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Abstract

Although Dense Passage Retrieval (DPR) mod-
els have achieved significantly enhanced per-
formance, their widespread application is still
hindered by the demanding inference efficiency
and high deployment costs. Knowledge distil-
lation is an efficient method to compress mod-
els, which transfers knowledge from strong
teacher models to weak student models. Pre-
vious studies have proved the effectiveness
of knowledge distillation in DPR. However,
there often remains a significant performance
gap between the teacher and the distilled stu-
dent. To narrow this performance gap, we pro-
pose MTA4DPR, a Multi-Teaching-Assistants
based iterative knowledge distillation method
for Dense Passage Retrieval, which transfers
knowledge from the teacher to the student with
the help of multiple assistants in an iterative
manner; with each iteration, the student learns
from more performant assistants and more dif-
ficult data. The experimental results show that
our 66M student model achieves the state-of-
the-art performance among models with same
parameters on multiple datasets, and is very
competitive when compared with larger, even
LLM-based, DPR models.

1 Introduction

Although PLM/LLM-based Dense Passage Re-
trieval (DPR) models (Karpukhin et al., 2020; Qin
et al., 2024) have superior performance, those mod-
els’ inference efficiency and deployment costs are
still cumbering their wide applications. To obtain
an efficient and effective DPR model, researchers
are paying more attention to knowledge distillation.
Previous studies (Zeng et al., 2022; Sun et al., 2024;
Lu et al., 2022) have proved the effectiveness of
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Figure 1: MTA4DPR Framework. MTA4DPR transfers
knowledge from the teacher to the student with the help
of the best assistant. The Fusion Module is used to
generate fused assistants from the original assistants,
and the Selection Module is used to select the best assis-
tant among all original and fused assistants. The dotted
arrows indicate that the corresponding procedures are
not involved in the backpropagation of the training.

knowledge distillation in DPR. However, the per-
formance gap between the teacher and the distilled
student often remains significant, especially when
the teacher is a very good one.

In this paper, we hypothesize that incorporating
assistants into knowledge distillation can help im-
prove students’ performance, just as teaching assis-
tants in universities can assist students in learning
course content. In addition, inspired by curricu-
lum learning (Bengio et al., 2009), we also be-
lieve that multiple iterations can further narrow the
gap between the teacher and the student since the
latter is capable of learning from more challeng-
ing data and more effective assistants as the itera-
tions go on. Therefore, we introduce MTA4DPR,
a multi-teaching-assistants based iterative distil-
lation method. Specifically, MTA4DPR transfers
knowledge from the teacher to the student with
the help of multiple assistants iteratively. For each

5871



iteration, we first use off-the-shelf teacher/assistant
DPR models to generate datasets for training and
evaluation. Then, we use a fusion module to gen-
erate a series of fused assistants. After that, we
train the student to learn from the teacher with the
help of the best assistant selected among all fused
and original assistants by our selection module, as
illustrated in Figure 1. At the end of each itera-
tion, we evaluate the student’s performance and
replace the worst-performing assistant with it if it
outperforms any existing assistants. What’s more,
we also incorporate data that the student predicted
incorrectly in the previous iteration into the newly
constructed dataset, by which the difficulty of each
iteration’s dataset is increased. In this way, as the
training iterates, the student can learn from more
performant assistants and more difficult data.

The experimental results on MS MARCO,
TREC DL 2019 and 2020 and Natural Questions
show the effectiveness of our method. Our 66M
student model achieves the state-of-the-art perfor-
mance among models with same parameters on
multiple datasets, and is competitive when com-
pared with larger, even LLM-based, DPR models.

To summarize, our main contributions are:
1) We propose a novel distillation method

MTA4DPR, which improves the student’s retrieval
performance with the help of assistant models.

2) The experimental results show the effective-
ness of our proposed method, achieving very com-
petitive results even when compared with larger,
even LLM-based, DPR models.

3) Not constrained by model structures and tasks,
MTA4DPR is orthogonal to existing distillation
methods and can be combined with other distilla-
tion pipelines to further improve the performance.

2 Related Work

2.1 Dense Retrieval

Despite its wide applications, sparse retrieval, such
as BM25, can not thoroughly solve the lexical mis-
match problem, although query/document expan-
sion (Nogueira et al., 2019; Formal et al., 2021)
and term-weighting (Lin and Ma, 2021; Gao and
Callan, 2021a) have been proposed to help miti-
gate the problem. For this reason, dense retrievers,
especially those built upon PLMs or LLMs, have
received more and more attention. They map both

passages and queries into dense vectors, the rele-
vance between which can be computed by dot prod-
ucts. Recently, a large number of methods have
been proposed to improve dense retrievers’ perfor-
mance, including negative sampling (Xiong et al.),
knowledge distillation (Zeng et al., 2022; Sun et al.,
2024; Lin et al., 2023) and joint optimization of
retrievers and rankers (Ren et al., 2021b).

2.2 Knowledge Distillation

Knowledge Distillation transfers knowledge from
the teacher to the student, allowing the latter to
have good performance with high efficiency. To
achieve this goal, students are forced to learn
knowledge representations provided by teachers,
including response-based knowledge (Hinton et al.,
2015; Beyer et al., 2022), intermediate knowledge
(Adriana et al., 2015; Chen et al., 2018; Heo et al.,
2019) and relation-based knowledge (Peng et al.,
2019; Huang et al., 2022; Yang et al., 2022).

Recently, more and more studies focus on multi-
teacher distillation, which can draw diverse knowl-
edge from multiple teacher models, improving the
student model’s performance(Wu et al., 2021; Son
et al., 2021; Lin et al., 2023). Mirzadeh et al. (2020)
proposes TAKD, a multi-step knowledge distilla-
tion method to bridge the gap between the teacher
and the student, in which a larger teacher model dis-
tills a smaller teacher model and the latter distills
a much smaller student model. Yuan et al. (2021)
proposes a reinforced method to combine multiple
teacher models’ prediction to get the final knowl-
edge, which is used to distill the student model. In
all the above studies, researchers tend to treat all
teachers equally, combining their predictions using
various strategies to train the student model. We
argue that treating all teachers equally might be
suboptimal given their varying performance.

Different from previous studies, in MTA4DPR,
the best-performing model is considered as the pri-
mary teacher and involved in the entire training
process, while the remaining models serve as assis-
tants, only one of which participates in each train-
ing batch. This concept can be analogized to uni-
versity students learning from a professor with the
help of multiple assistants, only one of which is se-
lected for each topic based on their speciality. Fur-
thermore, we experiment with iteratively replacing
underperforming assistants with better-performing
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student models, which further improves the perfor-
mance of the final student model.

3 Methodology

3.1 Preliminary
3.1.1 Task Description
Assume we have a training set D =
{(qi,Pi,Si)}ni=1 where qi is the query, Pi

consists of a positive passage p+i and k hard nega-
tives P−

i = {p−i,j}kj=1 (passages that are difficult
to distinguish from the positive passage) and
Si = {Si,1,Si,2, ...,Si,d, ...} consists of relevance
scores computed by the teacher/assistants and
Si,d = {Sji,d}k+1

j=1 denotes scores calculated by the
d-th model, our target is to train a DPR model that
retrieves the positive passage p+i for the query qi.

3.1.2 Dual-Encoders and Cross-Encoders
Depending on how queries and passages are en-
coded, we categorize DPR models into dual-
encoders and cross-encoders.

Dual-encoders (Karpukhin et al., 2020) map
query qi and passage pj into dense vectors, and the
relevance between qi and pj is computed by the
dot product of their representations:

SDE(qi, pj) = EDE(qi)
T · EDE(pj) (1)

where EDE(·) is the dense vector, and SDE(qi, pj)
represents the relevance score of qi and pj .

Cross-encoders (Kenton and Toutanova, 2019)
concatenate qi and pj as the input to PLMs/LLMs.
The relevance between qi and pj is calculated by
the representation of [CLS] in the final layer with
a projection layer W:

SCE(qi, pj) = WT · ECE([CLS]; qi; [SEP ]; pj)
(2)

where [;] is the concatenation operation, and
SCE(qi, pj) is the similarity of qi and pj .

In practice, we use contrastive loss, which en-
courages ⟨qi, p+i ⟩ to be closer together and ⟨qi, p−i ⟩
to be further apart, to train DPR models:

LCL = − log
eS(qi,p

+
i )

eS(qi,p
+
i ) +

∑
p−i,j∈P

−
i
eS(qi,p

−
i,j)

(3)

3.1.3 Knowledge Distillation for DPR
Recent studies have successfully applied knowl-
edge distillation to training more compact DPR
models. A common approach is to use a teacher
model to compute relevance scores S for ⟨q, p⟩
pairs, which are then used as the training data for
knowledge distillation. To distill the soft labels
(scores) from teachers to students, KL divergence
LKL(tea,stu) is used as the loss function:

S̃jtea,i =
eStea(qi,pj)

∑
p′∈Pi

eStea(qi,p′)
(4)

S̃jstu,i =
eSstu(qi,pj)

∑
p′∈Pi

eSstu(qi,p′)
(5)

LKL(tea,stu) = −KL(S̃tea,i||S̃stu,i) (6)

where S̃tea,i, S̃stu,i ∈ R|Pi| denote the proba-
bility distributions over candidate passages Pi,
and S̃jtea,i, S̃

j
stu,i denote the j-th element of

S̃tea,i, S̃stu,i. For convenience, we useLKL(tea,stu),
LKL(ta,stu), LKL(tea,ta) to represent the KL diver-
gence between teachers and students, assistants
and students, and teachers and assistants.

3.2 The MTA4DPR Framework
MTA4DPR transfers knowledge from the teacher
DPR model to the student with the help of m (m ≥
1) assistant models. For each iteration, we first use
these models to generate training and evaluation
datasets (Section 3.2.1) which become increasingly
difficult as the iterations go on; then, we select
the best assistant for each training batch (Section
3.2.3) and train the student model using the teacher
together with the selected assistant (Section 3.2.4).
The training of one iteration is shown in Figure 1.

3.2.1 Data Preparation
At the start of each iteration, we use the teacher and
assistants to generate the corresponding datasets.

Retrieve top-k passages We first use each of
the m assistants to retrieve the top-k most relevant
passages (except the positive passage(s)) for each
query q. Then, we merge all retrieved passages to-
gether and collect scores from each assistant model
for each ⟨q, p⟩ pair. In this way, query q has one
or more positive(s) and d negatives (k ≤ d ≤ mk)
each of which has m scores computed by the afore-
mentioned m assistant models.

3
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Re-rank using RRF scores From the previous
step, we have d negatives for each query qi, and
then we sort these passages in the descending order
based on the scores assigned by each assistant, re-
sulting in a set of rankings R, each ranking r being
a permutation on p1, ..., p|d|. Then, we use RRF
(Cormack et al., 2009), Reciprocal Rank Fusion, to
re-rank these d passages, taking the top-k passages
with the highest scores as the final hard negatives
P−
i for query qi:

RRFscore(p) =
∑

r∈R

1

c+ r(p)
(7)

where c = 60 following Cormack et al. (2009),
and r(p) denotes the position of p in ranking r.

Finally, we use the teacher to calculate the rel-
evance score for each ⟨qi, pj⟩ pair where pj ∈ Pi.
By performing the above operations on all training
queries, we obtain the base dataset for the current
iteration, from which we extract 1% as the evalua-
tion dataset Deval, leaving the rest as the training
dataset Dtrain.

In addition, inspired by Lin et al. (2023), we
collect the queries for which the teacher can predict
the positive as top-1 while the student from the
previous iteration can not predict correctly. These
queries with the positive passage and the top-k
hard negative passages predicted by the student
will be added to the generated dataset.

3.2.2 Fusion Strategy

Inspired by ensemble learning (Mienye et al., 2020)
which enhances predictive performance by lever-
aging the collective strengths of diverse models,
we propose a simple yet efficient fusion strategy to
combine knowledge of multiple assistants:

Si =
1

K

K∑

k=1

Si,k (8)

where Si,k is the score distribution between qi and
Pi computed by the k-th assistant models.

Specifically, say we have Si,A, Si,B and Si,C ∈
R|Pi| respectively computed by assistants A, B
and C; by just taking the average of Si,A and Si,B ,
Si,A and Si,C , Si,B and Si,C , and all three assis-
tants, we can obtain four different new score dis-
tributions, i.e. (Si,A+Si,B)

2 , (Si,A+Si,C)
2 , (Si,B+Si,C)

2

and (Si,A+Si,B+Si,C)
3 . All these fused score distri-

butions are considered as knowledge contributed
by certain fused assistants in MTA4DPR, and are
involved in the selection method for assistants.

3.2.3 Assistant Selection
To select the best assistant for each training batch,
we investigate three heuristic selection strategies:

KL Divergence KL divergence measures the
similarity between two distributions. The higher
the similarity, the smaller the KL divergence. We
calculate the KL divergence between the score dis-
tributions of the teacher model and each assistant,
and consider the assistant that achieves the mini-
mum KL divergence as the best teaching assistant.

Spearman’s Footrule Spearman’s Footrule mea-
sures the absolute distance between two sorted lists,
similar to edit distance. It is suitable for compar-
ing the similarity between two permutations, with
smaller values indicating more similar permuta-
tions. We calculate the Spearman’s Footrule dis-
tances between the teacher and each assistant, and
consider the assistant that has the minimum dis-
tance with the teacher as the best.

Rank Biased Overlap Rank Biased Overlap
(RBO) compares the overlap of two ranked lists at
increasing depths. Unlike Spearman’s Footrule, it
assigns different weights to different depths, with
top-1 having the highest weight. The value of RBO
ranges from 0 to 1, and larger values indicate more
similar sorted lists. We calculate the RBO mea-
sures between the teacher and each assistant, and
consider the assistant that has the maximum RBO
value as the best assistant.

Please note that since this computation process
is only for selecting the best assistant, it does not
participate in the gradient backpropagation.

3.2.4 The Student Model Optimization
For each training batch, we first use the selection
method described in 3.2.3 to select the best assis-
tant model. Then, we use LCL, LKL to optimize
the student model which is also a dual-encoder:

Ltotal = αLCL + βLKL(tea,stu) + γLKL(ta,stu)

(9)
where α, β, γ are hyper-parameters, LCL is the
contrastive loss of the student model (see more

4
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in eq(3)). We also calculate the KL divergence
LKL(ta,stu), LKL(tea,stu) as part of the loss during
training, forcing the student to learn the score dis-
tributions of the best assistant and the teacher.

At the end of each iteration, we evaluate the
student’s performance on the evaluation dataset,
replace the worst-performing assistant with the stu-
dent if it outperforms any of the existing assistants,
and then regenerate the training/evaluation dataset.
We repeat all the above operations, from generat-
ing datasets to optimizing the student model, until
the training ends. The entire training process is
introduced in Algorithm 1 in Appendix A.

4 Experiments and Analysis

4.1 Experimental Settings

We conduct experiments on four retrieval datasets:
MS MARCO passage, TREC DL 2019, TREC DL
2020 (Craswell et al., 2020a,b) and Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) datasets. We
use the averaged [CLS] representations of the stu-
dent model’s last three layers to represent each
query/passage, and dot product to compute the
similarity between the query and passage. Fol-
lowing previous studies, we report MRR@10, Re-
call@50 and Recall@1k on MS MARCO dev set,
and nDCG@10 on TREC DL 2019 and 2020; and
we choose Recall@5, Recall@20 and Recall@100
as the evaluation metrics for Natural Questions.

Baselines To make a comprehensive compari-
son, we compare MTA4DPR with three groups
of baselines: sparse retrieval models and dense
retrieval models with/without knowledge distil-
lation. Specifically, sparse retrieval models in-
clude BM25 (Robertson et al., 2009), DeepCT
(Dai and Callan, 2019), GAR (Mao et al., 2021),
docT5query (Nogueira et al., 2019), COIL-full
(Gao et al., 2021), UniCOIL(Lin and Ma, 2021)
and SPLADE-max (Formal et al., 2021); dense
retrieval models without knowledge distillation in-
clude DPR (Karpukhin et al., 2020), ANCE (Xiong
et al.), Condenser (Gao and Callan, 2021b), XTR-
base (Lee et al., 2024), CotMAE (Wu et al., 2023),
GTR-XXL (Ni et al., 2022) and RepLLaMA-7B
(Ma et al., 2024); dense retrieval models with
knowledge distillation include RocketQAv1 (Qu
et al., 2021), PAIR (Ren et al., 2021a), Rock-
etQAv2 (Ren et al., 2021b), ERNIE-Search (Lu

et al., 2022), SimLM (Wang et al., 2023), Retro-
MAE (Xiao et al., 2022), LEAD (Sun et al., 2024),
CL-DRD (Zeng et al., 2022) and PROD (Lin et al.,
2023).

Model Initialization For MS MARCO, to bal-
ance the trade-off between efficiency and effective-
ness, we choose dual-encoders as the assistants
and the cross-encoder as the teacher. Specifically,
we set CotMAE, SimLM-distilled, RetroMAE and
M2DPR (Lu, 2024) as assistants, since they are
the most performant off-the-shelf dense retriev-
ers to our knowledge. Their MRR@10 on MS
MARCO dev set are 39.4, 41.1, 41.6 and 42.0,
respectively. SimLM-reranker, a well performant
cross-encoder, is considered as the teacher model
with 43.7 MRR@10. Besides, to validate the ef-
fectiveness on NQ dataset, we simply use Rock-
etQAv1 and PAIR as the assistants, and ERNIE-
search as the teacher model with Recall@20 82.7,
83.5 and 85.3 on NQ test set. The student DPR
models are initialized with the SimLM-base model.

Training Details For MS MARCO, we set the
iterations to 3, as our experiments show that the
performance improvement becomes marginal be-
yond the 3rd iteration. For each iteration, we use 1
Tesla A100 80G GPU to train our student model for
20,000 steps using AdamW optimizer with learn-
ing rate of 3 × 10−5. Each query in the training
set has several positive passages and k = 100 hard
negatives. Each training batch has 64 queries, each
of which has 1 positive passage and 34 hard nega-
tives randomly sampled from the training set. The
weight decay is set to 0.01. The max query length
is 32, and the max passage length is 144. To bal-
ance each term of the final loss, α, β and γ are set
to 0.2, 1, 15. For NQ, we reuse the same settings
as those on MS MARCO with a few exceptions.
The training steps for each iteration is set to 10,000
steps, and the max passage length is 192.

4.2 Main Results

The results comparing MTA4DPR with multiple
baselines on the MS MARCO, TREC DL 19 and
20 and NQ datasets are shown in Table 1 and Ta-
ble 2. From the tables, we can observe that the
66M student model trained by MTA4DPR achieves
MRR@10 41.1 on MS MARCO, nDCG@10 71.2
on TREC DL 19, nDCG@10 71.1 on TREC DL

5
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Model #Params
MS MARCO dev DL 19 DL 20

MRR@10 R@50 R@1k nDCG@10 nDCG@10
Sparse Retrieval
BM25 - 18.7 59.2 85.7 49.7 48.7
DeepCT 110M 24.3 69.0 91.0 55.0 55.6
docT5query - 27.2 75.6 94.7 64.2 61.9
COIL-full 110M 35.5 - 96.3 70.4 -
UniCOIL 110M 35.2 80.7 95.8 - -
SPLADE-max 110M 34.0 - 96.5 68.4 -
Dense Retrieval without KD
XTR-base 110M 37.4 - 98.0 - -
CotMAE 110M 39.4 87.0 98.7 - 70.4
GTR-XXL 4.8B 38.8 - 99.0 - -
RepLLaMA-7B 7B 41.2 - 99.4 74.3 72.1
Dense Retrieval with KD
RocketQAv2 110M 38.8 86.2 98.1 - -
SimLM 110M 41.1 87.8 98.7 71.4 69.7
RetroMAE 110M 41.6 88.6 98.8 - -
LEAD 66M 37.8 - 97.4 70.4 68.9
CL-DRD 66M 38.2 - - 72.5 68.7
PROD 66M 39.3 87.0 98.4 73.3 -
MTA4DPR 66M 41.1 88.4 98.7 71.2 71.1

Table 1: Main results on MS MARCO and DL 19 and 20 datasets. The best scores are marked in bold, and the
second places are underlined. “KD” denotes knowledge distillation, and “#Params” represents the number of model
parameters. Please note that, by SimLM, we mean SimLM-distilled, not SimLM-reranker or SimLM-base.

Model #Params
NQ

R@5 R@20 R@100
BM25 - - 59.1 73.7
GAR - 60.9 74.4 85.3
DPR 110M - 78.4 85.4

ANCE 110M - 81.9 87.5
Condenser 110M - 83.2 88.4

RocketQAv1 110M 74.0 82.7 88.5
PAIR 110M 74.9 83.5 89.1

ERNIE-Search 110M 77.0 85.3 89.7
MTA4DPR 66M 74.5 83.6 88.3

Table 2: Main results on NQ. “#Params” represents the
number of model parameters.

20 and Recall@20 83.6 on NQ, which outperforms
most 66M distilled student models, and is competi-
tive when compared with larger DPR models (the
110M ones), even with the LLM-based models.

In addition, we have the following observations:
1) RepLLaMA-7B achieves MRR@10 41.2 on

MS MARCO, nDCG@10 74.3 and 72.1 on TREC
DL 19 and 20, far surpassing most baselines with-
out knowledge distillation, which means that, with-
out knowledge distillation, the larger the model,
the better the retrieval performance.

2) 110M DPR models trained with knowledge
distillation, such as SimLM (MRR@10 41.1 on
MS MARCO dev) and ERNIE-Search (Recall@20
85.3 on NQ test), can achieve better retrieval per-
formance when compared with the models with the

same or even much bigger sizes without knowledge
distillation, from which we can see that knowledge
distillation can effectively transfer knowledge from
large teacher DPR models to small student models.

3) RepLLaMA-7B performs about nDCG@10
2.0 better than 66M DPR models on DL 20 which
is mainly used to test models’ ability to capture
fine-grained semantics. This implies that, in cap-
turing fine-grained semantics, large DPR models
are much better than small models, which moti-
vates us to further optimize small models’ ability
to capture fine-grained semantic.

4.3 Ablation Study

To validate the effectiveness of each module of
our method, we conduct the ablation study. All
ablation results come from 3-iteration training, ex-
cept for “w/o iterations” in which we deliberately
disabled the iteration to show its effectiveness.

The results in Table 3 demonstrate the effective-
ness of our model. We can see that removing any
module will decrease the final performance, with
the removal of the teaching assistants resulting in
the most significant performance drop. Addition-
ally, we also have the following observations.:

1) Without teaching assistants, the student
model’s performance drops to MRR@10 39.9
on MS MARCO and Recall@20 82.2 on NQ,
which indicates that using teaching assistants can

6
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MS MARCO NQ
MRR@10 R@50 R@1k R@5 R@20 R@100

MTA4DPR 41.1 88.4 98.7 74.5 83.6 88.3
-w/o assistants 39.9 86.8 98.5 71.4 82.2 87.3
-w/o fusion 40.8 87.7 98.7 73.2 83.4 88.2
-w/o iterations 40.1 87.1 98.6 71.9 82.7 87.5

Table 3: Ablation results on MS MARCO and NQ.

help students better learn the knowledge from
teacher/assistant models.

2) The performance also drops to MRR@10
40.8 on MS MARCO and Recall@20 83.4 on NQ
without fusion strategy. Through further analy-
sis, we find that the KL divergence between fused
score distributions and the teacher’s score distri-
bution tends to be smaller than that of original
assistants, which means students can learn more
useful information from fused assistants than the
original assistants.

3) Finally, without training iterations, the perfor-
mance of the student model drops to MRR@10
40.1 on MS MARCO and Recall@20 82.7 on
NQ. This indicates that our iterative training
method which enable students to learn from better
teacher/assistants and more difficult data at each
iteration improves the student’s performance.

4.4 Analysis

We further analyze our proposed method from the
following perspectives, i.e. the performance of the
student model at each iteration, the assistant se-
lection methods, student models’ scale, assistant
models’ performance, the assistants selected, the
complexity of the training process and the compu-
tational costs of the student models.

4.4.1 Multi-iteration Retrieval Performance
We report the retrieval performance of our 66M
DPR model in each iteration, as shown in Table 4.
As expected, as the number of iterations increases,
the performance also improves, from MRR@10
40.1 to 41.1 on MS MARCO and from Recall@20
82.7 to 83.6 on NQ. This indicates that to some
extent, better assistant models combined with more
difficult data will further improve the performance
of the student model.

4.4.2 The impact of selection methods
We compare multiple methods to select the best
assistant, as described in 3.2.3. Table 5 shows the
results of MTA4DPR models using different selec-

MS MARCO NQ
MRR@10 R@50 R@1k R@5 R@20 R@100

1-th iteration 40.1 87.1 98.6 71.9 82.7 87.5
2-th iteration 40.7 87.9 98.7 73.1 83.3 88.0
3-th iteration 41.1 88.4 98.7 74.5 83.6 88.3

Table 4: Multi-iteration Retrieval Performance on MS
MARCO and NQ.

MS MARCO NQ
MRR@10 R@50 R@1k R@5 R@20 R@100

Random 40.5 87.6 98.6 72.8 82.4 87.5
SF 40.8 87.7 98.7 74.3 83.1 87.9

RBO 40.9 87.9 98.8 74.1 83.0 88.1
KL 41.1 88.4 98.7 74.5 83.6 88.3

Table 5: Performance of MTA4DPR models with dif-
ferent selection methods on MS MARCO and NQ. “SF”
denotes Spearman’s Footrule.

tion methods. Compared with a random assistant,
using KL, Spearman’s Footrule, and RBO selection
methods can further improve retrieval performance,
indicating that the teaching assistants selected by
these three methods are more beneficial to the dis-
tillation process. Among these three methods, we
chose KL selection method which obtains the best
performance for the other experiments.

4.4.3 The impact of the number of layers and
the embedding sizes of student models

We use the proposed method to distill student DPR
models with different number of layers and em-
bedding sizes. As shown in Table 7, we can see
that:

1) MTA4DPR can improve the retrieval perfor-
mance of the student models with different number
of layers and embedding sizes; and as the num-
ber of layers and the number of embedding size
increase, the performance improves.

2) It is worth noting that our 33M DPR model
is almost equivalent to the existing 110M DPR
models on Recall@1k on MS MARCO. Due to the
fact that retrievers are often used in the first stage
of retrieve-rerank pipeline in practical scenarios, a
33M DPR model can be used to reduce query time.

3) Finally, we also find that the 12-layer 384-
dimensional models outperform the 3-layer 768-
dimensional models, despite having fewer param-
eters. We speculate that this might be due to the
12-layer models’ ability to capture more complex
text interactions owing to its greater depth. We will
investigate this further in future work.
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Method
Assistant
Models

MS Marco dev TREC DL 19 TREC DL 20
MRR@10 R@50 R@1k nDCG@10 nDCG@10

No assistant / 39.9 86.8 98.5 69.2 67.7

Single-assistant
distillation

C 40.2 87.3 98.5 69.8 68.1
S 40.4 87.3 98.5 70.0 68.9
R 40.6 87.7 98.7 70.0 69.7
M 40.6 87.6 98.8 70.2 69.3

Double-assistant
distillation

C&S 40.4 87.3 98.7 69.6 68.6
C&R 40.6 87.3 98.7 69.6 69.7
C&M 40.5 87.6 98.7 70.0 69.9
S&R 40.7 87.3 98.7 69.2 69.3
S&M 40.6 87.7 98.7 70.1 69.0
R&M 40.8 87.8 98.8 70.3 69.9

Triple-assistant
distillation

C&S&R 40.7 87.6 98.7 70.8 70.3
C&S&M 40.8 87.7 98.7 70.1 69.0
C&R&M 40.9 88.0 98.8 70.3 69.9
S&R&M 41.0 88.0 98.8 70.6 70.7

Quadruple-assistant
distillation

C&S&R&M 41.1 88.4 98.7 71.2 71.1

Table 6: Results of distilled DPR models with different assistants combinations on MS MARCO dev set and DL 19
and 20 datasets. “C”, “S”, “R” and “M” represent CotMAE, SimLM, RetroMAE and M2DPR, respectively. “C&S”
denotes the fusion result of CotMAE and SimLM.

#Layers #Emb #Params
MS MARCO

MRR@10 R@50 R@1k
6 384 17M 36.0 (↑ 1.1) 81.6 (↑ 1.3) 96.3 (↑ 0.3)
12 384 33M 40.1 (↑ 0.8) 87.2 (↑ 0.7) 98.4 (↑ 0.0)
3 768 45M 39.4 (↑ 0.9) 86.5 (↑ 1.1) 98.4 (↑ 0.1)
6 768 66M 41.1 (↑ 1.2) 88.4 (↑ 1.6) 98.7 (↑ 0.2)
12 768 110M 41.8 (↑ 0.7) 88.6 (↑ 0.8) 98.8 (↑ 0.1)

Table 7: Results of MTA4DPR models with different
sizes on MS MARCO. “#Layers” denotes the number
of layers of the model, and “#Emb” denotes the embed-
ding size of the model. “#Params denotes the number of
model parameters. “↑” denotes the improvement com-
pared with traditional knowledge distillation methods.

4.4.4 The impact of the performance of
assistant models

We wonder how the performance of the assistants
affects the distillation process. To this end, we con-
ducted five groups of experiments, i.e. No assistant,
Single-assistant distillation, Double-assistant distil-
lation, Triple-assistant distillation and Quadruple-
assistant distillation. No assistant involved distil-
lation using only the teacher model without any
assistants. Single-assistant distillation experiments
are done using just one assistant and one teacher
for distillation. Double-assistant distillation uti-
lized one teacher and two assistants along with a
fusion strategy for distillation, and so on.

The results are listed in Table 6. From the table,
we have the following observations:

1) Compared to not using assistants, even the
result of using the weakest assistant model is better
than the no-assistant way. For example, using only

48.07%

20.27%

9.16%8.84%

7.99%

5.76%

R&M

M

R&M&S

R

R&S

others

Figure 2: The composition of the best teaching assis-
tants selected on MS MARCO. “R” denotes RetroMAE,
“S” denotes SimLM, “M” denotes M2DPR and “R&M”
denotes the fusion result of RetroMAE and M2DPR.

CotMAE can increase the value of MRR@10 from
39.9 to 40.2 on MS MARCO dev set. This strongly
proves the effectiveness of using assistant models.

2) R&M is better than other double-assistant
combinations, S&R&M is better than other triple-
assistant combinations. This implies that the better
the performance of assistants, the better the perfor-
mance of the distilled student model.

4.4.5 The composition of the best assistant
We explore which assistant is selected as the best
one in each batch during the whole training proce-
dure. The composition of the best teaching assis-
tants selected on MS MARCO is shown in Figure
2. From the figure, we can see that the fusion re-
sult of RetroMAE and M2DPR is chosen for nearly
50% of the time, which confirms once again the
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Model Training Time Data Construction Time
MTA4DPR 7.53 hours 12.9 hours

Traditional KD 7.12 hours 8.2 hours

Table 8: The complexity of the training process.

#Layers #Emb Index Size #Params
Encoding Time

bs = 512 bs = 1024
6 768 25.2G 66M 163.23s 87.86s

12 384 12.8G 33M 297.06s 131.67s
12 768 25.2G 110M 304.30s 135.82s

Table 9: The computational costs of student DPR mod-
els with different sizes. “Encoding Time” is the time
taken to encode the whole MS MARCO corpus. “#Emb”
denotes the embedding size of the model. Please note
that this metric is pure GPU computation time and
doesn’t include the time for data loading or other opera-
tions. “bs” denotes the batch size.

effectiveness of the fusion strategy.

4.4.6 The complexity of the training process
The time consumption of our method can be di-
vided into two parts: model training and data con-
struction. The time taken to train a 6-layer 768-
dimensional student model is shown in Table 8.

Since the teachers/assistants are not actually in-
volved in the training process but only provide
query-passage pair scores, which can be obtained
during data construction, the training time of our
method is only about 25 minutes longer than that
of the traditional knowledge distillation, primarily
due to the selection of the best teaching assistant
for each batch. For the data construction, we re-
quire approximately 4.7 more hours compared to
the traditional knowledge distillation method. The
additional time is mainly spent on scoring unseen
query-passage pairs using both the teacher and as-
sistants models, which will be used for the next
iteration. While time-consuming, this process pro-
vides us a more difficult dataset, which can further
improve the performance of the student model.

4.4.7 The computational costs of MTA4DPR
We also conduct more experiments to further vali-
date the efficiency and the computational costs of
the student model distilled by our proposed method
under three different settings, as shown in Table
9. From the table, we can see that: reducing the
embedding size is more efficient than reducing
model layers in terms of the model size (decreased
from 110M to 33M) and index size (decreased

from 25.2G to 12.8G); while reducing model layers
provide more improvement in terms of the model
encoding time (decreased from 304.30s to 163.23s
with the 512 batch size, and from 135.82s to 87.86s
with the 1024 batch size).

5 Conclusion

In this paper, we propose MTA4DPR, an iterative
multi-assistant distillation method for DPR. It dis-
tills the student with the help of the teaching as-
sistants in an iterative manner, with each iteration
creating more difficult datasets and more perfor-
mant assistants. The experimental results on MS
MARCO, TREC DL 2019 and 2020 and Natural
Questions show the effectiveness of our method.
Our 66M DPR model can achieve the state-of-
the-art performance among models with same pa-
rameters on multiple datasets and is very com-
petitive when compared with larger, even LLM-
based, DPR models. MTA4DPR confirms that
the iterative distillation with multiple assistants
can improve the distillation performance. Since
it is orthogonal to existing distillation methods,
other distillation pipelines can be combined with
MTA4DPR to further improve their performance.
In addition, MTA4DPR is not constrained by
model structures and tasks, and can be broadly
applicable other fields than DPR, including text
classification, question answering and text summa-
rization, etc.
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Limitations

We consider the following four points as the limi-
tations of this work:

First, due to flexibility and scalability consid-
erations, we only distill the score distributions
provided by teacher/assistants, while ignoring
information provided by intermediate layers of
teacher/assistant models which can be beneficial to
further improve the student models’ performance.

Second, at the first training iteration, our method
requires multiple off-the-shelf DPR models, but
when there are not enough available models, we
need to train teacher/assistant DPR models from
scratch, which may increase the training costs.

Third, for the sake of the training phase’s sim-
plicity and efficiency, we only use heuristic strate-
gies when generating fused scores and selecting
the best teaching assistant. To further improve stu-
dent performance, we can design more complex
and effective generation and selection methods.

Finally, in the future, we can continue to explore
the impact of the number and performance of teach-
ing assistants on the final retrieval result of student
models, and find out how to determine what kind
of teaching assistant is good.
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A Algorithm 1

Algorithm 1 MTA4DPR Training Process

Input: T : the teacher model; TA: the assistant models; Mθ: the student model; Q: the query set; P : the
passage set; max_iter: maximum number of training iterations; max_steps: maximum number of
training steps; η: Learning rate;

Output: Mθ

1: i← 0
2: while i < max_iter do
3: Dtrain,Deval ← GenDataset(T, TA,Q, P )
4: repeat
5: idbestTA ← TASelect(Dtrain)
6: θ ← θ − η∇θLtotal(Dtrain,Mθ, idbestTA)
7: until max_steps reached
8: outperformed_TA← Compare(Mθ, TA,Deval)
9: if outperformed_TA then

10: remove Worst(TA)
11: add Mθ into TA
12: end if
13: i← i+ 1
14: end while
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