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Abstract

With the rise of large language models (LLMs),
many studies are interested in transferring
the reasoning capabilities of LLMs to small
language models (SLMs). Previous distilla-
tion methods usually utilize the capabilities of
LLMs to generate chain-of-thought (CoT) sam-
ples and teach SLMs via fine-tuning. However,
such a standard distillation approach performs
poorly when applied to out-of-distribution
(OOD) examples, and the diversity of the gener-
ated CoT samples is insufficient. In this work,
we propose a novel counterfactual distillation
framework. Firstly, we leverage LLMs to auto-
matically generate high-quality counterfactual
data. Given an input text example, our method
generates a counterfactual example that is very
similar to the original input, but its task label
has been changed to the desired one. Then,
we utilize multi-view CoT to enhance the di-
versity of reasoning samples. Experiments on
four NLP benchmarks show that our approach
enhances the reasoning capabilities of SLMs
and is more robust to OOD data. We also con-
duct extensive ablations and sample studies to
understand the reasoning capabilities of SLMs.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance in a wide range of down-
stream tasks (Brown et al., 2020; Wei et al., 2021;
Hoffmann et al., 2022). Recent works have shown
that chain-of-thought (CoT) can elicit reasoning
capabilities in LLMs by asking the model to in-
corporate intermediate reasoning steps while solv-
ing a problem (Kojima et al., 2022; Wang et al.,
2022). However, the efficacy of prompt-based CoT
methods is restricted to very large models (beyond
10B parameters) (Wei et al., 2022). Due to the
substantial computational resources or expensive
API calls required for accessing LLMs that support
CoT, various studies have delved into distilling the
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The weasel was becoming a problem, it 
kept getting into the chicken eggs kept 
in the what?

Question

A:forest  B:barn  C:public office  D:freezer

Weasels are known for their small size 
and agility, making them adept at 
entering buildings or enclosures where 
they can find food. In this context, the 
mention of a weasel becoming a problem 
by getting into where the eggs were kept 
strongly suggests a scenario where the 
eggs are stored in a barn. 

If the weasel kept getting into the 
chicken eggs, it would likely be in the 
freezer. Chicken eggs are often stored in 
the freezer to preserve their freshness 
and prevent them from spoiling.

LLM

SLM

Figure 1: Rationales generated respectively by the LLM
and the SLM with CoT distillation on common sense
reasoning data.

reasoning ability of LLMs into SLMs (Li et al.,
2023b; Ho et al., 2022). Existing works focus on
CoT distillation, a method that utilizes the CoT ra-
tionales of LLMs as supervision for training SLMs,
rather than just labels (Shridhar et al., 2023; Wang
et al., 2023b; Chen et al., 2023a; Zhao et al., 2023).
The SLMs improve their reasoning capabilities by
imitating the reasoning process of the LLMs. Al-
though the CoT distillation method has been proven
to be effective, it has the following weaknesses:

(1) SLM is constrained by its own capacity and
the scale of the annotated data. In the process
of imitating LLM reasoning, it may learn spu-
rious correlations, which leads SLM to merely
remember the keywords and patterns in the
training data, without understanding causal
features. Therefore, this approach is typically
effective for data from the same distribution,
but it struggles when dealing with OOD data.
In Figure 1, the rationales generated by the
SLM indicate that it has learned the correla-
tion between "egg kept" and "freezer" through
CoT distillation. However, during inference,
it completely ignores the context and directly
links these two phrases together, lacking a
deep understanding of the text semantics.

(2) Large language models typically only gener-
ate rationales for options they consider worth
attention, rather than from the perspective of
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small language models. As shown in Figure 1,
the LLM explains why "barn" is the correct
answer but does not mention the other op-
tions. Given the rich knowledge and reason-
ing capabilities of LLMs, they may perceive
that the other three options are not substan-
tial enough to provoke controversy. However,
SLMs with limited capacity do not possess
this ability. Furthermore, this knowledge is
crucial for SLMs because they can utilize it
through the process of elimination to deter-
mine the answer. In the process of answering
questions, humans also adopt a similar ap-
proach. When individuals are confident that a
particular option is highly accurate, they typ-
ically tend to choose directly. However, in
situations where there is uncertainty about the
answer, employing the method of exclusion
becomes an effective strategy.

To address these issues, we propose to enhance
the standard CoT distillation process from two
aspects respectively. In order to mitigate the re-
liance of SLMs on spurious correlations (Calderon
et al., 2022; Li et al., 2023a; Deng et al., 2023),
we propose counterfactual data augmentation to
encourage SLMs to better learn the causal structure
of the text. Specifically, we utilize LLMs to edit
task instances by adjusting causal relationships in
the instances or modifying text segments that are
crucial for label assignments. First, we use off-
the-shelf language processing tools and LLMs to
obtain the parts of the text that need to be edited.
Then, prompt engineering and in-context learning
are applied with LLMs to generate and filter coun-
terfactual data, which closely resembles the orig-
inal input but with altered answers. Additionally,
we employ the multi-view CoT to introduce more
diversified knowledge for SLMs, including both
positive view CoT (PVC) and negative view CoT
(NVC). PVC denotes the standard CoT generated
by LLMs when answering questions, while NVC
requires LLMs to generate refutational rationales
for each incorrect option, explaining why the cur-
rent option is considered erroneous.

We conduct experiments on four question an-
swering tasks that require knowledge-intensive rea-
soning. Experiments demonstrate that: (1) Both
counterfactual data augmentation and multi-view
CoT are beneficial to improving model perfor-
mance. (2) On the same distribution dataset, the
proposed approach significantly outperforms stan-

dard CoT distillation, with an average improvement
of 11.43%. (3) Across various parameter scales
(ranging from 120M to 770M) and model struc-
tures (from decoder-only to encoder-decoder) for
small models, our method consistently shows im-
proved performance. (4) Compared to the baseline
model, our approach demonstrates robust gener-
alization on OOD data. Furthermore, extensive
experiments indicate that our method enhances the
reasoning capabilities of SLMs.

2 Related Work

2.1 Counterfactual Data Augmentation

Augmenting models with counterfactual data is a
popular recent approach for improving model ro-
bustness (Kaushik et al., 2019; Bitton et al., 2021;
Khashabi et al., 2020; Wu et al., 2021; Ross et al.,
2021). With the rise of LLMs, some research works
have utilized them to generate counterfactual data
to improve the performance of text classification or
reasoning (Dixit et al., 2022; Sachdeva et al., 2023;
Li et al., 2023e). The work most similar to ours
is DISCO (Chen et al., 2023b), which constructs
counterfactual data by prompting LLMs to gener-
ate phrase perturbations. However, DISCO is not
a general counterfactual augmentation strategy, as
it is only applicable to natural language inference
tasks. Moreover, DISCO modifies only a single
span of text at a time, resulting in counterfactual
data with limited semantic diversity, which may
lead to the risk of model overfitting. Differently,
our method attempts to break these causal relation-
ships and reconstruct them using LLMs, thereby
increasing the semantic diversity of the text. This
is beneficial to reduce the risk of overfitting of the
augmented model and enhance its performance on
OOD data.

2.2 Chain-of-Thought Distillation

LLMs have demonstrated outstanding performance
across various downstream tasks, using in-context
exemplars or human instructions (Wang et al.,
2023a; Si et al., 2023; Gu et al., 2023; Li et al.,
2023c). Recent research indicates that CoT
prompts can enhance the reasoning capabilities of
LLMs for complex problems (Wei et al., 2022;
Wang et al., 2022). However, such benefits are only
observable in language models of substantial scale.
Therefore, migrating CoT capabilities into SLMs
through distillation has attracted much attention.
The approach typically employs CoT prompts to
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If an innocent person is convicted of a crime, one of the 
main concerns for society would be the issue of 
injustice. This can erode public trust in the legal 
system and have far-reaching consequences for both 
the individual wrongfully convicted and society as a 
whole. Therefore, the answer is A.

Choices

Question
What might be the result if 
one is convicted of obstructing 
justice?

Answer

A: injustice
B: criminal charges
C: fear
D: going to jail

D: going to jail

topic word

syntax analysis

What might be 
[MASK] if [MASK] 
is convicted of 
[MASK] ?

masked text

A: injustice
expected answer

LLM

What might be a 
concern for society 
if an innocent 
person is convicted 
of a crime?

counterfactual text 

evaluation counterfactual dataset 

The question is asking about a concern for society if an 
innocent person is convicted of a crime. Criminal charges 
would not be a concern in this scenario because the 
person has already been convicted. Therefore, the 
answer is not B.

While fear... Therefore, the answer is not C.

While going to... Therefore, the answer is not D.

LLM

positive view CoT 

negative view CoT 

multi-view CoT

SLM

counterfactual generation 

mask operationinput

Figure 2: Overview of the counterfactual distillation with multi-view CoT. Our approach consists of three steps:
mask operation, counterfactual generation, and multi-view CoT. Initially, through the topic word and syntactic
analysis, we identify phrases in the text that may involve causal features, and replace them with the special character
[MASK]. Then, given the expected answer, LLM is utilized to complete the masked text and evaluate the generated
text to obtain a high-quality counterfactual dataset. In the end, LLM generates rationales for each option, providing
supporting evidence for the correct answer and refuting evidence for the incorrect ones.

generate rationales from very large teacher models,
and uses them to fine-tune small student models
(Huang et al., 2022; Yang et al., 2023; Pezeshkpour
et al., 2023; Li et al., 2023d; Chae et al., 2023). By
establishing a feedback mechanism between LLMs
and SLMs, small models can learn and improve
their own shortcomings in a targeted manner (Jiang
et al., 2023). Furthermore, the rationales gener-
ated by LLMs are closely related to the answers by
contrastive decoding, thereby effectively reducing
the reasoning errors and hallucinations that SLMs
inherit from LLMs (Wang et al., 2023b). For com-
plex multi-step reasoning data, semantic decompo-
sition is beneficial for SLMs reasoning(Shridhar
et al., 2023). However, in these approaches, LLMs
typically only generate rationales for options they
deem worthy of attention, rather than from the per-
spective of SLMs. Our method uses multi-view
CoT to increase the diversity of rationales, allow-
ing small models to learn different types of knowl-
edge, which improves their performance in solving
complex reasoning problems. The experimental re-
sults show that our method improves performance
across multiple QA reasoning datasets, effectively
enhancing the reasoning capabilities of SLMs.

3 Method

The core idea of our method is to disrupt the causal
relationship in the original text and reconstruct it
using LLM. Since the answers to the newly gen-
erated questions change, SLM is able to learn the
causal differences between similar texts through
multi-view CoT distillation, thereby enhancing its
reasoning capabilities. The overview of our ap-
proach is illustrated in Figure 2. In this section, we
elaborate on our method and discuss the motivation
behind it.

3.1 Mask Operation

In order to disrupt the causal relationships in the
original text, we first need to identify phrases asso-
ciated with causal features. To address this issue,
we propose a method involving the topic word and
syntactic analysis to extract phrases in the text that
are relevant to causal features.

• Topic Word In general, humans tend to have
a clear topic when making statements to ensure
that the discussion has a clear focus and accu-
rately conveys information. Similarly, we believe
that there are "topic words" in the text, and the
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majority of causal features are associated with
them. As shown in Figure 2, the topic word of
"What might be the result if one is convicted of
obstructing justice?" is "obstructing justice". In
order to get the topic word in the text, a prompt
goes like this:

Answer: The topic word for the sentence is "farmland."

Question: James was looking for a good place to buy 
farmland. Where might he look?

Figure 3: The prompt of topic word

In Figure 3, the underlined texts are completed
by LLMs with in-context learning examples.

• Syntactic Analysis In QA, the set of possi-
ble causal features is large, and relying solely
on the topic word cannot fully capture them. As
an important part of language structure, noun
phrases play a key role in language expression
and communication. They are employed to in-
troduce, describe, and connect concepts, thereby
enhancing the expressiveness and accuracy of the
text. Therefore, noun phrases are highly likely
to constitute elements of causal features. In this
paper, we use the Stanford syntactic analysis tool
1 to obtain noun phrases in the text, but in order
to preserve the elements of the original text as
much as possible, personal pronouns and posses-
sive pronouns will be retained.

While maintaining the original linguistic structure
of the text, we replace the topic word and noun
phrases with the special character [MASK] to dis-
rupt the causal relationships in the original text.
Compared with the method of using LLM to per-
turb a single span in the text (Chen et al., 2023b),
our method aims to reduce the difficulty of counter-
factual data generation and improve the semantic
diversity of the generated text.

3.2 Counterfactual Generation
As illustrated in Figure 4, to prompt LLMs for
counterfactual text generation, we utilize demon-
strations and instructions to construct the prompt.
Each demonstration consists of four parts: ques-
tions, choices, expected answers, and question com-
pletion. In the context of given options, LLMs need
to complete the masked question to align it with

1https://stanfordnlp.github.io/CoreNLP/

Question: Aside from [MASK] what does your [MASK] need ?
Choices: A: bone  B: charm  C: lots of attention  D: walked
Expected answer: lots of attention
Completion Question: Aside from water and nourishment what does your dog need?

Instruction: Multiple choice questions consist of questions, options and answers. Based 
on the above example, please complete the [MASK] part of the question to make it a 
multiple-choice question with smooth semantics and clear logic.

Question: What might be [MASK] if [MASK] is convicted of [MASK] ?
Choices: A: injustice  B: criminal charges  C: fear D: going to jail
Expected answer: injustice
Completion Question: What might be a concern for society if an innocent person is 
convicted of a crime?

Figure 4: The prompt of counterfactual generation

the expected answer. Since QA data are usually
multiple-choice questions, a request needs to be
made to LLM for each option except the answer, so
each original QA generates multiple counterfactual
examples. To obtain high-quality counterfactual
data, we design an evaluation strategy aimed at
selecting the most promising counterfactual exam-
ples, thereby eliminating potential errors. The strat-
egy is used to verify whether the generated com-
pletion questions match the new answers. Based
on the self-consistency principle of LLMs (Wang
et al., 2022), we sample five reasoning paths for
each counterfactual example. If more than three
paths are consistent with the new answer, the data
is retained; otherwise, it is discarded.

In order to preserve the elements of the origi-
nal text, our method only modifies the [MASK]
part of the text while leaving the rest of the text
unchanged. This enables SLMs to focus on the dif-
ferences between factual and counterfactual texts,
thereby allowing it to gain a profound understand-
ing of how different causal features lead to diverse
answers in similar texts.

3.3 Multi-view CoT

Based on the powerful knowledge base and reason-
ing capability of LLMs, they often ignore some
incorrect options that are obvious to them when
answering questions. However, these options may
be difficult for SLMs to discern. Therefore, we
propose the multi-view CoT, which enables SLMs
to learn different types of knowledge by allowing
LLMs to generate diverse reasoning paths from
different perspectives. As shown in Figure 2,
the multi-view CoT consists of two parts: the
positive view CoT (PVC) and the negative view
CoT (NVC), both generated by LLMs through in-
context learning. The goal of PVC is to explore
relevant information for the correct answer, while
NVC focuses more on generating negative reason-
ing paths for each option except the answer. Our
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method can help small models distinguish and elim-
inate inadequate options among multiple choices,
enabling them to make more targeted selections of
the correct answer.

3.4 Training
The original data and counterfactual data are
mixed together to form the training set. Given
an input instance x = (q, o, a) in this set
consisting of a question, a set of options
and the corresponding answer, the generated
PVC and NVC are xpvc = (q, o, rpvc, a) and
xnvc = (q, o, {(ok, rknvc)}Nk=1) respectively. In
xnvc, N represents the number of options apart
from the answer. Since the knowledge learned
by SLMs from xpvc and xnvc is different and to
avoid model confusion, we use special strings to
construct two types of data formats during model
training.

• inputpvc = q ⊕ o ⊕ [Direct election] ⊕ rpvc ⊕
Therefore the answer would be ⊕ a

• inputnvc = q ⊕ o ⊕ [Elimination method] ⊕
rknvc ⊕ Therefore the answer would not be ⊕ ok

The ⊕ represents text concatenation. We use the
special strings "[Direct election]" and "[Elimina-
tion method]" to guide the small model to generate
reasoning paths that either support or refute a cer-
tain option.

Given a question, options, and the special
string(st), the small model is trained to output a
sequence of rationale tokens concatenated with
the label tokens. In this paper, our approach in-
volves fine-tuning a text-to-text language model
using standard language modeling loss on the train-
ing data.

L = −
∑

i

logP (ti|q, o, st, t<i)

4 Experiments

We study how small models can learn to reason bet-
ter on four multi-step reasoning datasets: Common-
senseQA (CSQA) (Talmor et al., 2018), QuaRel
(Tafjord et al., 2019), ARC (Clark et al., 2018)and
QASC (Khot et al., 2020). The ARC dataset is
divided into two parts: the challenge set and the
easy set. In our experiments, we combine these
two subsets for model training. Since the test la-
bels of CSQA and QASC datasets are not public,
we use the official development set as our test set.

In this paper, we utilize the gpt-3.5-turbo API 2 to
generate reasoning paths. In the experiment, GPT-
2(Radford et al., 2019), OPT(Zhang et al., 2022),
and GPT-Neo(Black et al., 2021) are used as small
models, and the batch size is set to 64 during train-
ing, with a total of 20 epochs. We use HuggingFace
transformers and Pytorch for the implementation.

4.1 Models

4.1.1 Baseline models
• Fine-tune(FT) The small model is fine-tuned

on just the label, instead of also with CoT.

• Fine-tune-CoT(FT-CoT) The standard CoT
distillation (Li et al., 2023b; Ho et al., 2022)
method where the small model is trained on the
CoT generated by gpt-3.5-turbo.

4.1.2 Our models
In order to verify the effectiveness of multi-view
CoT (MVC) and counterfactual data (CD) respec-
tively, we design the following experiments

• Fine-tune-MVC(FT-MVC) In this experi-
ment, we use original factual data to generate
the multi-view CoT to train a small model, which
can validate the effectiveness of the multi-view
CoT.

• Fine-tune-CD-CoT(FT-CD-CoT) We use the
original factual data and the generated counter-
factual data to generate normal CoT to fine-tune
the small model.

• Our method We merge the above two meth-
ods together, that is, using original factual and
counterfactual data to generate the multi-view
CoT to train small models.

4.2 Main Results

Table 1 summarizes the accuracy of small models
using the proposed method compared to existing
FT and FT-CoT. In different scales of models with
parameter counts ranging from 120 million to 770
million, our method outperforms FT-CoT. Specifi-
cally, our method achieves performance improve-
ments ranging from 4.17% to 23.22% across these
scales, with an average improvement of 11.43%.

In the QASC and ARC, the distillation perfor-
mance of our method on models with fewer pa-
rameters exceeds that of models trained with more

2https://api.openai.com/v1/chat/completions
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SLMs Methods CSQA QuaRel QASC ARC

GPT2-base(120M)

FT 23.34% 53.62% 15.66% 25.79%
FT-CoT 36.94% 53.26% 13.28% 26.86%

FT-MVC 41.25% 53.80% 26.35% 31.74%
FT-CD-CoT 43.57% 55.07% 32.72% 37.91%
Our method 46.68% 58.70% 35.85% 40.42%

OPT-base(125M)

FT 20.56% 53.26% 14.04% 25.99%
FT-CoT 40.21% 59.78% 20.63% 33.12%

FT-MVC 45.45% 60.14% 30.67% 35.40%
FT-CD-CoT 48.24% 61.23% 36.29% 37.91%
Our method 50.61% 63.95% 39.09% 41.09%

GPT-neo(125M)

FT 21.21% 52.27% 15.33% 26.80%
FT-CoT 29.81% 53.44% 16.52% 29.68%

FT-MVC 35.46% 54.36% 22.68% 31.48%
FT-CD-CoT 34.81% 54.89% 24.95% 33.34%
Our method 40.38% 58.15% 28.62% 37.91%

GPT2-medium(350M)

FT 38.29% 56.34% 17.06% 26.30%
FT-CoT 47.13% 58.15% 25.27% 36.70%

FT-MVC 52.66% 62.14% 32.34% 39.26%
FT-CD-CoT 55.28% 60.33% 38.98% 43.86%
Our method 58.15% 64.86% 48.49% 47.18%

GPT2-large(770M)

FT 40.95% 56.52% 24.51% 28.10%
FT-CoT 52.33% 58.51% 32.83% 38.61%

FT-MVC 54.22% 60.87% 39.96% 39.60%
FT-CD-CoT 57.33% 60.51% 45.68% 44.25%
Our method 60.69% 67.93% 52.48% 50.42%

Table 1: In experiments, we test the accuracy of different methods on four reasoning datasets. And in order to
fully verify the impact of small model size on distillation performance, we conduct experiments on GPT2-base,
OPT-base, GPT-neo, GPT2-medium, and GPT2-large models respectively.

parameters using FT-CoT. For instance, in the ARC
dataset, our method achieves a performance of
40.42% on GPT2-base, which is 3.27% higher than
that of GPT2-medium trained with FT-CoT. Ad-
ditionally, our method outperforms GPT2-large
trained with FT-CoT by 8.57% on GPT2-medium.

• FT-MVC vs FT-CoT As shown in Table 1, the
reasoning performance of FT-MVC on models of
various sizes exceeds that of FT-CoT. The max-
imum and minimum improvements are 13.07%
and 0.36% respectively, and the average improve-
ment reaches 4.33%. The experimental results
indicate that the diversified reasoning paths gen-
erated by multi-view CoT enable small models
to not only learn reasoning knowledge that sup-
ports correct answers but also acquire refutational
knowledge regarding incorrect options, thereby
effectively enhancing their own reasoning capa-
bilities.

• FT-CD-CoT vs FT-CoT Compared to FT-
CoT, FT-CD-CoT shows an average improve-
ment of 7.20% across four datasets. This phe-

nomenon shows that since models with fewer pa-
rameters have insufficient capacity, they may not
really learn how to reason during the fine-tuning
process of FT-CoT, but only remember some pat-
terns and keywords in the training set. In contrast,
our approach forces small models to focus on the
causal relationships of text, thereby enhancing
the accuracy and generalization capability of rea-
soning. The case study in the appendix provides
a more intuitive explanation.

4.3 OOD data

To compare the generalization abilities of different
methods on OOD data, we select one of the four
datasets as the training set and the remaining three
as test sets in the experiment. From Figure 5, it can
be observed that when CSQA, QASC, and ARC are
used as the training sets, our method demonstrates
a significant improvement compared to FT-CoT,
with enhancements ranging from 3.6% to 26.6%,
and an average improvement of 14.9%.

However, when QuaRel is used as the training
set, the improvement of our method is not signifi-
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Figure 5: The performance of different methods in out-of-distribution (OOD) scenarios. Specifically, for these
four datasets, we select one as the training set and the other three as the test sets to validate the generalization
performance of the proposed method.

cant. There are mainly two reasons for this. Firstly,
the training samples in the QuaRel dataset are rel-
atively limited, consisting of only 1941 samples.
Secondly, more importantly, there is a mismatch
in task formats. QuaRel is a QA task with only
two options, while the other three datasets have no
fewer than four options. Therefore, we find that
in this scenario, both the baseline model and our
method exhibit very low performance.

4.4 Small model architectures

The small models used in previous experiments
are all decoder-only language models. To validate
the performance of the proposed method on small
models with different architectures, we conduct dis-
tillation experiments on encoder-decoder language
models. Figure 6 illustrates the results of different
methods when the small model adopts Bart (Lewis
et al., 2019) and T5 (Raffel et al., 2020). Compared
to the standard supervised fine-tuning baseline (FT-
CoT), our method improves by 13.2% and 11.6%
on BART and T5 respectively. This result fully
demonstrates that our method can consistently im-
prove performance across small models of different
architectures, and highlights its universality and ef-
fectiveness in distillation tasks.

44.40%
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24.60% 25.30%

49.10%
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Figure 6: The performance of BART and T5 models on
four datasets

4.5 Data Quality Evaluation

To verify the quality of the generated counterfactual
data, we input the original data and its correspond-
ing counterfactual data into GPT-4. We inform
GPT-4 that one of the entries is manually annotated
and the other is AI-generated. Then, GPT-4 is used
to determine the category of these data. The ap-
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GPT2-base GPT2-medium GPT2-large
FT FT-COT FT-MVC FT FT-COT FT-MVC FT FT-COT FT-MVC

CSample 22.52% 33.01% 36.76% 25.63% 42.83% 46.32% 30.06% 48.98% 51.76%
CMix 30.14% 36.28% 39.39% 37.01% 46.36% 49.55% 44.23% 50.12% 53.38%

Table 2: Comparison of the performance of CSample and CMix across various models.

CSQA QuaRel QASC ARC
48% 42% 44% 58%

Table 3: Classification accuracy of GPT-4 on four
datasets.

pendix includes specific prompt examples. We ran-
domly select 100 data samples from each dataset
for data quality evaluation. As demonstrated in Ta-
ble 3, the average classification accuracy of GPT-4
across four datasets is 48%. Given that this is a
binary classification task, this accuracy rate is com-
parable to that of random selection, suggesting that
GPT-4 is unable to effectively distinguish between
original data and their corresponding counterfac-
tual data. This result further substantiates the high
quality of the counterfactual data generated by our
method.

4.6 Causal Features

We aim to demonstrate that the enhancement in
model performance stems from the learning of
causal features, not merely from the growth in data
volume. To validate this hypothesis, we have de-
signed the following experiment.

Specifically, we randomly select N samples from
the CSQA dataset, which we name CSample. Sub-
sequently, we randomly extract N/2 samples from
the CSample, which we call CHalf. Based on
CHalf, we construct N/2 pieces of counterfactual
data, which we label as CCD. Finally, we merge
the CHalf and CCD data to form a new dataset,
which we name CMix. Therefore, the CSample and
CMix datasets each contain N samples, and we then
validate the performance of these two datasets on
different models.

As shown in Table 2, CMix outperforms CSam-
ple across various models. This phenomenon re-
veals that by contrasting the differences between
factual and counterfactual data, the model can ef-
fectively suppress the interference of spurious cor-
relations, thereby enhancing the learning of causal
features. It is worth noting that the improvement

FT FT-CoT Our Method
SVAMP 8.67% 10.11% 16.00%
bAbI 67.40% 69.20% 78.23%

Table 4: The performance of different models on
SVAMP and bAbI.

of CMix in the FT-MVC model is relatively small
compared to its performance improvement in the
FT and FT-CoT models. This shows that the diver-
sified reasoning paths enable the small model to
maintain stable performance under different data
qualities.

4.7 Non-multiple choice tasks
In the aforementioned experiments, we mainly
focus on multiple choice questions. To validate
the performance of the proposed method on non-
multiple choice tasks, we select the SVAMP(Patel
et al., 2021) and bAbI(Weston et al., 2015) datasets
for in-depth analysis. SVAMP is a mathematical
reasoning dataset, while bAbI is a reading com-
prehension dataset consisting of 20 subtasks. To
construct the training set, we extract 50 samples
from each subtask of bAbI, resulting in a total of
1000 samples. Notably, since both the SVAMP and
bAbI datasets do not include options, we utilize
LLM to generate possible options for these two
datasets during the training phase, thereby trans-
forming them into multiple-choice tasks. As shown
in Table 4, our method outperforms the baseline on
both datasets. This result not only verifies the effec-
tiveness of our method on multiple-choice tasks but
also proves that it is also applicable to open-ended
tasks.

5 Conclusion

In this paper, we propose a distillation approach
based on counterfactual data augmentation and
multi-view CoT, aiming to enable LLMs to instruct
small language models in reasoning. The experi-
mental results demonstrate that our method outper-
forms baseline models across various scales and

5838



architectures of small models, and exhibits strong
generalization and robustness on OOD data. More-
over, our method shows broad application potential
across a variety of tasks.

Limitations

In our research, we find that the text generated by
LLMs does not always align with the expected an-
swers, leading us to discard some data during the
evaluation phase. This indicates that further opti-
mization is needed in terms of data alignment and
answer consistency. Additionally, our experiments
are limited to English datasets and single-task set-
tings. To better compare with the few-shot settings
of large language models, future research can ex-
plore other languages and multi-task settings.

The use of closed-source large language mod-
els in this study incurs additional costs. Future
research should explore the distillation effects on
more open-source large models to reduce costs and
improve the generalizability of the method. Ad-
ditionally, the current experiments only involve
question-answering reasoning tasks. Exploring
how to validate the method’s effectiveness on more
task types is an important direction for future re-
search.

Acknowledgments

This work was supported by the NSFC project
(No. 62072399), the Zhejiang Provincial Natu-
ral Science Foundation of China under Grant No.
LZ23F020009, MoE Engineering Research Center
of Digital Library, China Research Centre on Data
and Knowledge for Engineering Sciences and Tech-
nology, the Fundamental Research Funds for the
Central Universities (No. 226-2024-00170), and
Ant Group. We also express our sincere gratitude
to anonymous reviewers for their invaluable feed-
back and constructive comments.

References
Yonatan Bitton, Gabriel Stanovsky, Roy Schwartz,

and Michael Elhadad. 2021. Automatic generation
of contrast sets from scene graphs: Probing the
compositional consistency of gqa. arXiv preprint
arXiv:2103.09591.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow.
If you use this software, please cite it using these
metadata, 58:2.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Nitay Calderon, Eyal Ben-David, Amir Feder, and Roi
Reichart. 2022. Docogen: Domain counterfactual
generation for low resource domain adaptation. arXiv
preprint arXiv:2202.12350.

Hyungjoo Chae, Yongho Song, Kai Tzu-iunn Ong, Taey-
oon Kwon, Minjin Kim, Youngjae Yu, Dongha Lee,
Dongyeop Kang, and Jinyoung Yeo. 2023. Dia-
logue chain-of-thought distillation for commonsense-
aware conversational agents. arXiv preprint
arXiv:2310.09343.

Hailin Chen, Amrita Saha, Steven Hoi, and Shafiq Joty.
2023a. Personalised distillation: Empowering open-
sourced llms with adaptive learning for code genera-
tion. arXiv preprint arXiv:2310.18628.

Zeming Chen, Qiyue Gao, Antoine Bosselut, Ashish
Sabharwal, and Kyle Richardson. 2023b. Disco: dis-
tilling counterfactuals with large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5514–5528.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Xun Deng, Wenjie Wang, Fuli Feng, Hanwang Zhang,
Xiangnan He, and Yong Liao. 2023. Counterfactual
active learning for out-of-distribution generalization.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 11362–11377.

Tanay Dixit, Bhargavi Paranjape, Hannaneh Hajishirzi,
and Luke Zettlemoyer. 2022. Core: A retrieve-then-
edit framework for counterfactual data generation.
arXiv preprint arXiv:2210.04873.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Pre-training to learn in context. arXiv preprint
arXiv:2305.09137.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022.
Large language models are reasoning teachers. arXiv
preprint arXiv:2212.10071.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

5839



Yukun Huang, Yanda Chen, Zhou Yu, and Kathleen
McKeown. 2022. In-context learning distillation:
Transferring few-shot learning ability of pre-trained
language models. arXiv preprint arXiv:2212.10670.

Yuxin Jiang, Chunkit Chan, Mingyang Chen, and
Wei Wang. 2023. Lion: Adversarial distillation of
closed-source large language model. arXiv preprint
arXiv:2305.12870.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton.
2019. Learning the difference that makes a differ-
ence with counterfactually-augmented data. arXiv
preprint arXiv:1909.12434.

Daniel Khashabi, Tushar Khot, and Ashish Sabharwal.
2020. More bang for your buck: Natural perturba-
tion for robust question answering. arXiv preprint
arXiv:2004.04849.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. Qasc: A
dataset for question answering via sentence compo-
sition. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8082–8090.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Jiaxuan Li, Lang Yu, and Allyson Ettinger. 2023a.
Counterfactual reasoning: Testing language mod-
els’ understanding of hypothetical scenarios. arXiv
preprint arXiv:2305.16572.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xi-
ang Ren, Kai-Wei Chang, and Yejin Choi. 2023b.
Symbolic chain-of-thought distillation: Small mod-
els can also" think" step-by-step. arXiv preprint
arXiv:2306.14050.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023c. Unified demonstration retriever for in-
context learning. arXiv preprint arXiv:2305.04320.

Xinwei Li, Li Lin, Shuai Wang, and Chen Qian.
2023d. Unlock the power: Competitive distilla-
tion for multi-modal large language models. arXiv
preprint arXiv:2311.08213.

Yongqi Li, Mayi Xu, Xin Miao, Shen Zhou, and Tieyun
Qian. 2023e. Large language models as counterfac-
tual generator: Strengths and weaknesses. arXiv
preprint arXiv:2305.14791.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Pouya Pezeshkpour, Hayate Iso, Thom Lake, Nikita
Bhutani, and Estevam Hruschka. 2023. Distill-
ing large language models using skill-occupation
graph context for hr-related tasks. arXiv preprint
arXiv:2311.06383.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1:9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Alexis Ross, Tongshuang Wu, Hao Peng, Matthew E
Peters, and Matt Gardner. 2021. Tailor: Generating
and perturbing text with semantic controls. arXiv
preprint arXiv:2107.07150.

Rachneet Sachdeva, Martin Tutek, and Iryna Gurevych.
2023. Catfood: Counterfactual augmented training
for improving out-of-domain performance and cali-
bration. arXiv preprint arXiv:2309.07822.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023. Distilling reasoning capabilities into
smaller language models. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
7059–7073.

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng,
Danqi Chen, and He He. 2023. Measuring induc-
tive biases of in-context learning with underspecified
demonstrations. arXiv preprint arXiv:2305.13299.

Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau
Yih, and Ashish Sabharwal. 2019. Quarel: A dataset
and models for answering questions about qualitative
relationships. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 7063–
7071.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label
words are anchors: An information flow perspective
for understanding in-context learning. arXiv preprint
arXiv:2305.14160.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan
Gao, Bing Yin, and Xiang Ren. 2023b. Scott:
Self-consistent chain-of-thought distillation. arXiv
preprint arXiv:2305.01879.

5840



Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart Van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel S Weld. 2021. Polyjuice: Generating coun-
terfactuals for explaining, evaluating, and improving
models. arXiv preprint arXiv:2101.00288.

Bohao Yang, Chen Tang, Kun Zhao, Chenghao Xiao,
and Chenghua Lin. 2023. Effective distillation
of table-based reasoning ability from llms. arXiv
preprint arXiv:2309.13182.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Jiachen Zhao, Wenlong Zhao, Andrew Drozdov, Ben-
jamin Rozonoyer, Md Arafat Sultan, Jay-Yoon Lee,
Mohit Iyyer, and Andrew McCallum. 2023. Multi-
stage collaborative knowledge distillation from large
language models. arXiv preprint arXiv:2311.08640.

5841



Appendix

A Case Study

Unlike a spider and his many sight 
seers, people only have what?
A: tongues
B: names
C: brains
D: feelings
E: two eyes

Unlike a spider and his many sightseers, 
people only have names. Sightseers are 
individuals who can perceive and identify 
objects through their sight, whereas 
names are a unique characteristic that is 
unique to each individual. Therefore the 
answer would be B.

Unlike a spider and his many sightseers, people only have two eyes. 
The combination of a spider‘s sensory organs, including its eyes, 
allows it to perceive the world in a highly visual and keenly 
focused manner. While other options like tongues, names, brains, 
and feelings are all relevant to human cognition, the combination of 
two eyes is a unique characteristic that sets humans apart from 
many other species. Therefore the answer would be E.

Question FT-CoT Our Method

What could go on top of wood?
A: lumberyard
B: synagogue
C: floor
D: carpet
E: hardware store

While wood can be used in various settings, 
such as a synagogue or a floor, it is most 
commonly associated with being a flooring 
option. Wood is strong, durable, and can 
provide a comfortable and durable surface 
for various purposes, such as carpentry or 
flooring. Therefore the answer would be C.

If we're talking about what could physically go on top of wood, a 
carpet would be a suitable choice. Carpets are can be placed on 
top of wood to provide a soft and comfortable surface. Therefore 
the answer would be D.

Figure 7: Comparison of the results of our method and
FT-CoT on commonsense reasoning data.

To better illustrate the differences between our ap-
proach and FT-CoT, we present some examples in
commonsense reasoning. As shown in Figure 7,
FT-CoT only captures the surface correlation of
semantics, such as "people" and "names," "wood"
and "floor". Small models typically focus on word-
level associations during reasoning, rather than the
complete semantic of the context. Differently, our
method focuses on deeper semantic representations,
which helps small models better understand the
causal relationships within the text.

B Prompt

You are an experienced AI content detector. You will be given two multiple-choice 
questions. One of them is written by human and the other is written by AI. Human-
written questions are usually more cohesive in logics and topics and close to real 
life in its scenario construction, while AI generated variations may be 
inconsistent in phrasing and impractical in the set-up, as well as being unusually 
detailed sometimes. Here are these two questions.

[Question A]
What is a common sign that someone is lying?
a. ordering dog food online
b. avoid eye contact
c. feel guilty
d. fall asleep
e. blush
[Question B]
What is a common sign when someone is embarrassed?
a. ordering dog food online
b. avoid eye contact
c. feel guilty
d. fall asleep
e. blush

Give your answer directly as "A" or "B". Which one is AI generated, A or B?

Figure 8: The prompts of data quality evaluation.

The prompt of data quality evaluation is shown in
Figure 8.

C More Results

To further verify the performance of FT-MVC and
FT-CD-CoT on OOD data, we design an experi-
ment similar to that in Figure 5, where one of the
four datasets is selected as the training set, and
the remaining datasets are used as the test set. As
shown in Figure 9, FT-MVC and FT-CD-CoT out-
perform FT-CoT in most cases. Additionally, in
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Figure 9: The performance of FT-MVC and FT-CD-CoT
in out-of-distribution (OOD) scenarios.

combination with the results from Figure 5, it is
evident that FT-MVC and FT-CD-CoT are comple-
mentary in terms of performance, and their integra-
tion can further enhance the reasoning ability of
the small model.
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