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Abstract
In this paper, we explore the utility of Trans-
lationese as synthetic data created using ma-
chine translation for pre-training language mod-
els (LMs) for low-resource languages (LRLs).
Our simple methodology consists of translat-
ing large amounts of web-crawled monolingual
documents (clean) into the LRLs, followed by
filtering the translated documents using tiny
LMs trained on small but clean LRL data. Tak-
ing the case of Indian languages, we pre-train
LMs from scratch with 28M and 85M parame-
ters, and then fine-tune them for 5 downstream
natural language understanding (NLU) and 4
generative (NLG) tasks. We observe that pre-
training on filtered synthetic data leads to rela-
tive performance drops of only 0.87% for NLU
and 2.35% for NLG, compared to pre-training
on clean data, and this gap further diminishes
upon the inclusion of a small amount of clean
data. We also study the impact of synthetic data
filtering and the choice of source language for
synthetic data generation. Furthermore, evalu-
ating continually pre-trained larger models like
Gemma-2B and Llama-3-8B in few-shot set-
tings, we observe that using synthetic data is
competitive with using clean data. Our findings
suggest that synthetic data shows promise for
bridging the pre-training gap between English
and LRLs.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Luccioni et al., 2023; Almazrouei et al.,
2023; Lin et al., 2022) have been able to per-
form very well on downstream tasks like MMLU
(Hendrycks et al., 2021), Big-Bench (Srivastava
et al., 2022), etc, and have even started to reach
human potential in many of these tasks. But this
performance has very largely been credited to their
scale and the vast amount of data that they have
been fed. Most of these language models (LMs)
perform well in languages like English where abun-
dant data is available (Kudugunta et al., 2023), but

Table 1

Language English Hindi Gujarati

Clean 76.87 77.60 79.95
Synthetic 
Unfiltered

71.84 74.26 77.65

Synthetic 
Unfiltered + 10%

73.78 75.67 78.47

Synthetic 
Filtered

74.60 76.63 79.55

Synthetic 
Filtered + 10%

75.83 77.52 80.23

Performance comparison of Translationese text on NLU tasks
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Figure 1: Comparing NLU performance in English,
Hindi, and Gujarati shows that filtering synthetic data
and adding 10% clean data improves models, approach-
ing the performance of those trained only on clean web
data.

a vast majority of languages don’t have comparable
data as compared to English. As a consequence,
many LLMs, both monolingual and multilingual,
involving these languages still show poor perfor-
mance for various downstream tasks. For exam-
ple, the largest open source multilingual model
BLOOM (Luccioni et al., 2023) covers 46 natural
languages spanning 9 language families, but the top
5 languages comprise 74.14% of the data. Even for
models like mT5 (Xue et al., 2021), the top 10 of
107 languages account for more than 75.48% of the
training data. Despite the benefits of multilingual-
ism (Dabre et al., 2020), this data skew still means
that low-resource languages will underperform.

Fortunately synthetic data is an option and pre-
vious works such as, but not limited to, back-
translation (Sennrich et al., 2016a), sequence dis-
tillation (Kim and Rush, 2016), also known as for-
ward translation, etc. have shown that synthetic
data obtained using machine translation (MT) can
supplement resource scarcity and can significantly
enhance model performance (Popović et al., 2020;
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Gala et al., 2023). However, to the best of our
knowledge, there has been no work on showing
the effectiveness of synthetic data for pre-training
LMs. Furthermore, the quality of synthetic data is
also important, which many works take for granted.
While round-trip-translation (Moon et al., 2020) or
referenceless neural quality estimation (QE) (Rei
et al., 2021) are viable, they either involve twice the
compute or a reasonably large model not available
for most languages, and this might not be optimal
to determine the quality of synthetic documents
efficiently. We thus consider TinyLMs (Eldan and
Li, 2023) as an efficient alternative, which have
been shown to model documents by their fluent
paragraph generation capabilities.

In this paper, we focus on Indic languages such
as Hindi, Gujarati, and Marathi, and present a com-
prehensive study of the utility of synthetic mono-
lingual data, also called translationese (Gellerstam,
1986), obtained using machine translation (MT) for
pre-training LMs. We propose a simple frame-
work that involves training tiny language mod-
els, henceforth TinyLMs, on original web-crawled
data (clean) and then using them to filter synthetic
data. We then compare LMs of different scales pre-
trained on clean and synthetic data followed by fine-
tuning on natural language understanding (NLP)
and generation (NLG) downstream tasks, where
we observe that, while unfiltered synthetic data
based LMs are inferior compared to LMs trained
on clean data, filtering leads to performance com-
parable to the latter. We further show that tuning
these synthetic data LMs on small clean data leads
to further improvements. We also show that these
trends hold when continually pre-training LLMs
such as Gemma-2B and Llama-3-8B.
Our contributions are:
a. A simple framework involving high-quality MT
models and TinyLMs trained on clean web-crawled
data to mass-produce and filter synthetic data for
LM training.
b. Demonstrating the efficacy of language models
(up to Llama-3-8B) trained on filtered synthetic
data across a range of NLU and NLG tasks for low
resource Indic languages.
c. A new document-level monolingual corpora (In-
dicMonoDoc) consisting of 39.5B tokens worth of
monolingual clean document-level data spanning
22 scheduled languages and English1.

1Our code and datasets are released at
https://github.com/meetdoshi90/TranslationesePretraining

2 Related Work

This paper focuses on creating, filtering, and utiliz-
ing synthetic data to train TinyLMs.

Monolingual Data: Previous efforts to collect
monolingual corpora for Indic languages include
the EMILLE/CIIL corpus (McEnery et al., 2000),
HindMonoCorp (Bojar et al., 2014), Leipzig cor-
pus (Goldhahn et al., 2012), IndicCorpv1 (Kak-
wani et al., 2020a), and IndicCorpv2 (Doddapaneni
et al., 2023). While IndicCorpv2 is large, it is
sentence-level and suitable for NLU models but
not for longer contexts needed by language mod-
els. We extend these corpora and demonstrate the
effectiveness of using synthetic data.

Synthetic Data Generation and Quality Esti-
mation: Synthetic data aids NLP tasks like back
translation for machine translation (Sennrich et al.,
2016a; Edunov et al., 2018; Marie et al., 2020;
Bogoychev and Sennrich, 2019; Ni et al., 2022)
and native language identification (Goldin et al.,
2018). However, using synthetic data for pre-
training LMs is less explored due to hallucination
(Maynez et al., 2020) and ungrounded text (Thorne
et al., 2018). Evaluation methods like RTT BLEU
scores are computationally intensive, while oth-
ers like BARTScore (Yuan et al., 2021), T5Score
(Qin et al., 2023), MQM, and COMET (Rei et al.,
2020) require large-scale models or human annota-
tions, limiting scalability. Approaches like KenLM
(Heafield, 2011) have been used to filter monolin-
gual corpora based on perplexity.

Transfer Learning and Cross-Lingual Fine-
Tuning: Approaches like translate-train, as
described by Conneau et al. (2018), involve
fine-tuning a multilingual PLM using machine-
translated training data and evaluating in the target
language. Oh et al. (2022) combined translate-train
and translate-test for improved cross-lingual fine-
tuning. In contrast, our work focuses on pretraining
language models and exploring how synthetic text
impacts pretraining and various downstream NLU
and NLG tasks.

TinyLMs: Small LMs, even with 10M parameters,
produce fluent and consistent text (Eldan and Li,
2023). Challenges like BabyLM (Warstadt et al.,
2023) focus on improving LMs within a fixed data
budget. We take motivation from this and leverage
TinyLMs for efficient filtering of synthetic docu-
ments.
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Figure 2: Overview of our approach to pre-train language models using translationese data. We leverage rich
monolingual corpora in the src language and scarce corpora in the tgt language. Our method involves employing a
pre-trained machine translation model to translate src to tgt. We then filter, using perplexity, the resulting text using
a TinyLM trained solely on clean tgt monolingual data. The filtered synthetic data can be used to further pretrain
larger language models.

3 Methodology

In this section, we describe our framework for
leveraging synthetic data for LM training. This
process consists of collecting monolingual (clean)
data from the web for low-resource languages,
training TinyLMs with it, translating clean data
from a high resource language such as English into
low-resource languages, using the aforementioned
TinyLMs to filter synthetic data, and then using
this filtered data to train LMs for downstream tasks.
Our framework is illustrated in Figure 2.

Figure 3: Language-wise corpora size comparison with
IndicCorpv2 (Doddapaneni et al., 2023): Stacked Bars

3.1 Collecting Clean Monolingual Corpora

Following Doddapaneni et al. (2023); Rae et al.
(2022); Team et al. (2022), for all languages of in-
terest, we a. obtain a list of URLs to be crawled via
word-level n-grams passed to a search engine, b.
after URL deduplication, we crawl all applicable
webpages, c. automatically and manually (Ortiz
Suárez et al., 2019; Abadji et al., 2022) filter out
unwanted text like HTML tags and emoticons, d.
use language detection-based (LID) filtering using
cld32 and IndicLID-FTN model (Madhani et al.,
2023a) to discard languages not of interest, e. per-
form document filtering to drop documents contain-
ing offensive text using toxic words list provided
by Team et al. (2022), f. merge all the filtered cor-
pus with Wikipedia, OSCAR (Ortiz Suárez et al.,
2019) and some dumps of mC4 (Xue et al., 2021)
and finally, g. perform deduplication at paragraph
level using Murmurhash algorithm3 with a 128-bit
unsigned hash for each monolingual split of the
corpora.

We crawl data for English, with Indic context,
and 22 Indic languages. As a result, we end up with
IndicMonoDoc, with 27.5 billion tokens worth of
Indic language documents and 12 billion tokens
of English documents for a total of 39.5 billion to-
kens of clean monolingual data. This is larger than
the corpora released by Doddapaneni et al. (2023),
surpassing it by almost 2 times. We use IndicMon-

2https://github.com/google/cld3
3https://pypi.org/project/mmh3/
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oDoc for all experiments with clean data. Figure 3
gives an overview of the comparison of IndicMon-
oDoc. Note that, creation of IndicMonoDoc is
important since IndicCorpV2 is a sentence-level
corpus, and training LMs need a document-level
corpus. It is important to note that we paid special
attention to the low-resource languages. In this
paper we only use data corresponding to English,
Hindi, Gujarati and Marathi. We report additional
details of IndicMonoDoc in Appendix E.

3.2 Generating Translationese (Synthetic)
We utilize state-of-the-art MT models like Indic-
Trans2 (Gala et al., 2023) to generate translationese
data. Using beam search with a beam value of 5,
we translate English tokens from the clean corpus
to the target languages. Due to token limits in MT
models, we split documents using the Moses Sen-
tence Splitter4 for sentence-level translations, then
merge them back into documents. We use the 1B
En-Indic version5 of IndicTrans2 to translate 5B
English tokens worth of documents from IndicMon-
oDoc into translationese data for Hindi, Marathi
and Gujarati.

3.3 Tiny Language Models (TinyLMs)
TinyLMs are small language models inspired by
Eldan and Li (2023). We use the Transformer ar-
chitecture (Vaswani et al., 2017) and train them
with clean monolingual documents. RoPE embed-
dings (Su et al., 2023) are used instead of learned
positional encodings for handling long documents.
Following Chinchilla scaling laws (Hoffmann et al.,
2022), we use compute-optimal word tokens. Al-
though it is plausible to train a TinyLM on unfil-
tered translationese data to filter itself, our prelim-
inary experiments revealed that they favor poor-
quality data and hence we avoid this route.

3.4 Synthetic Data Filtering
We use these TinyLMs to filter the generated trans-
lationese data. We do this by using perplexity as a
measure of document quality score. For language
models, perplexity quantifies how well a model
predicts a sequence of tokens. A lower perplexity
indicates a natural document. It is calculated by:

PPL(W ) = exp

{
− 1

N

N∑

i

log pθ (wi | w<i)

}

4https://pypi.org/project/mosestokenizer/
5https://huggingface.co/ai4bharat/

indictrans2-en-indic-1B

where the negative log-likelihood measures the er-
ror of the model’s predictions. While calculat-
ing perplexity over a sequence of tokens, W ∈
w1, w2, . . . , wN we skip the first s tokens where
s = 10, e = 1024 and calculate loss until only the
first e tokens of the document. We find setting e
to larger values can lead to higher variance in the
document scores due to the size of the TinyLM.
Following initial analyses, we choose s and e such
that we remove the high uncertainty of the language
at the start of an unseen document and avoid pe-
nalizing longer documents due to the fragility of
the extrapolation ability of TinyLM6. Note that it is
important to choose e such that the language model
gives a uniform estimate of perplexity over an al-
ready seen sequence of tokens ∈ ws, ws+1, . . . , we.
For our experiments, we use the TinyLMs to score
all synthetically generated translationese data and
calculate a document score using the above method.
Following, Laurençon et al. (2022) we do subsam-
pling by thresholding document perplexity scores
except Laurençon et al. (2022) did it using Ken-LM
(Heafield, 2011) and we do it using our TinyLM.
We keep the threshold value such that we include
enough documents to reach the computed optimal
token count for pretraining experiments.

4 Experiments

This section outlines the training procedures and
datasets for the models described in Section 3. We
pre-train decoder only LMs and fine-tune all mod-
els from scratch in monolingual and bilingual set-
tings using the causal language modeling (CLM)
objective for NLG tasks and a linear classification
head for classification tasks. We specify the dataset
samples used for pretraining and fine-tuning, and
analyze the effects of synthetic corpora on pretrain-
ing.

4.1 Pretraining Data Settings

We refer to translated text or translationese as syn-
thetic or syn and original or web-crawled data as
clean throughout our experiments. For the pre-
training of all base models, we use the following
naming convention to denote our training splits for
each model:
XX-clean: This is a clean subset sampled randomly
from IndicMonoDoc where XX represents the lan-
guage English (EN), Hindi (HI) or Gujarati (GU).

6During experiments we saw that these TinyLMs can only
go up to a certain context length before deteriorating in quality.

5846

https://pypi.org/project/mosestokenizer/
https://huggingface.co/ai4bharat/indictrans2-en-indic-1B
https://huggingface.co/ai4bharat/indictrans2-en-indic-1B


syn-XX_yy-unfiltered: Denotes synthetic mono-
lingual documents in XX language generated by
using yy as a source during translation.
syn-XX_yy-filtered: Filtered synthetic data.
+10%: Refers to extended pretraining on a cleaned
subset of IndicMonoDoc with an additional 10%
tokens compared to regular training.
BI-XX-YY Prefix: Denotes bilingual models
trained using an equal mixture of monolingual cor-
pora in XX and YY languages. We append an _syn
prefix to either XX or YY if a synthetic version
of that language is employed in training, and a
-parallel/nonparallel tag to denote whether a paral-
lel version of XX and YY are used or not.

Note, for each split we only use the number of
tokens that are required to reach the point of op-
timality (Hoffmann et al., 2022) by the language
model.

4.2 Implementation and Training

Tokenizer: We use a common byte-pair-encoding
(BPE) (Sennrich et al., 2016b) tokenizer using Sen-
tencepiece7 for all experiments. We train a shared
vocabulary of 56k subwords between three lan-
guages, English, Hindi, and Gujarati by using 5
Million randomly sampled sentences per language
and upsampling for Gujarati.
TinyLMs: We use Pytorch Lightning8 for our im-
plementations and train TinyLMs as described in
Section 3.3 for filtering. We use hidden sizes of 768
and have two variants, one with 4 layers (mini) and
one with 12 layers (base; same as GPT2-base) with
28M and 85M non-embedding parameters respec-
tively. The mini models are trained on clean data
with sequence lengths of 40969 (mini-4k) for filter-
ing synthetic documents as described in Section 3.4.
On the other hand, for our main pre-training and
downstream fine-tuning experiments, we train mini
and base models with sequence lengths of 1024
(mini-1k and base-1k). Following Hoffmann et al.
(2022) we use 2.4 billion word tokens per language
to compute optimal training of base models. Since
Gujarati has only 900M tokens in our dataset, when-
ever Gujarati is involved as the target, we train only
the mini-1k model. For models involving English
and Hindi, we train both mini and base models.
Additional details are in Appendix B.

7https://github.com/google/sentencepiece
8https://lightning.ai/docs/pytorch/stable/
9We keep long sequence lengths to be able to handle long

documents for filtering.

4.3 Downstream Tasks and Evaluation

We finetune the mini-1k and base-1k models for
classification, regression, and generation tasks. Hy-
perparameter tuning is performed using the vali-
dation set for models trained only with clean data,
and this process is repeated for different data splits.
More details on hyperparameters and evaluation
can be found in Appendix B. Primary scores are
reported on IndicGLUE (Kakwani et al., 2020a)
and IndicXNLI (iXNLI) (Aggarwal et al., 2022)
for Hindi and Gujarati, and the GLUE benchmark
validation set (Wang et al., 2018) for English. We
also experiment with other generation tasks like
CNN-Dailymail (Nallapati et al., 2016), Dailog-
Sum (Chen et al., 2021), XL-Sum (Hasan et al.,
2021), IndicNLG (Kumar et al., 2022), FLoRes-
200 (Team et al., 2022), IN22-Conv & IN22-Gen
(Gala et al., 2023) and use standard evaluation met-
rics suitable for each task like accuracy, f1-score,
Rouge-L (Lin, 2004) and chrF++ (Popović, 2017).
Further details about each of the evaluation datasets
can be found in Appendix B.1.

5 Results

We now present our results which help establish
the utility of synthetic data for language modeling.

5.1 Main Results

In this section, we present results for Hindi, Gu-
jarati, and English language models trained on
clean data, as well as synthetic data generated from
translations. We demonstrate the impact of filter-
ing and adding additional clean data for extended
pretraining of LMs trained solely on synthetic text.
Additionally, we observe the effect of using the
clean source text along with its translations (syn-
thetic parallel documents) on downstream tasks.
We follow the naming convention for different data
splits as specified in Section 4. We provide details
for the pretraining of each model in Appendix B.
We provide additional results in Appendix A.
Filtered Synthetic Data is Competitive with
Web Scraped Data: The results in Table 1 and
2 indicate that syn-HI_en-unfiltered, syn-GU_en-
unfiltered, and syn-EN_hi-unfiltered exhibit lower
downstream performance compared to their fil-
tered counterparts: syn-HI_en-filtered, syn-GU_en-
filtered, and syn-EN_hi-filtered, respectively. It is
evident that filtering the synthetic documents using
TinyLMs significantly improves the performance
of both NLU and NLG tasks. We also observe
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(a) Results on Hindi
NLU NLG

Model iXNLI bbc-a iitp-mr iitp-pr midas Avg. Headline
Gen.

Sentence
Summ.

Question
Gen. Wikibio Avg.

HI-clean 73.61 81.75 72.58 79.73 80.34 77.60 27.54 23.64 24.84 52.16 32.04
syn-HI_en-unfiltered 72.87 77.92 64.36 76.22 79.91 74.26 27.29 22.93 24.22 50.14 31.14

syn-HI_en-unfiltered+10% 74.63 78.36 67.75 77.46 80.17 75.67 26.98 23.20 24.76 51.34 31.57
syn-HI_en-filtered 74.75 81.06 69.03 78.58 79.73 76.63 27.15 23.10 24.41 49.88 31.13

syn-HI_en-filtered+10% 74.49 80.94 71.61 79.92 80.64 77.52 27.87 24.23 24.87 51.18 32.04

(b) Results on Gujarati
NLU NLG

Model iXNLI iNLTK Avg. Headline
Gen.

Sentence
Summ.

Question
Gen. Avg.

GU-clean 67.8 92.1 79.95 17.62 13.82 15.18 15.54
syn-GU_en-unfiltered 65.51 89.78 77.65 16.21 13.29 13.66 14.39

syn-GU_en-unfiltered+10% 66.83 90.11 78.47 17.28 13.27 14.50 15.02
syn-GU_en-filtered 67.74 91.35 79.55 17.64 13.40 14.95 15.33

syn-GU_en-filtered+10% 68.04 92.41 80.23 17.62 13.16 15.00 15.26

Table 1: Results for Hindi and Gujarati: NLU/NLG tasks on base-1k (Hindi) and mini-1k (Gujarati) models on
different clean and synthetic splits. Test accuracy for NLU tasks; Rouge-L F1 scores for NLG tasks. Bold values
represent the best amongst synthetic splits.

that for tasks like CoLA (Warstadt et al., 2019),
language models trained solely on synthetic data
lag behind when compared to other tasks as seen in
Table 8 of Appendix A. This suggests that synthetic
corpora may lack certain important elements neces-
sary for language models to perform competitively
in linguistic acceptability tasks, as opposed to LMs
trained on clean, non-synthetic corpora. Results
for base-1k for English are presented in Table 8
in Appendix A because we focus our attention on
Indic languages.

Fine-tuning on small amounts of Web Scraped
Data boosts performance: Even after filtering,
we observe that language models trained solely on
synthetic text slightly underperform LMs trained
on clean text. To address this issue, we conduct ex-
tended pretraining of LMs using clean data sourced
from IndicMonoDoc. The objective is to determine
if this additional training improves performance.
We only incorporate an additional 10% of clean
data compared to the LM’s previous training data.
We see these results across all three languages, and
for Hindi and Gujarati, we see that by incorporat-
ing even a small amount of clean data, we observe
an increase in performance on downstream tasks,
bringing the LM at par or closer to the performance
of a clean LM. We see an improvement in LMs
trained using unfiltered synthetic corpora as well
but we believe that filtering leads to the removal of
noisy documents and thus better performance. We
observe improved performance in language mod-
els (LMs) trained with unfiltered synthetic corpora,

but filtering out noisy documents enhances perfor-
mance further. Our ablation study (Table 13 in Ap-
pendix A) investigates whether adding 10% more
synthetic data contributes to this improvement or
if the data type is key. While performance gains
could stem from statistical variances, the consis-
tency across nearly all downstream tasks suggests
otherwise.
Impact of source language for synthetic data
generation: Choosing the right source language
for synthetic corpora is crucial, as it influences the
characteristics of the generated translationese text.
We evaluate this using Hindi and Gujarati clean
documents from IndicMonoDoc, translating them
into English. We use the 1B Indic-En version10

to translate 5B Hindi tokens and 900M11 Gujarati
tokens into English. In Table 2, we see that the
synthetic text generated from Hindi achieves per-
formance at par with the EN-clean model, while
the synthetic text from Gujarati significantly lags
behind. This is likely because Hindi is more maca-
ronic than Gujarati, i.e., a lot of Hindi text from the
web consists of Hinglish, resulting in better trans-
lationese text due to increased overlap between
languages. This can also be due to the weaker
translations generated by the MT model. The per-
formance gap is notable in tasks like STS bench-
mark, NLI (qnli and mnli), and CoLA, suggesting

10https://huggingface.co/ai4bharat/
indictrans2-indic-en-1B

11Since Gujarati has limited data (900M tokens), we train a
mini-1k model for fair comparison.
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sst2 cola mrpc qnli qqp rte mnli-m mnli-mm stsbModel
acc mcc f1 acc f1 acc acc acc pearson

Avg.

Original EN-clean 87.95 25.59 83.84 78.83 80.78 64.62 71.6 71.69 73.48 70.93
syn-EN_hi-unfiltered 87.53 19.77 79.02 76.49 77.96 55.4 69.65 70.14 67.37 67.04
syn-EN_hi-filtered 87.61 22.81 81.95 77.63 80.57 56.31 70.19 70.89 69.29 68.58

Translationese
Hi→En

syn-EN_hi-filtered + 10% 87.84 26.61 83.27 78.5 80.36 61.37 71.29 71.11 71.91 70.25
syn-EN_gu-unfiltered 83.11 17.66 78.53 66.01 77.68 53.6 63.21 64.55 27.33 59.08
syn-EN_gu-filtered 85.66 21.15 81.45 66.35 77.36 54.15 66.27 65.72 26.16 60.47

Translationese
Gu→En

syn-EN_gu-filtered + 10% 86.58 25.17 81.67 67.1 77.75 57.76 68.78 68.56 27.54 62.32

Table 2: Effect of source selection for generating synthetic data on the dev set of GLUE benchmark. All the results
reported here are on mini-1k. Bold values represent the best amongst synthetic splits

Figure 4: The plot illustrates TinyLM’s perplexity mean and variance across various datasets: Clean-EN (left),
Syn-EN from filtered Hindi (middle), and Syn-EN from filtered Gujarati (right). Despite filtering, English documents
generated from translating Gujarati show consistently higher variance.

poorer translation quality from Gu→ En compared
to Hi→ En.

Model iXNLI bbc-a iitp-mr iitp-pr midas Avg.
HI-clean 68.74 80.25 67.74 77.05 78.33 74.42

syn-HI_en-unfiltered 67.32 77.92 65.63 76.81 77.58 73.05
syn-HI_en-filtered 69.48 78.98 65.16 77.43 77.33 73.68

syn-HI_en-filtered+10% 70.15 79.56 67.09 78.2 79.03 74.81

Table 3: Effect of reducing model size for Hindi on
IndicGLUE accuracy. All the results reported here are
on mini-1k. Bold values represent the best amongst
synthetic splits

5.2 Further Exploration

Analysis of Synthetic Data: Figure 4 shows the
perplexity mean and variance scores for TinyLM
across token positions in the documents. This
shows that on unseen documents, TinyLM shows
higher variance on English documents generated
by translating Gujarati documents from IndicMon-
oDoc as compared to English clean and English
synthetic generated from Hindi. This also gives rea-
son for the deterioration in results in Table 2 due
to Gujarati documents. Figure 6 shows the distribu-
tion of lengths of filtered documents by TinyLMs
showing that they do not add any bias for shorter
documents during filtering.
Impact of model size: Following Table 2 and 3, we
see that even after scaling down we see consistent

improvements for filtering and adding additional
data, which empirically shows that indeed using
synthetic text after filtering is a viable option for
pretraining LMs of varying sizes. In Table 3 we
see that after filtering and extended pretraining,
synthetic text outperforms LMs trained on clean
documents from the web in Hindi. This is also
supported by our experiments on finetuning Llama-
3-8B in Section 5.3.

Model XLSum
HG

XLSum
QG Cnn Dialogsum Avg.

EN-clean 23.87 24.05 16.08 20.39 21.10
syn-EN_hi-unfiltered 22.17 22.97 12.56 18.30 19.00

syn-EN_hi-filtered 23.27 23.83 15.88 19.83 20.70

Table 4: Performance of English models on NLG tasks.
All the results reported here are on base-1k and use
Rouge-L F1 scores.

Impact on NLG: Without extended pretraining,
language models trained on synthetic text perform
as well as those trained on clean documents, sug-
gesting that for NLG tasks, synthetic data suffices
for pretraining, eliminating the need for clean data.
This trend is evident across Hindi, Gujarati, and
English NLG results (Tables 1 and 4). As their per-
formance matches models trained on clean data, we
refrain from extended pretraining for NLG tasks,
focusing primarily on abstractive summarization
for evaluating generation capabilities.
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5.3 Scaling to Llama-3-8B

To show the effect of using translationese on larger
models, we select Llama-3-8B12 and Gemma-2B
(Team et al., 2024) and perform continual pretrain-
ing over clean and synthetic data to improve ability
over the low resource target language. We take
Marathi as a replacement for Hindi for scaling ex-
periments since data for Hindi is abundantly avail-
able and existing models already have a good lan-
guage understanding of Hindi making it harder to
compare the effects of utilizing clean vs synthetic
data. For a fair comparison, we limit each data
split to 344M tokens for Gujarati and 465M tokens
for Marathi and follow a similar procedure as de-
scribed in Section 3.4 to generate and filter data for
Marathi. We perform extended training for a single
epoch using LoRA (Hu et al., 2021) finetuning on
Wq, Wv projection matrices using α=16 and r=8.
We keep the learning rate at 3e−5 with a weight
decay of 0.01 and an effective batch size of 58k.
Perplexity: We report average sentence level per-
plexity on sentences from IN22-Conv and IN22-
Gen (Gala et al., 2023) in Table 5. We see that fil-
tered synthetic data for Gujarati outperforms clean
data, but for Marathi, it does not. This means that
filtering improves performance at scale but relies
on the quality of translationese in the target lan-
guage. We report perplexities on individual test
sets in Appendix A.

Data Marathi Gujarati
Gemma

2B
Llama-3

8B
Gemma

2B
Llama-3

8B
Base model 178.898 66.740 71.136 2.839

clean 37.599 11.196 10.350 2.312
synthetic-unfiltered 92.813 15.697 10.941 2.816
synthetic-filtered 104.148 14.622 10.150 2.236

Table 5: Average perplexity (↓) of models trained on
Translationese vs. Clean data on IN22-Conv and IN22-
Gen test sets shows improvement with large-scale mod-
els. Bold represents best among synthetic data splits.

Few Shot Prompting: We evaluate our contin-
ually pre-trained models using few-shot prompt-
ing on IndicSentiment classification (Doddapaneni
et al., 2023) as the NLU task and En→Indic ma-
chine translation on IN22-Gen and FloRes-200 as
the NLG task. Prompts used are shown in Ap-
pendix B.5 with examples are randomly sampled
from the validation set for FloRes and other ex-
amples from the IN22-Gen test set, ensuring no
example is repeated in the prompts. We use a

12https://github.com/meta-llama/llama3

Data Flores-200 IN22-Gen
Marathi Gujarati Marathi Gujarati

Base model 27.83 34.35 30 34.92
clean 34.02 35.61 33.94 35.42

synthetic-unfiltered 30.63 34.19 29.67 32.1
synthetic-filtered 31.81 35.54 31.3 35

Table 6: chrF++ scores on 5-shot Machine Translation
FloRes and IN22-Gen test sets on Llama-3-8B. Bold
represents best among synthetic data experiments.

Data Marathi Gujarati
Gemma

2B
Llama-3

8B
Gemma

2B
Llama-3

8B
Base model 90.89 ±0.005 95 ±0.009 83.84 ±0.002 92.69 ±0.018

clean 90 ±0.014 97.17 ±0.013 87.79 ±0.012 93.33 ±0.0132

synthetic
unfiltered

89.66 ±0.012 95.38 ±0.016 83.88 ±0.009 92.81 ±0.01

synthetic
filtered

86.67 ±0.016 96.15 ±0.011 84.10 ±0.013 92.94 ±0.007

Table 7: Average accuracy with standard deviation (su-
perscript) over 5 runs on 10-shot IndicSentiment classi-
fication task. Bold represents the best among synthetic
data experiments.

beam width of 5 with early stopping enabled. Re-
sults are shown in Tables 6 and 7. We see that
filtering improves performance on MT when com-
pared to synthetic splits, but IndicSentiment, shows
only marginal improvements. Nonetheless, models
trained on filtered data show lower perplexity and
better performance in few-shot settings, indicating
their promise. We leave the exploration of training
multilingual LLMs on large-scale translationese
data for future research.

6 Conclusion

In this paper, we performed a first of its kind study
showing the promise of using translationese data
for training language models for low-resource lan-
guages. Our simple pipeline involves the transla-
tion of high-resource source language documents
at scale, followed by perplexity based filtering us-
ing small and efficient language models trained
on clean target low-resource language data. We
then showed on a variety of downstream natural
language understanding and generative tasks that
both small and large language models pre-trained
on clean synthetic data are comparable to those
trained on clean data. While we observed that the
source language for synthetic data generation mat-
ters, it is clear that synthetic data can help bridge
the resource scarcity faced by a vast majority of
languages for language modeling. Future work will
focus on better and faster synthetic data generation
and filtering mechanisms.
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Limitations

We consider the following limitations of our work.

• We show that synthetic data also helps for
larger models like Llama-3-8B but for even
larger models above 100B parameters, effects
of translationese may be different. However,
synthetic data generated from translations can
surely help fill knowledge gaps.

• Due to the extensive size of the test sets for
IndicNLG tasks (Question Generation, Wik-
iBio generation, Headline Generation, and
Sentence Summarization), we couldn’t exper-
iment with them in their entirety. However,
since we already use 4000 examples per lan-
guage, we anticipate that the overall trends
remain unchanged.

• We report GLUE validation set results for all
models due to the large scale of our experi-
ments, following existing practices. Our goal
is to demonstrate synthetic data utility, not to
achieve state-of-the-art results.

• Our framework heavily relies on the transla-
tion model’s performance. Despite this de-
pendency, we are confident that our approach
will significantly enhance the performance of
mid-resource languages, especially where the
translation model is already proficient.

Ethical Considerations

As a part of this paper, we release monolingual and
synthetic data. While we have taken care to remove
any toxic content, accidental occurrences may exist
and thus we exercise caution when using our data
for training language models as they may produce
toxic outputs. Given that we have shown the utility
of synthetic data for training LMs, it should be
possible to mass produce synthetic toxic data in
various languages leading to LMs that can generate

multilingual toxic content. However, this opens up
research opportunities on how to detect and filter
toxic content from synthetically created data.

We release the code and models with an MIT
License13. The dataset is released under a CC-0
License14.
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A Additional results

We report additional results in this section. Ta-
bles 14, 15 show the chrF++ and BLEU scores
across three translation evaluation benchmarks.
This shows that using parallel synthetic data does
not deteriorate the performance of the language
model. Similar results are shown in Table 16 for
IndicNLG tasks where performance on Hindi gen-
eration tasks are only affected by a small margin
and coupled with results in Table 8 showing that
scores are not affected by using Hindi synthetic
parallel data.
Using synthetic for one language doesn’t impact
performance in another: For many multilingual
language models, data imbalance causes a gap in
performance across languages. But what if we can
combine synthetic data along with clean data for
training multilingual models? would the synthetic
part deteriorate the performance of the multilingual
model? To experiment with this, we train bilin-
gual base-1k models over different combinations of
clean and synthetic corpora for English and Hindi
and evaluate their performance on GLUE (Wang
et al., 2018), and report performance on IndicNLG,
and Machine translation in Appendix A. Follow-
ing Table 9, we see that using Hindi synthetic data
does not affect its performance compared to BI-EN-
HI-clean model which is solely trained on clean
corpora. This implies that it is possible to train
multilingual models where some languages are
trained only over a clean subset and others on
synthetic without deteriorating performance across
languages. We further see that using parallel data
does not have much impact on multilingual models.
Impact on Machine Translation: (MT) We fo-
cus on MT separately as a special case of NLG.
We hypothesized that using parallel synthetic docu-
ments for bilingual models would improve transla-
tion performance by enhancing alignment between
languages. However, our evaluation fails this hy-
pothesis. Results indicate that using nonparallel
synthetic documents yields similar translation per-
formance across language directions and bench-
marks compared to parallel synthetic documents.
This might be because there is no explicit align-

ment happening during training between parallel
documents. See Table 10 for chrF++ scores on
FLoRes-200 (Team et al., 2022), and Appendix A
for chrF++ and BLEU scores on IN22-Conv, IN22-
Gen (Gala et al., 2023).

B Training and Evaluation

In this section, we provide an overview of the train-
ing and evaluation setup employed in our exper-
iments. This includes details about the datasets
used, training hyperparameters, evaluation metrics,
and other relevant configurations.

B.1 Evaluation Datasets

For evaluation, we utilize a diverse set of datasets
covering four languages: English, Hindi, Gujarati,
and Marathi. For Hindi and Gujarati, we rely
on the IndicGLUE benchmark15 (Kakwani et al.,
2020b), which provides a range of tasks for natu-
ral language understanding (NLU), including nat-
ural language inference (IndicXNLI/iXNLI), arti-
cle genre classification (bbc-a, iNLTK), discourse
mode classification (MIDAS), and sentiment anal-
ysis (iitp-mr, iitp-pr). For natural language gen-
eration (NLG), we employ the IndicNLG bench-
mark16 (Kumar et al., 2022), which includes tasks
like headline generation, sentence summarization,
question generation, and Wikipedia biography gen-
eration.

The IndicGLUE dataset is semi-automatically
curated using website metadata and Wikipedia arti-
cles, while IndicNLG is derived from Wikipedia ar-
ticles and news websites for summarization, along
with parallel corpora and pivot-based translation
for paraphrasing tasks. Additionally, we incorpo-
rate the test sets from IN22 (Gala et al., 2023) and
Flores-200 (Team et al., 2022) to evaluate perfor-
mance on machine translation tasks.

We use the well-known GLUE benchmark,
which includes nine NLU tasks in English such as
natural language inference (NLI), semantic similar-
ity, text classification, and linguistic acceptability.
For English summarization tasks, we rely on XL-
Sum (Hasan et al., 2021), DialogSum (Chen et al.,
2021), and CNN/DailyMail (See et al., 2017).

15https://huggingface.co/datasets/ai4bharat/
indic_glue

16https://huggingface.co/collections/ai4bharat/
indicnlg-66c5a1397bab135be074cfe1
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sst2 cola mrpc qnli qqp rte mnli-m mnli-mm stsbModel
acc mcc f1 acc f1 acc acc acc pearson

Avg.

EN-clean 90.94 40.26 87.4 84.98 84.47 65.34 77.84 77.96 82.67 76.87
syn-EN_hi-unfiltered 84.61 31.1 81.78 79.35 81.44 63.3 72.94 73.16 78.9 71.84

syn-EN_hi-unfiltered + 10% 87.39 34.22 85.77 80.96 81.07 65.11 74.76 74.38 80.32 73.78
syn-EN_hi-filtered 88.3 34.03 86.55 83.59 83.64 63.17 75.6 75.41 81.1 74.60

syn-EN_hi-filtered + 10% 90.13 35.75 86.41 84.75 84.21 65.34 76.99 76.91 81.95 75.83

Table 8: Results on English: Dev set of GLUE tasks for different synthetic splits on the base-1k model. Synthetic
LMs perform almost as well as clean LMs after filtering and further training with clean data. Bold values represent
the best amongst synthetic splits.

sst2 cola mrpc qnli qqp rte mnli-m mnli-mm stsbModel
acc mcc f1 acc f1 acc acc acc pearson

Avg.

BI-EN-HI-clean 89.56 38.53 85.56 84.88 84.39 64.25 76.4 77.27 82.07 75.88
BI-EN-HI_syn-parallel-filtered 89.56 39.57 85.71 84.75 84.62 64.98 77.31 77.85 82.41 76.31

BI-EN-HI_syn-nonparallel-filtered 89.79 38.68 86.92 85.08 84.06 65.34 77.15 77.55 83.01 76.40
BI-EN_syn-HI_syn-filtered 87.95 30.05 84.9 83.7 83.97 63.89 75.63 76.24 82.24 74.29

BI-EN_syn-HI_syn-filtered + 10% 89.1 35.45 85.34 84.53 84.18 65.7 76.64 77.24 82.1 75.59

Table 9: Results on English for Bilingual models: Dev set of GLUE tasks for different synthetic splits on the base-1k
model. Training bilingual models using synthetic data in one language (Hindi) does not affect the performance in
the other language (English). Bold values represent the best amongst synthetic splits.

FLORESModel EN-HI HI-EN Avg.
BI-EN-HI-clean 46.56 51.7 49.13

BI-EN-HI_syn-parallel-filtered 44.12 50.64 47.38
BI-EN-HI_syn-nonparallel-filtered 45.65 51.29 48.47

EN-GU GU-EN Avg.
BI-EN-GU-clean 26.44 35.3 30.87

BI-EN-GU_syn-parallel-filtered 26.77 34.84 30.81
BI-EN-GU_syn-nonparallel-filtered 26.7 36.54 31.62

Table 10: chrF++ Scores on FLoRes translation task.
EN-HI models are based on base-1k and EN-GU models
are based on mini-1k

Perplexity-IN22 Conv

Data Marathi Gujarati
Gemma-2B Llama-3-8B Gemma-2B Llama-3-8B

Base model 332.9036 121.6586 131.8027 3.3922
clean 58.3804 15.1342 12.3128 2.5208

synthetic-unfiltered 168.0933 23.018 12.7995 3.0671
synthetic-filtered 191.1506 21.355 11.6916 2.3849

Table 11: Perplexity on IN-22 Conv. Bold values repre-
sent best among synthetic splits.

Perplexity-IN22 Gen

Data Marathi Gujarati
Gemma-2B Llama-3-8B Gemma-2B Llama-3-8B

Base model 24.893 11.821 10.4693 2.2853
clean 16.8172 7.2572 8.3868 2.1032

synthetic-unfiltered 17.5333 8.3766 9.0821 2.564
synthetic-filtered 17.1451 7.8885 8.6089 2.0868

Table 12: Perplexity on IN-22 Gen. Bold values repre-
sent best among synthetic splits.

B.2 Training

For the pretraining of the base models, we keep a
hard limit for the base-1k model as 2.38B tokens
and for the mini-1k model as 1B tokens. But for the
TinyLM we relax this token limit until we see over-
fitting. For our experiments, we use the NVIDIA
A100-SXM4-80GB GPUs.

B.3 Extended pretraining

For the mini-1k models, we randomly sample 100M
tokens from the clean subset of IndicMonoDoc for
the target language, and for the base-1k model,
we sample 200M for extended pretraining. We
use the same hyperparameters as training and per-
form extended pretraining for 2 epochs over this
newly sampled clean data. For scaling experiments,
we utilize TorchTune17 for fine-tuning Llama-3-8B
and Gemma-2B models. For a fair comparison, we
limit each data split to 344M tokens for Gujarati
and 465M tokens for Marathi and follow a similar
procedure as described in Section 3.4 to generate
and filter data for Marathi. We perform extended
training for a single epoch using LoRA (Hu et al.,
2021) finetuning on Wq, Wv projection matrices
using α=16 and r=8. We keep the learning rate at
3e−5 with a weight decay of 0.01 and an effective
batch size of 58k. We use the AdamW optimizer
(Loshchilov and Hutter, 2019) with 1000 warmup
steps and a cosine learning rate scheduler.

17https://github.com/pytorch/torchtune
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NLU NLG
Model iXNLI bbc-a iitp-mr iitp-pr midas Avg. Headline

Gen.
Sentence
Summ.

Question
Gen. Wikibio Avg.

HI-clean 73.61 81.75 72.58 79.73 80.34 77.60 27.54 23.64 24.84 52.16 32.04
syn-HI_en-unfiltered 72.87 77.92 64.36 76.22 79.91 74.26 27.29 22.93 24.22 50.14 31.14

syn-HI_en-unfiltered+10% clean 74.63 78.36 67.75 77.46 80.17 75.67 26.98 23.20 24.76 51.34 31.57
syn-HI_en-filtered 74.75 81.06 69.03 78.58 79.73 76.63 27.15 23.10 24.41 49.88 31.13

syn-HI_en-filtered+10% clean 74.49 80.94 71.61 79.92 80.64 77.52 27.87 24.23 24.87 51.18 32.04
syn-HI_en-filtered+10% synthetic 74.95 80.83 71.93 79.92 78.73 77.27 27.64 25.13 23.60 43.48 29.96

Table 13: Ablation Results for Hindi using additional 10% clean vs synthetic data: NLU/NLG tasks on base-1k
(Hindi) different clean and synthetic splits. Test accuracy for NLU tasks; Rouge-L F1 scores for NLG tasks. Bold
values represent the best amongst synthetic splits.

IN22-Conv IN22-Gen FLORESModel
EN-HI HI-EN EN-HI HI-EN EN-HI HI-EN

BI-EN-HI-clean 41.22 50.3 43.49 47.83 46.56 51.7
BI-EN-HI_syn-parallel-filtered 41.92 49.67 41.61 46.95 44.12 50.64

BI-EN-HI_syn-nonparallel-filtered 40.74 49.54 42.28 47.66 45.65 51.29
EN-GU GU-EN EN-GU GU-EN EN-GU GU-EN

BI-EN-GU-clean 35.85 41.27 22.95 31.83 26.44 35.3
BI-EN-GU_syn-parallel-filtered 34.36 41.86 22.93 30.84 26.77 34.84

BI-EN-GU_syn-nonparallel-filtered 34.49 42.08 23.06 32.81 26.7 36.54

Table 14: chrF++ Scores on FloRes, IN22-Conv and IN22-Gen splits for translation task. EN-HI models are based
on base-1k and EN-GU models are based on mini-1k. Bold values represent the best amongst synthetic splits.

IN22-Conv IN22-Gen FLORESModel
EN-HI HI-EN EN-HI HI-EN EN-HI HI-EN

BI-EN-HI-clean 19.58 23.01 17.23 19.72 21.8 21.73
BI-EN-HI_syn-parallel-filtered 19.64 23.79 16.57 20.14 21.63 22.6

BI-EN-HI_syn-nonparallel-filtered 19.25 22.47 16.37 19.74 21.51 21.74
EN-GU GU-EN EN-GU GU-EN EN-GU GU-EN

BI-EN-GU-clean 10.24 15.19 4.65 7.92 5.44 9.57
BI-EN-GU_syn-parallel-filtered 11.24 15.7 4.87 8.44 6.7 10.02

BI-EN-GU_syn-nonparallel-filtered 10.86 15.57 5.07 9.07 6.17 10.03

Table 15: BLEU Scores on FloRes, IN22-Conv and IN22-Gen splits for translation task. EN-HI models are based
on base-1k and EN-GU models are based on mini-1k. Bold values represent the best amongst synthetic splits.

Model Headline
Generation

Sentence
Summarization

Question
Generation

Wikibio
Generation

BI-EN-HI-clean 27.47 23.78 24.25 50.82
BI-EN-HI_syn-parallel-filtered 26.96 23.10 25.38 48.26

BI-EN-HI_syn-nonparallel-filtered 27.32 22.84 24.95 50.22

Table 16: Performance of Bilingual models on IndicNLG tasks. All the results reported here are on base-1k and use
Rouge-L F1 scores. Bold values represent the best amongst synthetic splits.
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IndicXNLI 10-Shot

Data Marathi Gujarati
Gemma-2B Llama-3-8B Gemma-2B Llama-3-8B

Base model 36.56 ± 0.47 50.66 ± 1.46 34.74 ± 0.83 47.63 ± 1.96
clean 35.92 ± 0.79 48.47 ± 1.44 33.40 ± 0.29 48.01 ± 0.99

synthetic-unfiltered 35.66 ± 0.93 49.50 ± 1.76 33.26 ± 0.39 48.22 ± 1.88
synthetic-filtered 34.4 ± 0.23 51.98 ± 1.32 33.78 ± 0.22 47.41 ± 2.17

Table 17: Classification Results on IndicXNLI using
10-shot prompting.

Hyperparameter Value
vocab_size 56000
val_every 0.05

bs 48
n_embed 768

num_blocks 4
num_heads 16
head_size n_embed // num_heads

context_len 1024
block_size context_len

attn_drop_value 0.1
dropout 0.1

ffn_drop_value 0.1
use_flashattn TRUE
ffn_scaling 4

positional_embedding rope’
rotatory_embedding_dim head_size // 2

lr 6.00E-04
wd 1.00E-01

beta_1 0.9
beta_2 0.95

eps 1.00E-05
epochs 2

precision bf16
accumulate_grad_batches 8

gradient_clip_val 1
strategy ddp’

accelerator gpu’
warmup_steps 5000
num_workers 16

SHUFFLE_SEED 42
PIN_MEMORY TRUE
NUM__NODES 1
NUM_DEVICES 2

Table 18: Hyperparameters used for training the mini-1k
model

Hyperparameter Value
vocab_size 56000
val_every 0.05

bs 48
n_embed 768

num_blocks 12
num_heads 12
head_size n_embed // num_heads

context_len 1024
block_size context_len

attn_drop_value 0.1
dropout 0.1

ffn_drop_value 0.1
use_flashattn TRUE
ffn_scaling 4

positional_embedding rope’
rotatory_embedding_dim head_size // 2

lr 6.00E-04
wd 1.00E-01

beta_1 0.9
beta_2 0.95

eps 1.00E-05
epochs 2

precision bf16
accumulate_grad_batches 8

gradient_clip_val 1
strategy ddp’

accelerator gpu’
warmup_steps 5000
num_workers 16

SHUFFLE_SEED 42
PIN_MEMORY TRUE
NUM__NODES 1
NUM_DEVICES 2

Table 19: Hyperparameters used for training the base-1k
model

B.4 Fine-tuning

For GLUE tasks we use the dev split on the clean
part and do hyperparameter tuning to achieve the
best scores, and then we use the same hyperparam-
eters for all synthetic experiments. For IndicGLUE
we follow a similar setting for the val split to find
good hyperparameters and report results on the test
split like Kakwani et al. (2020a). For all classifi-
cation and regression tasks, we use a single linear
layer and use an appropriate activation function
for classification and regression respectively. We
use an Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 1e−5 and a batch size of
48. For NLG tasks we do extended pretraining
using a separator token in between the input and
output sequence with an effective batch size of 768
examples and only calculate loss for the output se-
quence. We use an AdamW optimizer (Loshchilov
and Hutter, 2019) with learning rate = 6e−4, weight
decay = 1e−1, β1 = 0.9, β2 = 0.95 and ϵ = 1e−5.
For translation, we randomly sample 1M parallel
sentence for each language pair from the samanan-
tar corpus (Ramesh et al., 2022) and evaluate on
FloRes (Team et al., 2022), IN22-Conv and IN22-
Gen (Gala et al., 2023). We list the batch size and
number of epochs of each task in Table 20.

B.5 Prompting

We use random sampling from validation sets
whenever available and utilize other examples from
the test set otherwise. We take 5 random samples
for each evaluation of NLG tasks and 10 random
samples for each evaluation of NLU tasks. We list
down the prompt used below for Marathi evalua-
tions, we use similar prompts for Gujarati as well.

Figure 5: Prompt used for English→Marathi translation.

B.6 Evaluation

We use torch metrics18 to calculate accuracy, f1-
score, Pearson correlation, Matthew’s correlation

18https://lightning.ai/docs/torchmetrics/
stable/pages/lightning.html

5859

https://lightning.ai/docs/torchmetrics/stable/pages/lightning.html
https://lightning.ai/docs/torchmetrics/stable/pages/lightning.html


Task Batch size Epochs Metric
IndicXNLI 48 5 Accuracy

BBC-Articles 24 20 Accuracy
IITP-MR 24 20 Accuracy
IITP-PR 48 20 Accuracy
MIDAS 48 20 Accuracy

Headline Generation 768 2 Rouge-L F1
Sentence Summarization 768 2 Rouge-L F1

Question Generation 768 2 Rouge-L F1
WikiBio Generation 768 4 Rouge-L F1

iNLTK 48 20 Accuracy
sst2 48 10 Accuracy

CoLA 48 30 MCC
mrpc 48 30 F1
qnli 48 10 Accuracy
qqp 48 5 F1
rte 48 30 Accuracy

mnli-matched 48 5 Accuracy
mnli-mismatched 48 5 Accuracy

stsb 48 20 Pearson
XLSum Headline Gen. 768 4 Rouge-L F1
XLSum Question Gen. 768 4 Rouge-L F1

CNN Dailymail 768 4 Rouge-L F1
DialogSum 768 4 Rouge-L F1
Samanantar 768 2 chrF++ / BLEU

Table 20: Hyperparameters used for finetuning tasks

coefficient. We report chrF++ scores19 and BLEU
scores20 (Papineni et al., 2002) using the sacre-
BLEU21 implementation and Rouge-L f1 scores
using the sacreRouge (Deutsch and Roth, 2020)
implementation by the xl-sum repository22.

We report English scores for NLU on the valida-
tion split of the GLUE benchmark and test splits
for XL-Sum, CNN Dailymail, and Dialogsum NLG
benchmarks. For Hindi and Gujarati, we use the
test split of IndicGLUE and IndicXNLI.

For classification and regression tasks, we use
the models finetuned according to hyperparame-
ters mentioned in Appendix B.4 to keep fair com-
parison for all models and mention results on the
final epoch. For generations on IndicNLG and En-
glish NLG tasks, we use beam search with a beam
width of 5, length penalty of 1.0, n_gram repetition
penalty of 4 n_grams with sampling set to false and
early stopping set to true. We also set a maximum
generation length to 64 tokens. For the translation
task, we follow a beam search with a beam width of
5, maximum new tokens to 256 and early stopping
to true.

C Utilising Translationese

In this section we provide details on the generation
and filtering of translationese data for our experi-

19chrF++ signature
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.4.0

20sacreBLEU signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.0

21https://github.com/mjpost/sacrebleu
22https://github.com/csebuetnlp/xl-sum

ments.

C.1 Creating synthetic data

“Translationese” is a term used to describe peculiar-
ities in the text translated into a specific language,
differentiating it from content originally written in
that language (Gellerstam, 1986). Translated texts
into the target language (via humans or machine-
generated) often show distinctive features that dif-
ferentiate them from their original counterparts in
the target language. These disparities arise from
either the influence of the translation process itself
on the final product or the inherent “fingerprints”
of the source language subtly present in the tar-
get language rendition (Rabinovich and Wintner,
2015). This is a common phenomenon in transla-
tion models where the target language translations
often show characteristics of the source language
and add bias to the evaluation of downstream tasks
(Toral et al., 2018; Zhang and Toral, 2019; Graham
et al., 2019). So far a lot of work on synthetic trans-
lated data has been done for using back translations
(Sennrich et al., 2016a; Edunov et al., 2018) for im-
proving Machine translation performance (Marie
et al., 2020; Bogoychev and Sennrich, 2019; Ni
et al., 2022) or for classification tasks like native
language identification (Goldin et al., 2018), etc.
Tranlationese data has been used for many tasks
but we explore the efficacy of using translationese
data for pretraining of language models. We col-
lect monolingual corpora in the source language
as mentioned in Section 3.1 and utilize a powerful
off-the-shelf translation model IndicTrans2 (Gala
et al., 2023) to generate translationese data. Since
IndicTrans2 can only handle a max sentence length
of 256 BPE tokens, we split the documents using
Moses Sentence Splitter23 to perform translations
into the target language at the sentence level and
then merge again to form documents. We also re-
pair translations that exceed in length 256 BPE
tokens using the TinyLM trained on clean corpora
as mentioned in Section 4 to complete the sen-
tence translation, we encounter only 0.002% of
such cases. We use this corpus for the synthetic
and clean+synthetic part of our experiments.

C.2 Perplexity filtering

Following Figure 2, we use these TinyLMs to filter
the generated synthetic translationese corpora from
IndicTrans2. We do this by using perplexity as a

23https://pypi.org/project/mosestokenizer/
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Figure 6: Violin plot displaying the distribution of
lengths of clean and filtered English documents on dif-
ferent data splits: en-clean (English web documents),
syn-en_hi (synthetic English documents translated from
Hindi), and syn-en_gu (synthetic English documents
translated from Gujarati).

measure of document quality score. For language
models, perplexity quantifies how well a model
predicts a sequence of tokens. A lower perplexity
indicates better predictive performance. While cal-
culating perplexity over a sequence of tokens W ∈
w1, w2, . . . , wN we skip the first s tokens where
s = 10, e = 1024 and calculate loss until only the
first e tokens of the document. We find setting e
to larger values can lead to higher variance in the
document scores due to the size of the TinyLM.
After initial analysis, we choose s and e such that
we remove the high uncertainty of the language at
the start of an unseen document and avoid penal-
izing longer documents due to the fragility of the
extrapolation ability of TinyLM24. Note that it is
important to choose e such that the language model
gives a uniform estimate of perplexity over an al-
ready seen sequence of tokens ∈ ws, ws+1, . . . , we.
For our experiments, we use the TinyLMs to score
all synthetically generated translationese data and
calculate a document score using the above method.
Following Laurençon et al. (2022), we do subsam-
pling by thresholding document perplexity scores
except Laurençon et al. (2022) did it using Ken-LM
(Heafield, 2011) and we do it using our TinyLM.
We keep the threshold value such that we include
enough documents to reach the computed optimal
token count for pretraining experiments.

24During experiments we saw that these TinyLMs can only
go up to a certain context length before deteriorating in quality.

High Resource Low Resource
Lang #Tokens Lang #Tokens

bn 5,258.47 as 57.64
en 11,986.53 brx 2.25
gu 887.18 doi 0.37
hi 11,268.33 gom 2.91
kn 567.16 kas 1.27
ml 845.32 mai 1.51
mr 1,066.76 mni 0.99
ne 1,542.39 or 81.96
pa 449.61 sa 80.09
ta 2,171.92 sat 3.05
te 767.18 sd 83.81
ur 2,391.79

Table 21: Languagewise corpora size in Million tokens

D Qualitative Analysis

Since translation errors occur frequently, leading
to biased, ungrammatical, or erroneous translations
that can have drastic consequences on training, it
is important to mitigate or remove such errors in
translationese corpora. The most common machine
translation errors include mistranslations due to
ambiguous words, incorrect handling of expres-
sions, syntax and grammar errors, and issues with
preserving context across longer sentences. Many
approaches have been proposed to address these
errors, but most are computationally expensive, es-
pecially when translationese data is used for pre-
training. Instead, we ask whether a language model
can identify such issues. To investigate this, we
examine which types of English sentences were
filtered.

In many cases, we found that the filtered doc-
uments included errors like code-mixing and rep-
etitions, often generated by the diverging output
of the translation model. This is expected since
such phenomena are rarely seen in natural written
language, and the model assigning high entropy
suggests an unlikely sequence outcome. Although
the model regarded some erroneous instances as
false positives, many such cases were successfully
avoided. We also noticed that, due to the small
size of the model, many perfectly good documents
were filtered out because of the model’s inability
to evaluate them. This issue was observed less fre-
quently in larger models used for evaluation. As
seen in Figure 7, the filtering model fails to under-
stand complex words and named entities, which it
regarded as unlikely due to its preference for sim-
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pler terms and more likely entities. Other common
elements that were filtered included numbers, dates,
and abbreviations. While this can lead to the loss of
valuable information, as many good documents are
discarded, we empirically observe the benefits of
such filtering. These errors could likely be reduced
by using a larger filtering model that can better ap-
proximate the source language but we leave this
analysis for future work.

Figure 7: Heatmap of perplexity over filtered sentences.

E IndicMonoDoc

In this section, we describe the process of creat-
ing the IndicMonoDoc corpus which is the largest
document-level corpora for Indic languages consist-
ing of 39.5 billion tokens spanning 23 languages.
IndicMonoDoc comprises 27.5B Indic tokens and
12B tokens of English tokens. Table 21 shows
language language-wise deduplicated size of the
IndicMonoDoc corpus and Figure 3 shows a com-
parative 100% stacked bar plot with IndicCorpv2
which is a sentence level corpora.

E.1 Crawling

To extract URLs from the web we sample word
level n-grams; n=2,...,6 from a sample monolingual
corpora to create a list of keyword searches. We
then randomly merge k; k=1,..,4 keywords to form
a query. Using these queries we perform automatic
web searches to collect a large repository of URLs.
We merge this list with a manual list of sources to
perform URL-level deduplication. We crawl these
webpages leaving out some of them25. We leave
out webpages that consist of a considerable amount
of English content using a simple script recognition
regex. We perform this scrapping majorly for the
bottom 14 low-resource languages. We also add
script-level recognition using Unicode characters26

25We leave webpages consisting of a robots.txt file and
URLs containing offensive text or social media links

26https://unicode.org/charts/

for each language before crawling a webpage to
avoid scrapping non-Indic text.

E.2 Post processing
A lot of crawled content consists of unwanted text
like HTML tags, emoticons, and text in another lan-
guage. We use manual filtering pipelines inspired
by OSCAR (Ortiz Suárez et al., 2019), (Abadji
et al., 2022) to remove such content. We addition-
ally use a language detection-based (LID) filtering
using cld327 and IndicLID-FTN model (Madhani
et al., 2023a) to discard languages not of inter-
est. Following Doddapaneni et al. (2023) we per-
form document filtering to remove offensive text
from the corpora using a list of offensive words and
phrases extended from work by Team et al. (2022)
which consists of offensive words in 209 languages.
We also use a Romanized version of this list using
the transliteration tool by Madhani et al. (2023b) to
perform toxic document filtering in 17 languages.
Following Kakwani et al. (2020a) & Doddapaneni
et al. (2023) we merge all the filtered corpus with
Wikipedia, OSCAR (Ortiz Suárez et al., 2019) and
some dumps of mC4 (Xue et al., 2021). Finally,
we perform deduplication at paragraph level using
Murmurhash algorithm28 with a 128-bit unsigned
hash for each monolingual split of the corpora. Af-
ter all post-processing steps, the language wise size
of the corpora is mentioned in Table 21. A major
chunk of the corpus is comprised of English, Hindi,
and Bengali which make up 72.15% of the corpora.

27https://github.com/google/cld3
28https://pypi.org/project/mmh3/
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