⇐⇒ P(Aα) ̸= 0 ∧ P(Bα | Aα) ̸= 0

⇐⇒ P(Aα) ̸= 0 ∧
∑

γ∈B
P(γα | Aα) ̸= 0

⇐⇒ P(Aβ) ̸= 0 ∧
∑

γ∈B
P(γβ | Aβ) ̸= 0

⇐⇒ P(Aβ) ̸= 0 ∧ P(Bβ | Aβ) ̸= 0

⇐⇒ P(Bβ) ̸= 0.

Theorem D.5. Let P be a language model over Σ. Then, the following are equivalent:

(i) P is rational;

(ii) there is a finite cover of Σ∗ with regular languages {Li}ni=1 such that, for 1 ≤ i ≤ n, the number of
conditional distributions {P( • α | Liα)}α∈Σ∗ is finite;

(iii) there is a finite partition of Σ∗ into regular languages {Li}ni=1 such that, for 1 ≤ i ≤ n, the number
of conditional distributions {P( • α | Liα)}α∈Σ∗ is finite;

(iv) there is a finite partition of Σ∗ into regular languages {Li}ni=1 such that, for 1 ≤ i ≤ n, the number
of conditional distributions {P( • α | Liα)}α∈Σ∗ is finite and, for every a ∈ Σ, there is a unique
1 ≤ j ≤ n such that Lia ⊆ Lj .

Proof. (i) =⇒ (ii) Assume that P is rational. Then, by Theorem D.4, we have that there exists a
bimachine B := (R[0,1],AL,AR, ψ, ι) that represents P. Let

AL := (Σ, QL, iL, δL, QL),

AR := (Σ, QR, iR, δR, QR).

Without loss of generality, we assume that all states in QL and QR are accessible. Since the domain of P
is Σ∗, it follows that AL and AR are complete.

For a state l ∈ QL, let Ll be defined as the left language of l with respect to AL; that is,

Ll :=
{
α ∈ Σ∗ | δ∗L(iL, α) = l

}
.
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Since AL is a complete deterministic automaton over Σ, it follows that {Ll}l∈QL
is a finite partition

of Σ∗ (Ll ̸= ∅, for l ∈ QL, because l is accessible). Furthermore, by Kleene’s Theorem, each of the
languages Ll is regular. Therefore, {Ll}l∈QL

is a partition and thus a cover of Σ∗ with regular languages.
To complete the proof of this part of the theorem, it suffices to show that the conditional distributions

{
P( • α | Llα)

}
α∈Σ∗

are finitely many for all l ∈ QL.
Let α ∈ Σ∗ be such that P(Llα) ̸= 0, and let r := δ∗R(iR, α

⊤). Now, for every β ∈ Ll, we have that

P(βα) = JBK(βα) = ιψ∗(iL, βα, iR).

Since β ∈ Ll, we have that δ∗(iL, β) = l. Therefore, by Remark D.4, we conclude that

P(βα) = ιψ∗(iL, βα, iR) = ιψ∗(iL, β, r)ψ∗(l, α, iR).

Now it is straightforward to note that, for every β ∈ Ll,

P(βα | Llα) =
P(βα)
P(Llα)

=
P(βα)∑

γ∈Ll
P(γα)

= �ιψ
∗(iL, β, r)������

ψ∗(l, α, iR)∑
γ∈Ll �ιψ

∗(iL, γ, r)������
ψ∗(l, α, iR)

=
ψ∗(iL, β, r)∑

γ∈Ll
ψ∗(iL, γ, r)

.

Observe that the final expression depends on α only through r = δ∗R(iR, α
⊤). It follows that, for every

state l ∈ QL, the number of distinct distributions P( • α | Llα) is at most |QR| when α ranges over Σ∗.
(ii) =⇒ (iii) Assume that {Li}ni=1 is a cover of Σ∗ with regular languages such that, for every i, the

number of distributions P( • α | Liα) is finite when α ranges over Σ∗. We need to show that there is a
partition of Σ∗ with the same property.

To this end, for a subset I ⊆ {1, 2, . . . , n}, we define

LI :=
(⋂

i∈I
Li

)
∩
(⋂

i ̸∈I
Σ∗ \ Li

)
.

Since the class of regular languages is closed under complement and intersection, it follows that each of the
languages LI is regular. Next, it should be also clear that, if I and J are distinct subsets of {1, 2, . . . , n},
then LI ∩ LJ = ∅. Indeed, if i ∈ LI \ LJ , then LI ⊆ Li whereas LJ ⊆ Σ∗ \ Li. The case, where there
is j ∈ LJ \ LI , is symmetric; thus, the conclusion follows. Finally, since

⋃

I⊆{1,2,...,n} : i∈I
LI = Li,

it follows that the union of all the languages LI is the same as the union of {Li}ni=1.
So far we have proven that the set

P :=
{
LI | I ⊆ {1, 2, . . . , n} ∧ LI ̸= ∅

}

obeys the following properties:

• LI is regular for every I ⊆ {1, 2, . . . , n};

• LI ∩ LJ = ∅ if and only if I ̸= J ;

•
⋃P =

⋃n
i=1 Li = Σ∗.

Therefore P is a partition of Σ∗ into regular languages.
Let LI ∈ P . Then, LI ̸= ∅ and since

⋂n
i=1Σ

∗ \ Li = ∅, it follows that there is at least one
1 ≤ i ≤ n such that i ∈ I . Let i be a fixed index with this property. Then, LI ⊆ Li and, for every
α ∈ Σ∗, LIα ⊆ Liα. Now, Proposition D.3 implies that the number of distinct distributions of the form{
P( • α | LIα)

}
α∈Σ∗ is bounded from above by the number of distinct distributions

{
P( • α | Liα)}α∈Σ∗ .
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(iii) =⇒ (iv) Let {Lj}nj=1 be a finite partition of Σ∗ into regular languages such that, for 1 ≤ j ≤ n,
there are finitely many distributions P( • α | Ljα) for α ∈ Σ∗. We prove that {Lj}nj=1 can be chosen such
that, for every a ∈ Σ and 1 ≤ j ≤ n, there is a unique 1 ≤ k ≤ n with Lja ⊆ Lk.

To this end, we first use that Lj is regular and thus, by Kleene’s Theorem, there is a complete
deterministic automaton Aj := (Σ, Qj , ij , δj , Fj) that recognises Lj . Next, using the cartesian product
construction, we obtain a complete deterministic automaton A := (Σ, Q, i, δ,Q), where

(i) Q :=
∏n

j=1Qj ;

(ii) i := (ij)
n
j=1;

(iii) δ :=

{((
(qj)

n
j=1, a

)
,
(
δj(qj , a)

)n
j=1

) ∣∣∣ q ∈ Q ∧ a ∈ Σ

}
.

We consider the set of all accessible states Q′ of A. For each such state q ∈ Q′, we define

L′
q :=

{
α ∈ Σ∗ | δ∗(i, α) = q

}
.

As above, {L′
q}q∈Q′ forms a finite partition of Σ∗ into regular languages. Furthermore, it is straightforward

that, for every q ∈ Q′ and a ∈ Σ,

L′
qa =

{
αa | α ∈ Σ∗ ∧ δ∗(i, α) = q

}
⊆

{
α ∈ Σ∗ | δ∗(i, α) = δ(q, a)

}
= L′

δ(q,a).

Now, {L′
q}q∈Q′ is a partition and thus there is no other state p ∈ Q′ such that L′

qa ⊆ L′
p.

Finally, by the construction of A, we have that, for every γ ∈ Σ∗,

δ∗(i, γ) =
(
δ∗j (ij , γ)

)n
j=1

.

Since {Lj}nj=1 is a partition of Σ∗ and Aj recognises Lj for 1 ≤ j ≤ n, it follows that, for every q ∈ Q′,
there is a unique 1 ≤ j ≤ n such that qj ∈ Fj and L′

q ⊆ Lj . Now, Proposition D.3 implies that the
number of distinct distributions of the form

{
P( • α | L′

qα)}α∈Σ∗ is bounded from above by the number
of distinct distributions

{
P( • α | Ljα)}α∈Σ∗ .

(iv) =⇒ (i) Let {Li}ni=1 be a partition of Σ∗ into regular languages with the property that, for every
1 ≤ i ≤ n and a ∈ Σ, there is a unique 1 ≤ j ≤ n with Lia ⊆ Lj . Assume further that, for 1 ≤ i ≤ n,
the number of distributions P( • α | Liα) is finite when α ranges over Σ∗. In what follows, we set out to
construct a representation (Γ, Tη, Tg) of a bisequential decomposition (Γ, η, g) of P.

We start by constructing the encoding transducer Tη. To this end, we study the relation ∼ ⊆ Σ∗ × Σ∗

defined as
α ∼ β ⇐⇒ (∀1 ≤ i ≤ n)

(
(Li, α, β) ∈ CP

)
.

In other words, α ∼ β expresses the property that α and β have the same conditional distributions with
respect to every Li.

It is straightforward to note that ∼ is an equivalence relation (see Remark D.5) and, since, for every
1 ≤ i ≤ n, there are finitely many distributions of the form P( • α | Liα), it follows that ∼ has a finite
index. By Proposition D.3 and the fact that, for every 1 ≤ i ≤ n and a ∈ Σ, there is a unique 1 ≤ j ≤ n
with Lia ⊆ Lj , it follows that ∼ is a left congruence (see Definition D.5). Thus, we can encode the
equivalence classes of ∼ as a right-to-left scanning deterministic automaton.

We define the sequential transducer

Tη :=
(
Σ,

(
Σ× (Σ∗/∼)

)∗
,Σ∗/∼,

(
[ϵ]∼, ϵ

)
, (Σ∗/∼)× ϵ, δη, λη

)
, where

(i) δη :=

{((
[α]∼, a

)
, [aα]∼

) ∣∣∣ α ∈ Σ∗ ∧ a ∈ Σ

}
;

(ii) λη :=

{((
[α]∼, a

)
,
(
a, [α]∼

)) ∣∣∣ α ∈ Σ∗ ∧ a ∈ Σ

}
.
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A simple inductive argument reveals that, for every word α ∈ Σ∗,

δ∗η
(
[ϵ]∼, α⊤) = [α]∼.

Consequently, using that λη
(
[α]∼, a

)
=

(
a, [aα]∼

)
and taking into account that initial and final outputs

of Tη are ϵ, we obtain that

η(α) = JTηK(α⊤)⊤ =
((
αi, [α>i]∼

))|α|

i=1
.

In other words, η preserves the input word in the first coordinate by outputting the letters αi, whereas in
the second coordinate it encodes the equivalence class [α>i]∼. This knowledge, along with the properties
of the languages {Li}ni=1, enables the construction of the generator Tg.

Let Lϵ is be element of {Li}ni=1 that contains ϵ. Then, we define

Tg :=
(
Σ× (Σ∗/∼),R[0,1], ig ∪ {Li}ni=1, (ig, 1),Fg, δg, λg

)
, where

F(q) :=

{
P(ϵ) if q = ig

P(Li) if q = Li

,

δg

(
q,
(
a, [α]∼

))
:=

{
δg

(
Lϵ,

(
a, [α]∼

))
if q = ig

Lj if q = Li ∧ Lja ⊆ Lj

,

λg

(
q,
(
a, [α]∼

))
:=





0 if q = ig ∧ Lϵa ⊆ Lj ∧ P(Ljα) = 0

P(aα | Ljα) if q = ig ∧ Lϵa ⊆ Lj ∧ P(Ljα) ̸= 0

0 if q = Li ∧ Lia ⊆ Lj ∧ P(Ljα) = 0

P(Liaα | Ljα) if q = Li ∧ Lia ⊆ Lj ∧ P(Ljα) ̸= 0

.

Since, for every 1 ≤ i ≤ n and every letter a ∈ Σ, there is unique 1 ≤ j ≤ n such that Lia ⊆ Lj , it
follows that δg and λg are well-defined total functions. Let α ∈ Σ∗ \ ϵ and denote by ρ(i) the unique
index such that α≤i ∈ Lρ(i) for 1 ≤ i ≤ |α|. Now, a straightforward induction on 1 ≤ i ≤ |α| shows that

δ∗g
(
ig,

(
η(α)

)
≤i

)
= δ∗g

(
ig,

(
α1, [α>1]∼

)(
α2, [α>2]∼

)
· · ·

(
αi, [α>i]∼

))
= Lρ(i).

Therefore,

λ∗g
(
ig, η(α)

)
= λ

(
ig,

(
α1, [α>1]∼

)) |α|−1∏

i=1

λ
(
Lρ(i),

(
αi+1, [α>i+1]∼

))
. (11)

Note that, if P(Lρ(j)α>i) = 0 for some 1 ≤ i ≤ |α|, then, since α ∈ Lρ(i)α>i, it follows that P(α) = 0.
These considerations show that, if some of the values in (11) is zero due to the case P(Lρ(i)α>i) = 0,
then JTgK

(
η(α)

)
= 0 = P(α) as required.

Next, we assume that P(Lρ(i)α>i) ̸= 0 for all 1 ≤ i ≤ |α|. Therefore, for 1 ≤ i ≤ |α| − 1,

λ
(
ig,

(
α1, [α>1]∼

))
= P(α1α>1 | Lρ(1)α>1) =

P(α1α>1)

P(Lρ(1)α>1)
=

P(α)
P(Lρ(1)α>1)

,

λ
(
Lρ(i),

(
αi+1, [α>i+1]∼

))
= P(Lρ(i)αi+1α>i+1 | Lρ(i+1)α>i+1) =

P(Lρ(i)α>i)

P(Lρ(i+1)α>i+1)
.

Now it is straightforward to verify that

λ∗g
(
ig, η(α)

)
= λ

(
ig,

(
α1, [α>1]∼

)) |α|−1∏

i=1

λ
(
Lρ(i),

(
αi+1, [α>i+1]∼

))

=
P(α)

P(Lρ(1)α>1)

|α|−1∏

i=1

P(Lρ(i)α>i)

P(Lρ(i+1)α>i+1)
=

P(α)
P(Lρ(|α|)α>|α|)

=
P(α)

P(Lρ(|α|))
.
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Finally, since Fg(Lρ(|α|)) = P(Lρ(|α|)), we conclude that

JTgK
(
η(α)

)
= λ∗g

(
ig, η(α)

)
Fg(Lρ(|α|)) =

P(α)
P(Lρ(|α|))

P(Lρ(|α|)) = P(α).

So far we considered the case where |α| > 0. In the case where α = ϵ, we have

JTgK
(
η(ϵ)

)
= JTgK(ϵ) = Fg(Lϵ) = P(ϵ).

This readily shows that (Γ, Tη, Tg) is a representation of a bisequential decomposition (Γ, g, η) for P,
which completes the proof.

D.5 Minimal Co-sequential Lookahead of Rational Language Models
In this appendix, we describe the minimal co-sequential lookahead that is needed in order to represent a
rational language model. It should be noted that the results in this appendix are stated more generally; that
is, for functions from Σ∗ to [0, 1] and not specifically for language models. However, the results hold only
for positive-valued functions f : Σ∗ → (0, 1] (in particular, positive language models) and representations
(Γ, Tη, Tg) of bisequential decompositions of f such that Dom

(
JTηK

)
= Dom(f)⊤. The condition placed

on the representations is non-restrictive; thus, in what follows, we shall implicitly assume that every
representation of a bisequential decomposition satisfies the above-mentioned property. Furthermore, given
a representation (Γ, Tη, Tg) of a bisequential decomposition, we shall assume that

Tη :=
(
Σ,Γ∗, Qη, (iη, ιη),Fη, δη, λη

)
and Tg :=

(
Γ,R(0,1], Qg, (ig, ιg),Fg, δg, λg

)
.

We begin by reviewing the notions of quotient and congruence from the theory of automata and formal
languages (Eilenberg, 1974; Sakarovitch, 2009).

Definition D.4. Let α ∈ Σ∗ and L ⊆ Σ∗. Then, the left quotient of L by α, denoted α−1L, is defined as

α−1L := {β ∈ Σ∗ | αβ ∈ L}.

Similarly, the right quotient of L by α, denoted Lα−1, is defined as

Lα−1 := {β ∈ Σ∗ | βα ∈ L}.

Proposition D.4. Let α, β ∈ Σ∗ and L ⊆ Σ∗. Then,

(αβ)−1L = β−1(α−1L) and L(αβ)−1 = (Lβ−1)α−1.

Definition D.5. LetM := (M, ◦, e) be a monoid and ≡ ⊆ M ×M be an equivalence relation on M .
Then, ≡ is called a

(i) left congruence onM if a ≡ b implies (∀c ∈M)(c ◦ a ≡ c ◦ b);

(ii) right congruence onM if a ≡ b implies (∀c ∈M)(a ◦ c ≡ b ◦ c).

Next, we recall that the transition function of a sequential transducer (or a deterministic automaton)
defines a left and a right congruence (Eilenberg, 1974; Sakarovitch, 2009).

Definition D.6. Let T :=
(
Σ,M, Q, (i, ι),F, δ, λ

)
be a sequential transducer. The right transition

congruence of T is the relation ↪→T ⊆ Σ∗ × Σ∗ defined as

α ↪→T β ⇐⇒ δ∗(i, α) = δ∗(i, β).

The left transition congruence of T is the relation←↩T ⊆ Σ∗ × Σ∗ defined as

α←↩T β ⇐⇒ δ∗(i, α⊤) = δ∗(i, β⊤).
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Proposition D.5. Let T be a sequential (Σ,M)-transducer. Then, ↪→T is a right congruence on Σ∗ and
←↩T is a left congruence on Σ∗.

Proof. Follows directly from Definition D.6.

Now, we can view the minimal co-sequential lookahead of a positive rational language model P as the
index of a left congruence that is canonically associated with P (Reutenauer and Schützenberger, 1991).

Definition D.7. Let f : Σ∗ → (0, 1]. The syntactic left congruence of f is the relation ≡f ⊆ Σ∗ × Σ∗

defined as31

α ≡f β ⇐⇒ Dom(f)α−1 = Dom(f)β−1 ∧
{
f(γα)

f(γβ)

∣∣∣ γ ∈ Dom(f)α−1

}
is finite.

Proposition D.6. Let f : Σ∗ → (0, 1]. Then, ≡f is a left congruence on Σ∗.

Proof. ≡f is obviously reflexive and symmetric. To see that it is also transitive, let α ≡f β and β ≡f δ.
Then, we observe that

Dom(f)α−1 = Dom(f)β−1 = Dom(f)δ−1

and the set
{
f(γα)

f(γβ)

∣∣∣ γ ∈ Dom(f)α−1

}

=

{
f(γα)

f(γβ)

f(γβ)

f(γδ)

∣∣∣ γ ∈ Dom(f)α−1

}

⊆
{
x · y

∣∣∣∣ x ∈
{
f(γα)

f(γβ)

∣∣∣ γ ∈ Dom(f)α−1

}
∧ y ∈

{
f(γβ)

f(γδ)

∣∣∣ γ ∈ Dom(f)β−1

}}

is finite because it is contained in a finite set. Finally, to prove that ≡f is a left congruence, let α ≡f β
and δ ∈ Σ∗. Then, we have that

Dom(f)(δα)−1 =
(
Dom(f)α−1

)
δ−1 =

(
Dom(f)β−1

)
δ−1 = Dom(f)(δβ)−1

and the set {
f(γδα)

f(γδβ)

∣∣∣ γ ∈ Dom(f)(δα)−1

}
⊆

{
f(γα)

f(γβ)

∣∣∣ γ ∈ Dom(f)α−1

}

is finite since it is contained in a finite set.

Proposition D.7. Let (Γ, Tη, Tg) be a realisation of a bisequential decomposition of f : Σ∗ → (0, 1].
Then,←↩Tη ⊆ ≡f .

Proof. Let α←↩Tη β and qη := δ∗η(iη, α
⊤). Then, for γ ∈ Σ∗,

γα ∈ Dom(f) ⇐⇒ α⊤γ⊤ ∈ Dom
(
JTηK

)

⇐⇒ δ∗η
(
qη, γ

⊤) ∈ Fη

⇐⇒ β⊤γ⊤ ∈ Dom
(
JTηK

)

⇐⇒ γβ ∈ Dom(f).

Now, let γ ∈ Dom(f)α−1. Then, if

ϕ := ιηλ
∗
η(iη, α

⊤), ψ := ιηλ
∗
η(iη, β

⊤), τ := λ∗η(qη, γ
⊤)Fη

(
δ∗η(qη, γ

⊤)
)

and qg := δ∗g(ig, τ
⊤),

it follows that

f(γα)

f(γβ)
=

JTgK
(
JTηK(α⊤γ⊤)⊤

)

JTgK
(
JTηK(β⊤γ⊤)⊤

) =
JTgK

(
(ϕτ)⊤

)

JTgK
(
(ψτ)⊤

) = ��ιg�����
λ∗g(ig, τ

⊤)λ∗g(qg, ϕ
⊤)F

(
δ∗g(qg, ϕ

⊤)
)

��ιg�����
λ∗g(ig, τ

⊤)λ∗g(qg, ψ⊤)F
(
δ∗g(qg, ψ⊤)

)

31Note that, if f is a language model (i.e., a total function), then Dom(f)α−1 = Σ∗ for every α ∈ Σ∗.
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and therefore the set
{
f(γα)

f(γβ)

∣∣∣ γ ∈ Dom(f)α−1

}
⊆

{
λ∗g(qg, ϕ

⊤)F
(
δ∗g(qg, ϕ

⊤)
)

λ∗g(qg, ψ⊤)F
(
δ∗g(qg, ψ⊤)

)
∣∣∣ qg ∈ Qg

}

is finite because it is contained in a finite set.

Proposition D.8. Let f be a rational function from Σ∗ toR(0,1]. Then, for every left congruence ≈ ⊆ ≡f ,
there exists a realisation (Γ, Tη, Tg) of a bisequential decomposition of f such that←↩Tη = ≈.

Proof. Since f is rational, it admits a bisequential decomposition and thus, by Proposition D.7, ≡f has a
finite index. Now, consider the sequential transducer

Tη :=
(
Σ, (Σ×Qη)

∗, Qη,
(
[ϵ]≈, ϵ

)
,Fη, δη, λη

)
, where

(i) Qη := Σ∗/≈;

(ii) Fη :=
{(

[α]≈, ϵ
) ∣∣ α ∈ Dom(f)

}
;

(iii) δη :=

{((
[α]≈, a

)
, [aα]≈

) ∣∣∣ α ∈ Σ∗ ∧ a ∈ Σ

}
;

(iv) λη :=

{((
[α]≈, a

)
,
(
a, [α]≈

)) ∣∣∣ α ∈ Σ∗ ∧ a ∈ Σ

}
.

It is obvious that←↩Tη = ≈ and, for α ∈ Σ∗,

JTηK(α⊤)⊤ =
((
αi, [α>i]≈

))|α|

i=1
.

Let g be the co-sequential function

Σ∗ → (Σ×Qη)
∗ : α 7→ JTηK(α⊤)⊤

and h := g−1 ◦ f . Then, f = g ◦ h and, since g is injective, h is a function from (Σ×Qη)
∗ to (0, 1]. It

remains to show that h is sequential. However, h is rational because it is the composition of two rational
functions. Thus, it is sufficient to demonstrate that h is uniformly finite.

Let n ∈ N and define

A :=

{
h(α)

h(β)

∣∣∣ α, β ∈ Dom(h) ∧ dp(α, β) ≤ n ∧ |α|+ |β| ≤ n
}
,

B :=

{
h(α)

h(β)

∣∣∣ α, β ∈ Dom(h) ∧ dp(α, β) ≤ n ∧ |α|+ |β| > n

}
.

Then, we have that {
h(α)

h(β)

∣∣∣ α, β ∈ Dom(h) ∧ dp(α, β) ≤ n
}

= A ∪B.

The set A is obviously finite. To show that B is finite, consider α, β ∈ Dom(h) such that dp(α, β) ≤ n
and |α|+ |β| > n. Let γ := α ∧ β, α′ := γ−1α and β′ := γ−1β. Then, dp(α, β) = |α′|+ |β′| ≤ n and
γ ̸= ϵ, which means that (α′, β′) ∈ ≈ ⊆ ≡f . Therefore,

B ⊆
⋃

α,β∈Σn :
α≡fβ

{
h(γα)

h(γβ)

∣∣∣ γ ∈ Dom(h)α−1

}

is finite because it is contained in a finite union of finite sets.
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We summarise the obtained results in the following theorem, which is a generalisation of Theorem 4.7.

Theorem D.6. Let f be a rational function from Σ∗ toR(0,1]. Then, ≡f is of finite index. Furthermore, if
(Γ, Tg, Tη) is a representation of a bisequential decomposition of f , then Tη has at least |Σ∗/≡f | states
and this bound is tight.

Proof. Let (Γ, η, g) be a bisequential decomposition of f . From Proposition D.5, it follows that←↩Tη is
a left congruence on Σ∗. Furthermore, Proposition D.7 implies that ≡f is of finite index and Tη has at
least |Σ∗/≡f | states. Lastly, by Proposition D.8, there exists a bisequential decomposition of f with an
encoder that has exactly |Σ∗/≡f | states.

Lastly, we verify formally that sequential language models require no information from the future in
order to be represented; that is, the syntactic left congruence of a sequential language model has a single
equivalence class. By Theorem D.6, this means that every sequential language model admits a bisequential
decomposition with an encoder that produces information that is constant and does not change throughout
time.

Theorem D.7. Let f be a total rational function from Σ∗ to R(0,1]. Then, f is sequential if and only if
≡f = Σ∗ × Σ∗.

Proof. First, assume that f is sequential. Then, by Theorem C.7,
{
f(α)

f(β)

∣∣∣ α, β ∈ Σ∗ ∧ dp(α, β) ≤ n
}

is finite for all n ∈ N. Therefore, for α, β ∈ Σ∗, we have that
{
f(γα)

f(γβ)

∣∣∣ γ ∈ Σ∗
}
⊆

{
f(α′)
f(β′)

∣∣∣ α′, β′ ∈ Σ∗ ∧ dp(α′, β′) ≤ dp(α, β)
}

is finite since it is contained in a finite set. In other words, α ≡f β for all α, β ∈ Σ∗; that is,≡f = Σ∗×Σ∗.
Next, assume that ≡f = Σ∗ × Σ∗ and let n ∈ N. Then,

{
f(α)

f(β)

∣∣∣ α, β ∈ Σ∗ ∧ dp(α, β) ≤ n
}
⊆

⋃

α,β∈Σn

{
f(γα)

f(γβ)

∣∣∣ γ ∈ Σ∗
}

is finite because it is contained in a finite union of finite sets; that is, f is sequential.

E Latent Language Models

E.1 Language Modelling with Latent Decompositions
In this appendix, we give a formal proof of the statements that

(i) standard bisequential decompositions of functions from Σ∗ to [0, 1] are a special type of latent
decompositions;

(ii) latent language models are exactly the functions that admit a latent decomposition with a generator
that is a language model.

As direct corollaries, we obtain Theorems 4.2 and 5.1.

Theorem E.1. Every standard bisequential decomposition of a function f : Σ∗ → [0, 1] is a latent
decomposition of f .

Proof. Let (Γ, η, g) be a standard bisequential decomposition of f : Σ∗ → [0, 1]. Then, η is injective on
Σ∗ ⊇ η−1

(
Supp(g)

)
and Supp(g1Im(η)) ⊆ Im(η). Furthermore,

η ◦ g1Im(η) = η ◦ g = f.

Thus, (Γ, η, g1Im(η)) is a latent decomposition of f .
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Theorem E.2. Let (Γ, η, g) be a latent decomposition of P : Σ∗ → [0, 1]. Then, P is a language model
over Σ if and only if g is a sequential language model over Γ.

Proof. From the definition of a latent decomposition, it follows that η is a bijection from η−1
(
Supp(g)

)

to Supp(g). Therefore,
∑

α∈Σ∗
P(α) =

∑

α∈Σ∗
g
(
η(α)

)
=

∑

α∈η−1(Supp(g))

g
(
η(α)

)
=

∑

γ∈Supp(g)
g(γ) =

∑

γ∈Γ∗
g(γ).

Thus, it is obvious that P is a language model over Σ if and only if g is a language model over Γ.

E.2 Expressivemess of Latent Decompositions
In this appendix, we provide more detailed proofs of the claims that

(i) standard latent decompositions can represent only rational language models;

(ii) non-standard latent decompositions can represent non-rational languages.

Theorem E.3. Every latent language model that admits a standard latent decomposition is rational.

Proof. Let (Γ, η, g) be a standard latent decomposition of a language model P over Σ. Then, Γ is a
Cartesian product Σ × Γ′ and η ◦ πΣ∗ = idΣ∗ . Therefore, Im(η) is the graph of the function η ◦ πΓ′∗ .
Furthermore, we known that Supp(g) is a regular language, Supp(g) ⊆ Im(η) and Supp(g) is the graph
of the function η ◦ idSupp(g) ◦ πΓ′∗ . This means that η ◦ idSupp(g) ◦ πΓ′∗ is a rational function and thus
η ◦ idSupp(g) is also rational. Now, if Supp(g) = Γ∗, then η = η ◦ idSupp(g) is rational and P is a rational
language model as the composition of two rational functions. Next, suppose that Supp(g) ⊊ Γ∗. Let
γ ∈ Γ∗ \ Supp(g) and η′ : Σ∗ → Γ∗ be defined as

η′(α) :=

{
η(α) if α ∈ η−1

(
Supp(g)

)

γ otherwise
.

Obviously, η′ is rational and η′ ◦ g = P. Therefore, P is a rational language model.

Theorem E.4. Latent language models are strictly more expressive than rational language models.

Proof. Let P be a language model over {a, b} defined as

P(α) :=

{
1

2n+1 if α = anbn

0 otherwise
.

Obviously, P is not rational because its support {anbn | n ∈ N} is not a regular language. However, P
admits a latent decomposition

(
{a, b}, η, g

)
, where the encoder η simplifies the non-regular support of P.

Indeed, let η : {a, b}∗ → {a, b}∗ and g : {a, b}∗ → [0, 1] be defined as

η(α) :=

{
(ab)n if α = anbn

a otherwise
and g(α) :=

{
1

2n+1 if α = (ab)n

0 otherwise
.

Then, it is straightforward to verify that

(i) Supp(g) =
{
(ab)n | n ∈ N

}
⊆

{
(ab)n | n ∈ N

}
∪ a = Im(η);

(ii) η is injective on η−1
(
Supp(g)

)
=

{
anbn | n ∈ N

}
;

(iii) g is a sequential language model over {a, b};

(iv) P = η ◦ g;

that is, P is a latent language model.
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E.3 Comparison of Latent Language Models with D3PM
In this appendix, we compare latent language models with discrete diffusion language models and more
specifically with D3PM (Austin et al., 2021).

Essentially, D3PM is a variational autoencoder (Kingma and Welling, 2014) that consists of a fixed
stochastic encoder ϕ that, given a word α from the input space Σ∗, defines a probability distribution
ϕ(• | α) over a latent space Γ∗, and a stochastic decoder ψ that, given an element γ of the latent space Γ∗,
defines a probability distribution ψ(• | γ) over the input space Σ∗. Importantly, the encoder is constructed
so that, regardless of the given word from the input space, it induces approximately the same probability
distribution ϕ(•) over the latent space; that is, ϕ(•) ≈ ϕ(• | α) for all α ∈ Σ∗.

When compared to a latent decomposition (Γ, η, g) of a language model over Σ, the encoder ϕ and the
decoder ψ of a D3PM model correspond to stochastic equivalents of η and η−1, respectively. Sampling
from a D3PM model can be done efficiently by first sampling a latent element γ from the fixed encoder ϕ
and then sampling a word over Σ from the decoder ψ(• | γ). A latent language model achieves the same
result by first sampling a latent element γ from the generator g and then mapping it into the input space
via η−1.

A major drawback of D3PM models, when compared to latent language models, is the fact that their
encoders and decoders are stochastic; that is, they are not exact inverses of each other. This deficiency
leads to the inability of D3PM models to efficiently calculate exact word probabilities and necessitates the
use of estimates such as the evidence lower bound (ELBO). Furthermore, the computation of the ELBO is
often intractable and typically requires the use of Monte-Carlo based approximation methods. On the
other hand, latent language models can exactly and efficiently score words by first encoding them via η
and then computing the probabilities of the resulting latent elements via the sequential generator g.
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