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Abstract

Long sequence modeling has gained broad in-
terest as large language models (LLMs) con-
tinue to advance. Recent research has identi-
fied that a large portion of hidden states within
the key-value caches of Transformer models
can be discarded (also termed evicted) without
affecting the perplexity performance in gen-
erating long sequences. However, we show
that these methods, despite preserving perplex-
ity performance, often drop information that
is important for solving downstream tasks, a
problem which we call information neglect.
To address this issue, we introduce Chunked
Instruction-aware State Eviction (CItruS), a
novel modeling technique that integrates the
attention preferences useful for a downstream
task into the eviction process of hidden states.
In addition, we design a method for chunked
sequence processing to further improve effi-
ciency. Our training-free method exhibits supe-
rior performance on long sequence comprehen-
sion and retrieval tasks over several strong base-
lines under the same memory budget, while
preserving language modeling perplexity. The
code and data have been released at https:
//github.com/ybai-nlp/CItruS.

1 Introduction

Recent advances in large language models (LLMs)
have raised interest in long sequence modeling (Qin
et al., 2023; Xiao et al., 2023). Several studies have
found that information relevant to the next token
prediction task often accumulates in the hidden
representations of just a few tokens, and the atten-
tion distributions tend to focus sparsely on these
tokens (Liu et al., 2024; Bai et al., 2024; Wang
et al., 2023b). This observation has resulted in
methods that model longer sequences by evicting
unnecessary key-value caches during the language
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Figure 1: One sample from attention distributions in
the 16th layer of the Mistral 7B Instruct model applied
to the Qasper dataset. The attention distributions are
calculated from a document context and an instruction
text to the key-value cache. The x-axis represents dif-
ferent positions within the key-value cache, while the
y-axis represents the attention weights. The positions
are reordered by descending attention weights from the
context, and positions with low attention weights are
omitted for clarity.

modeling process (Zhang et al., 2024b; Oren et al.,
2024), mostly based on the attention weights each
token receives from the following context.

However, these methods achieve limited perfor-
mance on downstream tasks that require specific
information from long documents (e.g., question
answering), suggesting that they struggle to retain
the detailed information necessary for such tasks.
We refer to this condition as the information ne-
glect problem. This issue arises because the cache
acquired through state eviction is based only on the
local document context. There is no explicit signal
for the model to ensure that it is useful for solving
downstream tasks. Consider Figure 1, which shows
two attention distributions—one from a document
context and one from an instruction prompt—when
applying the Mistral 7B Instruct model to a sample
from the Qasper dataset. Note that the two differ
substantially in their weighting of positions, sug-
gesting that the document context-derived attention
weights may not capture well the task specified by
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the instructions.1

In this paper, we propose to address this in-
formation neglect issue by incorporating the in-
struction text into the state eviction process. Our
method, Chunked Instruction-aware State Evic-
tion (CItruS), decomposes long sequence process-
ing into two different subprocesses: language mod-
eling and task solving. For the language model-
ing process, we propose chunked state eviction,
splitting the long sequence input into large chunks
while maintaining a cache that only stores the most
important key-value states, which we show allows
the model to efficiently and effectively encode long
documents. As for the task-solving process, we
propose an instruction-aware cache, either indepen-
dent of or shared with the language modeling cache,
which maintains the specific detailed information
required to generate responses in downstream set-
tings. The instruction-aware cache is then used to
generate the final response for solving the task. Our
approach can be seen as analogous to ideas from
cognitive science that language and thought can
be disentangled in human language processing (Fe-
dorenko and Varley, 2016),

We evaluate CItruS on three tasks: long docu-
ment reading comprehension, knowledge retrieval,
and language modeling. Our approach improves
downstream task performance over several strong
baselines by large margins and enables the retrieval
of desired information hidden within a long doc-
ument of up to one million tokens. Furthermore,
the model maintains high language modeling per-
formance with a low perplexity. Notably, CItruS
is applicable to all the transformer-based decoder-
only model without any further training, improving
the model’s ability to conduct downstream tasks
for input sequences with arbitrary lengths.

Overall, our contributions are summarized as
follows: 1) We define and demonstrate the infor-
mation neglect problem in state-eviction methods.
2) We propose CItruS, a state eviction method de-
signed for long sequence downstream tasks, which
incorporates an instruction-aware cache for task-
solving and a chunked state eviction process for
efficient language modeling. 3) Experiments on
long document reading comprehension, knowledge
retrieval, and language modeling show that CIt-
ruS improves performance on downstream tasks
involving long sequence by large margins while
maintaining low language modeling perplexity.

1More details are provided in Section 3.

2 Related Work

2.1 Long Sequence Processing

Long sequence processing has long been a key re-
search area in natural language processing (Tiezzi
et al., 2024). Various approaches have been ex-
plored to address this challenge, including Long-
former and State Space Models (Beltagy et al.,
2020; Gu et al., 2022; Gu and Dao, 2023). Ad-
ditionally, memory-augmented models use exter-
nal memory to handle long sequences (Kuhn and
De Mori, 1990; Wu et al., 2022; Bertsch et al.,
2024; Lu et al., 2024), while recurrent-based trans-
formers have been designed for long-sequence
tasks (Dai et al., 2019; Li et al., 2023; Peng et al.,
2023). More related work about long sequences is
further provided in Appendix M.

Except for LONGHEADS, a memory-augmented
method which requires storing all the past key-
value states, all the above methods require fur-
ther training of the model to handle long sequence
processing. Our approach is an inference-time
method and eliminates the need for further training,
working directly with any open-source transformer-
based language model and requiring significantly
fewer resources than the methods mentioned.

Our work is also similar to retrieval-augmented
generation (RAG) methods (Gao et al., 2023; Zhao
et al., 2024), which incorporates knowledge from
external databases to enhance the generation. How-
ever, RAG research mainly focuses on the retrieval
process in order to better leverage the documents
that could support the response generation, whereas
CItruS is a method that more generally focuses on
performing various long sequence tasks. It could
be a good option to be applied to the RAG process.
In fact, our testing includes long-document ques-
tion answering and retrieval as primary tasks. We
further discuss the difference between our method
and RAG in Appendix M.

2.2 State Eviction for Large Language Models

Liu et al. (2024) explore the persistence of impor-
tance hypothesis for the key-value cache of large
language models, which states that the position
of the cache that are useful for language model-
ing tend to remain consistent over time. Based on
this, various methods that evict the key-value cache
during language modeling have been proposed for
improving the efficiency of LLM inference. Zhang
et al. (2024b) use accumulative attention scores
to evict unnecessary key-value cache states. Oren
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Figure 2: The illustration of our experiments that apply
intersection calculation to explore the information ne-
glect problem in state eviction models.

et al. (2024) use the attention of the last token as a
metric for evicting hidden states. Ge et al. (2023)
profile all the attention heads and maintain differ-
ent hidden states for different heads. Ren and Zhu
(2024) propose determining the eviction scope by
evaluating the standard variance of the attention
weights received by individual tokens, and they test
the efficiency improvement of state eviction meth-
ods using small text chunks of size 16, which we
scale up to 768 in our work. Yang and Hua (2024)
bring the preference of future tokens into the state
eviction process. Xiao et al. (2023) propose that
“attention sinks” exist during LLM sequence pro-
cessing. By keeping the key-value states of the
initial tokens, and evicting the key-value states out
of a sliding window maintained for recent tokens,
their model could maintain the perplexity while
processing 4 million tokens.

We propose that these previous methods suffer
from the information neglect problem; that is, they
fail to preserve specific information related to the
instruction text, therefore might lower the perfor-
mance on down-stream tasks.

3 The Information Neglect Problem

In this section, we demonstrate the information ne-
glect problem of existing state eviction methods.
State eviction methods have two basic elements:
a key-value cache C that maintains the most im-
portant hidden states for language modeling and a
strategy S to evict unnecessary states from the key-
value cache, thereby making room for new states.
By iteratively evicting the most unnecessary tokens
from the cache, the model achieves the capability
to model long sequences of arbitrary lengths. S is
usually based on the attention weight a cache state
receives from tokens later in the sequence.

The information neglect problem stems from

Figure 3: The difference between the top-k hidden states
selected by the instruction text and the document context
with the k set as 20, conducted with Mistral 7B Instruct.
Context-instruction intersection represents the overlap
between the top-k hidden states selected by the attention
distribution from one piece of the context in the long
document and the instruction text to a key-value cache.

the observation that the preserved states useful for
language modeling are not necessarily the ones
for a downstream task (e.g., answering a specific
question). We demonstrate this by measuring the
difference between the top-k states selected by a
document context compared to those selected by a
specific instruction text (Figure 2). Specifically, we
select one context and encode it to acquire a cache
that could be evicted (i.e, Context 1 in Figure 2).
Then, we use another piece of context (i.e., Context
2 in Figure 2) and the instruction text, both with the
same length, to evict the cache separately, retaining
the top-k most important hidden states. By com-
puting the overlap of the differently evicted caches,
we draw conclusions about the information neglect
scenarios during the eviction-based language mod-
eling process. More experimental setup for these
experiments is shown in Appendix A. We use the
same setting to acquire the results in Figure 1.

We conduct this experiment on the full test set
of the Qasper dataset (Dasigi et al., 2021). We
use the averaged attention score of all the tokens
from one piece of text to the cache to select the
most important states, which is further described
in Section 4.1. As shown in Figure 3, the hidden
states focused on by the document context and the
downstream instruction text are remarkably differ-
ent, reflected by an intersection ratio lower than 0.2
in the middle layers.

Supported by the above experiments, we claim
that if only the attention distribution of the con-
text chunk is used to select the key-value states
relevant to language modeling, some information
specifically related to the final instruction text will
be discarded during the encoding of the document,
possibly decrease the task performance.
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A similar line of work that models long sequence
with sliding-window-based methods (Xiao et al.,
2023; Han et al., 2023) also suffers from informa-
tion neglect problems, where we provide detailed
description in Appendix D.

Additionally, we conduct another set of experi-
ments that demonstrate the performance degrada-
tion of the standard state eviction models compared
to the standard models that use the full text as in-
put. Results supporting the presence of information
neglect problem are presented in Appendix E.

4 Methods

To address the problem of information neglect, we
propose to decompose the inference procedure of
large language models into two different subpro-
cesses: the language modeling process and the task
solving process, shown in Figure 4. For the lan-
guage modeling process, we propose to use chun-
ked state eviction methods to make the modeling
process more efficient. For the task solving process,
we propose instruction-aware state eviction, us-
ing the hidden states of the final instruction prompt
as an additional instruction-aware query to extract
and preserve the task-related information in a key-
value cache. Then, we utilize this key-value cache
to generate a task-specific response.

For downstream tasks with a long document in-
put D and a final instruction I (a piece of text
that prompt the model to conduct the downstream
tasks), our proposed method generates a corre-
sponding response R according to I .

4.1 Chunked State Eviction (CSE)

In this section, we propose our standard state evic-
tion method which chunks the input text during
the language modeling process to enable the LLMs
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Figure 5: The illustration of different cache designs for
our proposed Standard CSE and CItruS.

encoding the long document D more efficiently.

Overall process: Given a document D, we di-
vide it into chunks D = {s1, s2, . . . , sn}, where n
denotes the number of chunks. Each chunk s has a
length of ls except for the final chunk sn. As illus-
trated in Figure 5(a), the Standard Chunked State
Eviction (Standard CSE) process includes three
steps: 1) given a cache C, we encode the current
text chunk s with an LLM; 2) evict the unimportant
hidden states in C according to the attention distri-
bution from s to C; 3) put all the new hidden states
of s into the cache. This iterative process starts
with putting the first text chunk into the cache C
and ends when the document has been fully pro-
cessed. After the whole encoding process, the final
chunk (maybe shorter than the length of ls) is put
into the cache, which leads to possible information
bias towards this chunk. To alleviate this bias, we
use the instruction text as a new text chunk to evict
the cache C one more time. The resulting cache
C is then used to encode the instruction text and
generate the final response.

State eviction based on chunked averaged atten-
tion score: For state eviction, we use the atten-
tion score from all the tokens in the current text
chunk s to a state c in the cache C as a metric of
the state’s importance:

Imp(s, c) =
1

|s|
∑

t∈s

exp
(
QtKT

c√
dk

)

∑
c′∈C exp

(
QtKT

c′√
dk

) (1)
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where Imp(s, c) represents the importance score of
state c with chunk s, dk is the dimensionality of the
key vector, Qt and Kc is the query vector of token
t and the key vector of state c, respectively.

We preserve the states with the k highest impor-
tance scores while evicting the other states:

I(x) =

{
1, if x in Setselection

0, otherwise
(2)

Ĉ = {c ∈ C | I(c) = 1} (3)

where Setselection is the hidden states with the k
highest importance scores Imp(s, c) from the cur-
rent chunk s, and Ĉ represents the cache after the
eviction. We execute the eviction in a layer-wise
manner, which means that the hidden states re-
tained in different layers could belong to different
tokens. This design allows more flexibility since
different layers could be responsible for different
functions and semantics. We choose to not apply a
finer-grained head-wise eviction to our model since
it performed worse in our initial experiments.

4.2 Instruction-aware State Eviction
Next, we introduce chunked instruction-aware state
eviction (CItruS) that aims to preserve information
relevant to the task-solving process. We propose
two kinds of cache design to achieve this goal. First,
we propose to maintain a separate individual in-
struction cache CI during the standard chunked
state eviction process, which retains information
related to the instruction text. Second, we propose
a variant with a common shared cache for CI and
C to reduce the computational cost. Illustrations of
the two proposed methods are shown in Figure 5.

Individual cache We use an individual instruc-
tion cache CI to specifically store the hidden states
related to the instruction text, in addition to C.
Specifically, after the eviction on C, we conduct
another eviction process on CI with the final in-
struction text, and then put the key-value states
of the current text chunk s into CI . The eviction
process is shown as follows:

II(x) =

{
1, if x in SetIselection

0, otherwise
(4)

ĈI = {cI ∈ CI | II(cI) = 1} (5)

where SetIselection is the key-value cache states with
k highest importance scores of Imp(I, cI).

Shared cache Using individual caches will dou-
ble the memory usage for a fixed cache size.
Guided by the persistence of importance hypothe-
sis (Liu et al., 2024), where the hidden states use-
ful for maintaining the perplexity are attended by
most of the following tokens, we hypothesize that
the intersection between states selected by con-
text and instruction texts, mentioned in Section 3,
could be responsible for maintaining the perplex-
ity. Hence, we suppose that we could further re-
duce the memory cost of CI by sharing it with
the language modeling process. Specifically, the
top-k state Setselection of the shared cache is de-
termined based on the attention-based importance
score Imp(I, c), which measures the attention from
the final instruction I to a cache state c. Shown in
Figure 5(c), we directly use this key-value cache
evicted by Imp(I, c) to encode the current chunk s.
The rest of the eviction process follows the same
procedure as described in Eq. (2) and (3).

4.3 Overall Process
In this section, we summarize the overall process
for applying CItruS to downstream tasks. As de-
scribed in Section 4.1, the model starts by itera-
tively encoding the chunked document D. Unlike
the Standard CSE model, CItruS introduces the in-
struction text to evict either an individual or shared
instruction-aware cache. As mentioned, we use the
instruction text to evict these caches again after pro-
cessing the entire document, selecting the k most
important key-value states for each layer. We use
these k states to encode the final instruction and
generate the response, thereby setting the size of
each cache for all models to k during this period2.

5 Experimental Setup

5.1 Tasks
We compare the models using the following
tasks. Detailed information about dataset statis-
tics, prompts, and the divisions of document and
instruction are provided in Appendices B and F.

Long document reading comprehension This
task involves testing the ability of the models to
answer a designated question based on a long doc-
ument that exceeds the typical input length used
during the pretraining of the large language models.
In this task, we use the datasets of Qasper (Dasigi

2The cache size of our standard CSE and shared cache
CItruS during the encoding is ls + k while the individual
cache CItruS requires a cache size of 2× (ls + k).
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et al., 2021), MultifieldQA-en (Bai et al., 2023),
HotpotQA (Yang et al., 2018), and TriviaQA (Joshi
et al., 2017). We also include two other long few-
shot tasks, Trec (Li and Roth, 2002) and Sam-
Sum (Gliwa et al., 2019), which focus on classifica-
tion and dialogue summarization, respectively. We
follow Bai et al. (2023) to adapt these datasets into
long-document tasks. Instead of reporting the aver-
age scores in the main paper, we choose to report
the average rank each model performs to avoid the
variance differences among the datasets. Detailed
results on each dataset is provided in Appendix C.

Long document knowledge retrieval We use
two tasks to test if the model could preserve the
important information during the whole language
modeling process: passkey retrieval3 (Mohtashami
and Jaggi, 2023) and needle-in-a-haystack 4 tasks.
The passkey retrieval task tests if the model can
retrieve a single passkey (e.g., a five-digit number)
inserted in a synthetic long document made up by
repetitive simple sentences. We conduct this task
on the documents with lengths up to 1 million to-
kens. The needle-in-a-haystack task replaces the
passkey with a more general text fact and inserts
them in real long documents. An example of the
fact and the information of the documents can be
found in Appendix G. The maximum length of doc-
uments for needle-in-a-haystack is set to 12,000.
We use accuracy in the passkey retrieval task and
the ROUGE metric (Lin, 2004) for the needle-in-
a-haystack task to award partial correctness. Ad-
ditional experiments using BABILong (Kuratov
et al., 2024), a dataset design for the long-context
needle-in-a-haystack task, are also conducted in
Appendix I.

Long-range language modeling We report per-
plexity scores on long-range language modeling to
estimate how well our models maintain fluency in
generation (Xiao et al., 2023). We used PG19 (Rae
et al., 2019) dataset for this task.

5.2 Baselines

Streaming LLM always keeps the initial few
tokens and uses a sliding window to model the
long sequence (Xiao et al., 2023). This model is
known for its ability of modeling long sequences
with lengths up to 4 million tokens.

3https://huggingface.co/datasets/lvwerra/
needle-llama3-16x524k

4https://github.com/gkamradt/LLMTest_
NeedleInAHaystack

Settings
Mistral 7B Instruct Llama 2 7B Chat Llama 2 13B Chat

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Streaming LLM 2.83 3.17 3.50 2.50 3.00 4.17 1.67 3.17 3.83
TOVA 2.67 3.00 2.67 3.67 4.00 3.50 3.83 4.00 4.33
RoCo 3.67 2.67 2.83 3.00 3.17 2.00 4.00 1.33 2.33
H2O 4.00 3.50 4.17 4.17 2.50 2.67 3.33 3.50 4.83

Standard CSE 3.33 3.67 3.00 3.67 4.17 4.17 5.00 3.50 2.00
+ Individual Cache 7.17 8.00 7.00 6.50 7.00 6.67 6.50 7.33 6.33
+ Shared Cache 6.50 6.67 7.00 6.83 7.33 7.33 6.50 7.33 6.33

H2O + Shared Cache 5.17 5.17 5.50 5.33 4.83 5.50 4.67 5.17 5.83

Table 1: The averaged reversed rank results among all
the 8 models on six different reading comprehension
tasks, where 8 is the highest score and 1 is the low-
est score. Results are presented by grouping text with
lengths of 0-4k, 4k-8k, and 8k+. Best results are bolded.

TOVA frames transformers as multi-state RNNs
by using the attention distribution of the last token
to identify which token should be evicted (Oren
et al., 2024). This model could be seen as a special
case of our standard CSE model with the ls as 1.

H2O uses the accumulative attention score each
token received to determine whether the token
should be evicted (Zhang et al., 2024b).

RoCo uses averaged attention probability from
future tokens and determines the eviction scope by
evaluating the standard variance of the attention
weights one token receives (Ren and Zhu, 2024).

LONGHEAD (Lu et al., 2024) is another method
that does not require further training. However,
it requires large excessive memory cost (although
could be offloaded to cpu memory, but that would
cost more time) compared to our methods. Hence
we choose to omit this model from our baselines to
maintain a fair comparison.

Note that our proposed chunked instruction-
aware state eviction is uncoupled with the eviction
strategies used by the above models, hence it could
be applied to all the above methods to achieve even
better results. Due to the limitation of the compu-
tational cost, we only experiment the instruction-
aware state eviction with our proposed chunked
average attention score strategy and the accumula-
tive attention score strategy used by H2O (denoted
as H2O + Shared Cache) in our paper. All baselines
are reimplemented with public repositories56. For
all baseline models, we apply the same encoding
and generation process described in Section 4.3 for
fair comparison.

5https://github.com/mit-han-lab/streaming-llm
6https://github.com/DRSY/EasyKV
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Figure 6: The results of the passkey retrieval task with Llama 2 7B Chat, Mistral 7B Instruct, and Llama 2 13B Chat.

Settings
Llama 2 7B Chat Mistral 7B Instruct

R-1 R-2 R-L R-1 R-2 R-L

ls = 256, k = 768

Standard CSE 19.87 5.74 17.52 15.17 6.34 13.94
+ Individual Cache 24.72 7.87 24.53 59.05 51.22 59.10
+ Shared Cache 23.73 7.46 23.44 63.47 55.33 63.43

ls = 1,024, k = 1,024

Standard CSE 18.86 7.52 18.04 30.21 14.18 29.23
+ Individual Cache 33.28 17.52 32.76 56.12 51.20 56.08
+ Shared Cache 31.95 18.41 31.47 57.15 51.60 56.97

Table 2: Results of the needle-in-a-haystack task. Best
results are bolded. R-1, R-2, and R-L represent ROUGE-
1, ROUGE-2, and ROUGE-L, respectively.

5.3 Hyperparameters

We applied the position shift mechanism leveraged
by Xiao et al. (2023), which always use the same
positional embeddings for the caches containing
different hidden states, to make the models process
long documents better. We also apply this tech-
nique to all the baselines to enhance their ability
of processing long sequences. We use the Llama
2 Chat model (Touvron et al., 2023) with 7 billion
and 13 billion parameters and the 7 billion param-
eter Mistral Instruct model (Jiang et al., 2023) as
the backbone models. Additionally, we include ex-
periments using Llama 3 8B Instruct model, shown
in Appendix H. k is set as 768 and ls is set as 256,
resulting a cache size of 1,024 during modeling the
document. This setting is also applied to all the
baseline models. We apply 8 bit quantization on the
13 billion parameter model. Results are inferred on
one A100 80G GPU. All the hyperparameters are
selected using the validation sets.

6 Results

6.1 Long document reading comprehension

The results of the long document reading com-
prehension tasks aggregated over six datasets are
shown in Table 1, while the dataset-specific results
are shown in Appendix C. First, our Standard CSE
method achieves performance comparable to all the
baselines, demonstrating the effectiveness of our

Figure 7: The language modeling results on the Llama
2 7B chat and Mistral 7B Instruct model. The line chart
is smoothed with a window size of 4096 for clarity.

basic framework. Both variants of CItruS consis-
tently outperform all baselines and Standard CSE.
As mentioned in Section 5.2, our method could also
be applied on different eviction policies. Hence, we
further included a variant of the H2O model (H2O
+ Shared Cache) and show that it achieves better
performance over the H2O model in all cases.

We find models with a shared cache achieve the
same level of performance as their corresponding
model with separate caches. This suggests that the
overlapping tokens between the context and the
instruction text might be sufficient to support lan-
guage modeling, while the shared cache also main-
tains the information useful for the downstream
tasks. We will further discuss this in Section 6.3.

6.2 Long document knowledge retrieval

The main results of long document knowledge re-
trieval are shown in Figure 6 and Table 2. Our
proposed CItruS retrieves all the passkeys using
Llama 2 7B and Mistral 7B while still outperform-
ing the Standard CSE for Llama 2 13B7, which
shows the superiority of CItruS for long document
knowledge retrieval. For the needle-in-a-haystack
task, our method outperforms the standard state
eviction methods across different large language
models and lengths.

7We omit 5 outlier data points from all the 38 data points
for Llama 2 13B Chat in the passkey retrieval tasks where all
the models performs with an accuracy of 0%.
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Param. Settings
Llama 2 7B Chat Mistral 7B Instruct

0-4k 4-8k 8k+ 0-4k 4-8k 8k+

ls = 256
k = 768

Standard CSE 36.72 37.07 38.36 34.52 30.57 20.92
+ Individual Cache 43.45 43.26 45.93 45.15 45.11 41.55
+ Shared Cache 43.22 44.07 46.37 43.96 41.56 36.61

ls = 512
k = 512

Standard CSE 36.92 34.51 35.07 33.98 28.36 21.92
+ Individual Cache 41.02 41.52 41.81 45.13 43.38 41.66
+ Shared Cache 41.17 41.79 43.57 44.65 40.06 35.51

ls = 768
k = 256

Standard CSE 32.59 31.04 29.57 30.60 23.19 21.44
+ Individual Cache 34.73 33.79 33.88 40.82 36.67 33.04
+ Shared Cache 36.12 35.67 34.61 38.89 32.50 28.77

Table 3: Results of the hyperparameters under the same
memory budget. Best results are bolded. “Param.”
stands for hyperparameters.

6.3 Long-range language modeling

We compare our model with the long-range lan-
guage modeling model, Streaming LLM. Specifi-
cally, we evaluate the standard CSE as well as the
shared cache version of our proposed CItruS. For
CItruS with a shared cache, we randomly sample
10 different instructions including different ques-
tions from Qasper and HotpotQA dataset. We show
the results using one instruction here and append
the rest of the results in the Appendix J. Results in
Figure 7 show that our standard CSE could main-
tain the perplexity when processing long sequences
as low as the Streaming LLM. Meanwhile, al-
though showing a slight increase in perplexity with
the Llama 2 7B Chat model, CSE with a shared
cache achieves consistent perplexity results with-
out exploding as described by Xiao et al. (2023).
This shows that introducing the instruction text as
the query to evict hidden states would not affect
the text perplexity of the large language models.
A more detailed discussion about the roles of the
standard cache and the instruction-aware cache in
our model is provided in Appendix K.

6.4 Analysis

In this section, we provide analyses on the hyper-
parameters of our model, the effect of chunk size,
and the position bias in the knowledge retrieval
tasks. We also provide an analysis on the effect
of the initial tokens in Appendix L. We report the
averaged results in this section since all the models
perform similarly in the analyses across all the
datasets. The full results are shown in Appendix C.

6.4.1 Hyperparameter analysis
Given a fixed memory budget, there is a trade off
between ls and k. A larger k can preserve more
information, potentially leading to a better perfor-
mance, and ls affects the encoding efficiency. In

Param. Settings
Llama 2 7B Chat Mistral 7B Instruct

0-4k 4-8k 8k+ 0-4k 4-8k 8k+

ls = 64
k = 768

Standard CSE 36.70 35.83 38.12 32.37 28.46 20.72
+ Individual Cache 43.78 43.86 47.48 45.88 44.01 40.20
+ Shared Cache 43.09 42.82 43.24 43.81 38.89 34.36

ls = 256
k = 768

Standard CSE 36.72 37.07 38.36 34.52 30.57 20.92
+ Individual Cache 43.45 43.26 45.93 45.15 45.11 41.55
+ Shared Cache 43.22 44.07 46.37 43.96 41.56 36.61

ls = 512
k = 768

Standard CSE 38.17 37.49 37.71 31.99 27.90 24.39
+ Individual Cache 43.04 43.18 46.71 42.79 42.09 40.58
+ Shared Cache 42.60 42.89 46.25 42.43 40.05 35.16

ls = 768
k = 768

Standard CSE 39.41 38.25 38.39 33.35 25.74 20.51
+ Individual Cache 42.27 43.45 42.26 42.31 39.76 37.37
+ Shared Cache 42.09 42.61 43.76 42.76 38.72 33.56

Table 4: Results of the different chunk size ls. Best
results are bolded. “Param.” stands for hyperparameters.

Figure 8: The position-wise results from CItruS with
shared cache (ls = 1,024, k = 1,024) on needle-in-the-
haystack using Mistral 7B Instruct. The x-axis repre-
sents the position where the needle is inserted, while
the y-axis represents the length of the documents. The
color of the grid represents the ROUGE-1 score.

this section, we probe our model by adjusting dif-
ferent hyperparameters to demonstrate that our pro-
posed CItruS is insensitive to them.

Table 3 shows that with a fixed budget, CItruS
consistently outperforms the Standard CSE models,
showing that our method is not sensitive to the
choices of k and ls, and the instruction-aware cache
methods are the best when considering both the
efficiency and the down-stream task performance.

6.4.2 Analysis of the chunk size

We provide a comparison of models using chunk
sizes ranging from 64 to 768. The inference time
of each model decreases linearly as ls increases.

As shown in Table 4, the performance fluctua-
tion when using different chunk sizes is very lim-
ited, while the efficiency is significantly improved.
Our CItruS model extends the chunk size beyond
that of previous methods and demonstrates a sub-
stantial improvement in efficiency for conducting
long-sequence downstream tasks.
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6.4.3 Position bias in knowledge retrieval
Liu et al. (2023) propose that large language mod-
els tend to pay less attention to the middle parts of
long documents. In this section, we test our model
to determine if this issue persists with our proposed
instruction-aware cache method.

We use the needle-in-a-haystack task as the ba-
sic task and evaluate the ROUGE results when the
fact is inserted at different positions in the docu-
ment. As shown in Figure 8, we demonstrate that
the CItruS model still prefers to attend to the in-
formation at the beginning and the end, leaving
future work to address this lost-in-the-middle issue
in eviction-based long-sequence methods.

7 Conclusion

We have proposed CItruS, an inference-time state
eviction method for large language models (LLMs)
that improves their performance on long sequence
downstream tasks. It features a large chunked se-
quence processing procedure and an instruction-
aware cache that helps with solving downstream
tasks. Experiments on long document reading
comprehension, knowledge retrieval, and language
modeling show the utility of our method compared
to strong baselines.

Our work demonstrates the possibility of gener-
alizing standard LLMs trained on text constrained
to certain lengths to processing longer sequences
without any parameter adjustments. Our evalua-
tion mainly focuses on retrieving task-related infor-
mation from a long document. Future work may
consider extending more high-level abilities (e.g.,
multi-hop and compositional reasoning) to the long
sequence regime. Moreover, trainable components
can be further introduced to facilitate this process.
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Limitations

We only tested our methods with Llama 2 and Mis-
tral models, leaving performance on other datasets
to be evaluated. The instruction-aware cache is

only applied to our Standard CSE and the H2O
models, it could be further applied to models using
other state eviction policies to possibly further en-
hance the performance. Our work only uses one
instruction for each task to conduct all the exper-
iments. It would be interesting to show whether
better instruction texts exist that are specifically de-
signed for conducting long sequence down-stream
tasks. Future work might consider optimizing the
query, or even use soft prompt optimization tech-
nique to select the hidden states.

Ethical Considerations

The associated risks with this work include using a
model trained on vast amounts of text, which likely
contains gender, racial, and cultural bias. Another
concern is the potential misuse of the model for
generating misleading or harmful content when ap-
plying our method to generate text. Meanwhile,
cache-based methods could be more effective for
malicious applications like jailbreaking or reveal-
ing private information, since it breaks the standard
usage of the hidden states in large language models.
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A Details for the Intersection Probing
Experiments

The goal of the intersection probing experiment is
to determine whether the document context selects
a different set of top-k states with the highest at-
tention scores within the cache compared to the
instruction text. This difference could lead to the
document context overlooking crucial information
required by the final instruction.

For this purpose, we use all the 416 documents
in the test split of the Qasper dataset (Dasigi et al.,
2021). For each document, we randomly select a
chunk, referred to as Context 1, consisting of 200
tokens from the first 1

4 document to simulate the
cache C during the eviction process. If the first
1
4 document contains fewer than 200 tokens, we
use the entire first 1

4 as Context 1. Then, we ran-
domly select a second chunk, referred to as Context
2, from the final 1

4 document to ensure sufficient
distance between Context 1 and Context 2, avoid-
ing recency bias and placing Context 2 close to the
final instruction text. To ensure a fair comparison,
we also make sure that the length of Context 2 is
the same as that of the instruction text for each
document.

We send the concatenation of Context 1 and Con-
text 2 to the Mistral 7B Instruct model to obtain the
simulated cache C, which consists of all the key-
value states of Context 1. We could also acquire
the attention distribution from Context 2 to Con-
text 1 through this step. At each model layer l, we
define the importance of the jth state in Context 1
as the average of alij , the attention score from each
position i in Context 2 to the jth state in Context
1. We keep the top-k states in Context 1 with the
highest average attention scores as Setselection, and
compute the final evicted cache Ĉcontext 2 following
Equ. (2) and (3). Similarly, we use the same model
to encode the concatenation of Context 1 and the in-
struction text to get the attention distribution from
the instruction text to Context 1, and follow the
same steps as described above to obtain the final
evicted cache Ĉinstruction from the instruction text.
In this experiment, we set k to 20, which is 1

10 of
length of the first context.

We compute the intersection ratio between the
Ĉcontext 2 and Ĉinstruction as |Ĉcontext 2∩Ĉinstruction|

|Ĉinstruction|
, and

average the intersection ratio over all the 416 doc-
uments for each layer. As shown in Figure 3, the
intersection ratio is particularly low in the middle
layers of the model, supporting our hypothesis that

the document context neglects a significant amount
of information considered important by the final
instruction. This discrepancy may be attributed to
the remarkably different semantics of the instruc-
tion text and the document context, despite their
close proximity.

B Statistics for Each Dataset

Qasper (Dasigi et al., 2021) consists of 5049
questions from 1585 NLP research papers. The
questions are created by practitioners who read
only the title and abstract, and answered by an-
other group, who also provide supporting evidence.
We use all available questions for each of the 224
documents selected by (Bai et al., 2023) from this
dataset to evaluate model performance. When do-
ing the intersection probing experiments, we use
all 416 documents from the test split of Qasper. We
randomly choose one question as the instruction
text for each document.

MultifieldQA (Bai et al., 2023) consists of long
articles from about 10 sources, including Latex pa-
pers, judicial documents, government work reports,
and PDF documents indexed by Google. For each
long article, several PhD and master students are
invited to annotate. Each annotator is asked to pro-
pose questions with definitive answers as much as
possible. We only use the English version of this
dataset in our experiments. It contains 150 long
documents.

HotpotQA (Yang et al., 2018) is a dataset with
113,000 question-answer pairs based on Wikipedia.
This dataset requires multi-document reasoning to
answer questions, and the questions are quite di-
verse and not tied to specific knowledge bases. Hot-
potQA has been adapted by (Bai et al., 2023) for
long context evaluation, by concatenating the evi-
dence text containing the answer along with several
distracting articles. We use all 150 documents from
the adapted HotpotQA for our experiments.

TriviaQA (Joshi et al., 2017) is a reading com-
prehension dataset containing over 650K question-
answer-evidence triples. Averagely, six evidence
documents are collected for each question. We use
all 300 document-question pairs selected by (Bai
et al., 2023), where each document consists of the
concatenation of all available evidence documents
for that question.

TREC (Li and Roth, 2002) is a question type
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Settings
Llama 2 7B Chat Llama 2 13B Chat Mistral 7B Instruct

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Streaming LLM 33.78 34.92 37.11 37.39 37.95 36.54 34.26 31.00 27.21
TOVA 35.60 33.98 35.80 40.71 37.59 35.52 31.67 27.54 22.17
RoCo 32.46 25.70 20.64 40.30 31.02 25.89 32.67 25.28 19.83
H2O 34.47 29.54 27.26 38.68 35.24 35.96 34.60 25.37 23.08

Standard CSE 36.72 37.07 38.36 43.68 39.18 30.74 34.52 30.57 20.92
+ Individual Cache 43.45 43.26 45.93 46.43 46.61 40.80 45.15 45.11 41.55
+ Shared Cache 43.22 44.07 46.37 46.66 46.91 41.53 43.96 41.56 36.61

H2O + Shared Cache 38.26 39.19 40.27 42.00 41.54 42.30 40.28 36.23 32.45

Table 5: The averaged results on six different long sequence tasks. Results are separately presented by grouping text
with different source lengths. Best results are bolded.

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Streaming LLM 8.36 10.54 27.77 23.51 22.07 17.34 25.56 23.81 26.13 47.00 52.00 40.00 61.96 66.64 71.37 36.31 34.47 40.07
TOVA 9.81 13.01 25.00 22.44 23.99 16.06 35.16 29.15 29.66 50.00 57.00 50.00 63.95 53.78 63.03 32.23 26.94 31.06
RoCo 10.82 15.71 7.89 27.39 15.74 12.43 30.99 27.74 20.48 49.00 59.00 56.00 53.20 28.20 21.53 23.35 7.79 5.53
H2O 9.31 12.61 14.54 31.08 21.66 23.52 46.92 35.22 32.74 50.00 54.00 43.00 62.45 48.06 45.76 7.06 5.67 4.00
Standard CSE 8.43 14.84 27.08 23.19 22.67 15.06 33.30 24.68 35.27 49.00 55.00 52.00 70.10 75.05 71.99 36.27 30.17 28.77

+ Individual Cache 20.71 16.80 28.77 36.65 28.69 24.67 43.04 38.95 41.75 55.00 62.00 65.00 67.44 80.30 82.10 37.87 32.84 33.26
+ Shared Cache 20.78 17.48 29.02 38.43 30.81 24.90 43.21 40.59 42.88 56.00 63.00 63.00 64.14 80.05 83.50 36.74 32.48 34.93

H2O + Shared Cache 16.91 14.87 33.52 40.59 31.80 25.78 44.00 38.32 36.07 45.00 53.00 49.00 75.27 73.26 66.71 7.76 23.88 30.55

Llama 2
13B Chat

Streaming LLM 12.48 12.86 19.81 24.36 24.61 14.22 28.66 30.12 31.88 52.00 58.00 44.00 76.09 77.91 75.22 30.76 24.19 34.12
TOVA 17.18 13.76 23.20 26.75 24.34 14.23 40.79 29.56 36.59 56.00 59.00 49.00 80.05 84.22 76.43 23.51 14.66 13.69
RoCo 16.09 12.86 24.41 26.85 17.48 10.08 39.09 26.26 15.84 57.00 58.00 45.00 82.41 69.71 59.27 20.34 1.79 0.72
H2O 15.72 12.92 27.03 30.28 26.01 22.00 35.36 35.95 30.66 56.00 53.00 52.00 80.93 78.37 77.33 13.77 5.20 6.73
Standard CSE 17.92 15.88 4.91 27.75 22.52 9.09 44.46 29.74 30.65 55.00 51.00 42.00 80.68 83.61 70.48 36.24 32.34 27.29

+ Individual Cache 16.67 25.07 9.06 39.58 34.79 15.19 43.27 37.91 40.38 57.00 60.00 58.00 84.70 86.32 86.52 37.36 35.57 35.66
+ Shared Cache 19.52 25.75 15.47 38.22 34.36 22.34 45.78 37.83 40.54 55.00 63.00 56.00 85.30 87.79 83.89 36.11 32.70 30.96

H2O + Shared Cache 22.02 23.99 28.04 35.96 32.21 43.04 34.49 35.38 39.70 54.00 58.00 49.00 84.80 89.32 82.36 20.71 10.32 11.67

Mistral
7B Instruct

Streaming LLM 26.90 20.21 13.59 38.51 27.72 17.17 29.71 24.94 27.42 48.00 55.00 44.00 49.06 45.27 49.39 13.39 12.84 11.70
TOVA 27.82 21.95 13.86 38.70 28.07 18.04 32.68 25.01 23.52 47.00 54.00 37.00 36.96 27.96 28.93 6.84 8.22 11.68
RoCo 28.35 26.06 18.43 45.18 27.45 17.84 47.24 35.26 26.77 45.00 48.00 44.00 22.74 8.32 6.86 7.53 6.57 5.05
H2O 27.02 22.67 14.60 48.68 32.12 31.21 49.16 35.36 31.83 48.00 49.00 47.00 21.97 3.00 1.00 12.76 10.06 12.85
Standard CSE 27.73 21.08 7.61 42.01 28.17 19.78 37.74 34.01 27.14 46.00 55.00 33.00 31.16 21.36 16.02 22.50 23.79 21.97

+ Individual Cache 29.93 27.66 14.93 55.10 40.75 45.48 45.88 46.10 32.07 50.00 64.00 57.00 61.99 61.69 65.64 27.99 30.44 34.19
+ Shared Cache 30.93 27.14 19.18 54.34 40.53 45.96 45.71 45.37 35.53 50.00 59.00 52.00 56.19 48.16 35.69 26.61 29.15 31.30

H2O + Shared Cache 29.41 23.47 18.85 53.28 38.04 42.23 45.99 45.70 34.21 48.00 62.00 52.00 57.83 43.32 42.67 7.17 4.87 4.72

Table 6: The detailed results on six different long sequence tasks, where ls = 256, k = 768 for all methods. Results
are separately presented by grouping text with different source lengths.

classification dataset collected from 4500 English
questions published by USC (Hovy et al., 2001)
together with 500 manually constructed questions
for a few rare question types. This dataset has also
been adapted for long context evaluation (Bai et al.,
2023). This is achieved by sampling several cases
from the training set to create few-shot examples
as long context. We use all 300 examples from the
adapted TREC.

SamSum (Gliwa et al., 2019) includes around
16K messenger-like conversations with summaries,
created by English-fluent linguists. These conver-
sations mirror the topics and styles of real-life mes-
senger interactions, ranging from informal to for-
mal, and may include slang, emoticons, and typos.
Each conversation is annotated with a third-person
summary, providing a concise overview of the dis-
cussion. This dataset has been adapted for long
context evaluation as well in the same manner as

the TREC dataset, and we use all 300 examples
from this adaptation.

PG19 (Rae et al., 2019) includes a set of books
extracted from the Project Gutenberg books library,
that were published before 1919. We concatenate
several selected books from this dataset to form a
super long document and test the language model-
ing ability of our proposed methods on this docu-
ment to up to 400K tokens in length.

C Detailed Results for Each Dataset

In this section, we provide the dataset results for all
the experiments. In Table 5, we show the averaged
results of all the baseline models and the CItruS
model, while the detailed results containing differ-
ent datasets are shown in Table 6. Dataset-wise
experiment results using different hyperparameters
are shown in Table 7, Table 8, Table 9. Table 10,
Table 20, and Table 21.
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Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 11.70 14.56 25.00 22.51 19.57 8.63 29.64 24.84 34.76 48.00 48.00 42.00 74.15 73.14 73.13 35.49 26.95 26.87
+ Individual Cache 18.46 12.47 31.89 36.58 29.15 14.87 39.26 38.63 38.60 46.00 57.00 58.00 68.07 80.72 79.66 37.73 31.15 27.81
+ Shared Cache 19.48 11.82 34.78 35.49 31.19 14.34 41.13 37.29 40.58 49.00 55.00 54.50 64.71 84.09 87.52 37.22 31.33 29.67

Llama 2
13B Chat

Standard CSE 17.57 12.26 3.13 29.76 15.33 6.94 37.94 23.75 13.13 52.00 47.00 41.00 84.62 69.46 41.09 34.39 20.98 13.63
+ Individual Cache 19.29 23.11 1.69 38.49 20.53 10.49 38.26 26.90 22.27 53.00 59.00 55.00 85.48 79.79 81.49 34.71 28.20 20.33
+ Shared Cache 20.36 21.80 5.90 38.89 21.18 12.75 40.20 27.66 22.26 54.00 61.00 49.00 85.39 78.56 69.72 33.15 24.04 14.97

Mistral
7B Instruct

Standard CSE 27.48 21.83 9.61 38.67 28.22 17.08 37.20 28.43 25.93 42.00 44.00 29.00 32.82 26.86 28.51 25.69 20.80 21.36
+ Individual Cache 28.93 25.32 14.08 53.46 36.87 47.70 52.38 45.48 38.90 44.00 55.00 53.00 61.55 64.69 64.02 30.46 32.94 32.25
+ Shared Cache 29.83 25.22 18.90 53.68 37.75 46.49 50.84 45.40 35.89 42.00 53.00 46.00 60.27 45.66 32.02 31.28 33.34 33.75

Table 7: The detailed results on six different long sequence tasks, where ls = 512, k = 512 for all methods. Results
are separately presented by grouping text with different source lengths.

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 10.26 10.42 29.17 24.05 20.45 8.13 31.03 23.94 24.82 33.00 35.50 28.00 71.38 74.90 68.84 25.82 21.00 18.44
+ Individual Cache 15.22 11.09 28.19 28.43 21.79 18.14 44.69 28.28 36.19 31.00 49.00 40.00 58.09 73.99 66.09 30.96 18.57 14.64
+ Shared Cache 17.50 13.23 35.97 30.51 22.44 9.29 44.98 34.58 34.14 30.00 47.00 37.00 62.56 76.12 68.62 31.14 20.63 22.61

Llama 2
13B Chat

Standard CSE 11.76 4.74 5.72 21.47 8.90 5.64 19.25 4.87 11.98 41.00 41.00 28.00 69.39 35.10 35.48 24.52 3.98 2.67
+ Individual Cache 18.02 10.93 12.26 32.66 20.36 15.97 28.30 23.30 26.32 44.00 48.00 41.00 84.61 78.51 81.02 26.34 7.97 7.29
+ Shared Cache 17.27 10.20 10.85 37.06 22.92 17.46 26.75 26.69 26.45 42.00 49.00 37.00 84.08 78.79 76.02 26.76 8.72 6.33

Mistral
7B Instruct

Standard CSE 25.59 20.65 18.20 32.87 26.97 19.38 34.74 22.01 25.67 27.00 25.00 19.00 38.67 24.65 25.08 24.72 19.83 21.33
+ Individual Cache 26.13 20.69 18.89 48.67 37.45 47.71 48.60 41.52 33.23 33.00 48.00 33.00 57.99 43.55 42.02 30.51 28.78 23.36
+ Shared Cache 25.67 21.22 17.88 50.88 36.95 41.19 45.26 41.69 36.48 33.00 46.00 31.00 47.63 21.22 19.52 30.90 27.91 26.56

Table 8: The detailed results on six different long sequence tasks, where ls = 768, k = 256 for all methods. Results
are separately presented by grouping text with different source lengths.

D Information Neglect of the Sliding
Window Methods

As pointed out by Jiang et al. (2023), the sliding
window method with a window size of w would
make the ith token representation hli in a specific
layer l access tokens from the input layer at a dis-
tance of up to l × w. This is due to the inherent
design of attention mechanism, where the represen-
tations of a former token in one layer could only be
aggregated to the representations of a following to-
ken in the next layer. We describe this phenomenon
more specifically by analyzing the equation of the
sliding window attention mechanism for the token
ti with index i in a specific layer l,

alij =

exp

(
qli·klj√
dk

)

∑i
j′=i−w exp

(
qli·klj′√

dk

) (6)

Attentionli =
i∑

j=i−w

alij · vlj (7)

where dk is the dimension of the hidden states, i
and j are the the indexes of the query token and
the tokens whose information are aggregated, re-
spectively. As all the tokens are processed paral-
lelly in one layer, the hidden states vj and kj could
only contain their aggregated information from the
previous layer, acquired by Attentionl−1

j . Consid-
ering qi could only attend to {vi−w, . . . , vi} and

{ki−w, . . . , ki} in one layer, the information ag-
gregation range r(i, j, l, l′) for ti from layer l′ to l
is,

r(i, j, l, l′) =
l⋃

l∗=l′





i⋃

i∗=i−(l−l∗)×w

Attentionl
∗
i∗




(8)

Hence, the information of token ti in the layer
0 (i.e., the embedding layer) would completely dis-
appear in layer l after l×w time steps. Considering
the effect that LLM would use specific layers to
process the specifc information (e.g., syntax, task
vector, etc) (Hendel et al., 2023; Todd et al., 2023),
the specific information for one token might disap-
pear merely after a few window lengths.

E Supplemental Experiments for
Information Neglect Problem

We discussed the issue of information neglect in
Section 3. In this section, we present a straightfor-
ward experiment to further demonstrate the exis-
tence of this problem. Specifically, we compare
the performance of models that read the full con-
text of the document with those employing state
eviction techniques. This experiment utilizes the
Llama 3 8B Instruct model across the six reading
comprehension datasets mentioned in our paper.
As most long documents exceed the model’s pro-
cessing capacity, we limited our tests to examples
with fewer than 4096 tokens. Additionally, we
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Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 10.15 13.93 25.00 25.91 21.59 16.65 32.68 31.54 33.44 55.00 56.00 51.00 71.75 73.64 73.72 33.52 28.26 26.42
+ Individual Cache 19.97 14.91 29.33 32.87 28.94 24.18 43.58 39.46 42.37 53.00 61.00 64.00 68.72 81.19 85.60 37.44 31.83 32.00
+ Shared Cache 19.63 15.07 30.28 33.19 30.11 27.17 41.13 38.12 43.18 57.00 60.00 63.00 69.41 82.80 86.93 37.90 33.00 29.70

Mistral
7B Instruct

Standard CSE 22.96 20.93 20.94 41.62 27.26 18.66 33.26 26.06 19.30 46.00 55.00 45.00 33.71 22.68 24.65 14.41 15.45 17.76
+ Individual Cache 28.76 25.26 14.45 55.43 36.75 43.01 39.75 41.59 34.00 48.00 59.00 54.00 56.79 57.22 63.82 28.02 32.70 34.20
+ Shared Cache 29.15 25.13 15.74 54.55 37.05 37.78 43.19 43.81 32.15 46.00 57.00 52.00 53.79 45.32 40.52 27.92 31.97 32.76

Table 9: The detailed results on six different long sequence tasks, where ls = 512, k = 768 for all methods. Results
are separately presented by grouping text with different source lengths..

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 8.82 14.12 29.17 26.33 21.70 16.74 34.49 33.97 33.62 58.00 52.00 53.00 75.62 78.95 73.62 33.17 28.76 24.21
+ Individual Cache 22.65 16.52 25.05 34.04 30.62 18.85 38.23 36.64 40.67 53.00 61.00 59.00 69.16 82.77 82.37 36.55 33.17 27.59
+ Shared Cache 20.52 15.11 24.83 33.33 27.58 20.70 37.96 37.94 42.66 53.00 63.00 60.00 70.13 81.68 84.47 37.59 30.34 29.89

Mistral
7B Instruct

Standard CSE 26.24 22.10 17.73 42.75 26.37 16.64 35.25 26.72 19.11 48.00 51.00 38.00 31.18 15.87 16.21 16.66 12.35 15.37
+ Individual Cache 28.28 23.91 16.08 54.69 36.15 35.06 41.04 38.40 29.53 45.00 59.00 54.00 56.79 50.32 56.02 28.03 30.79 33.54
+ Shared Cache 28.99 23.95 15.14 55.93 37.74 35.83 42.36 39.44 29.61 47.00 56.00 52.00 53.79 44.82 39.69 28.46 30.34 29.11

Table 10: The detailed results on six different long sequence tasks, where ls = 768, k = 768 for all methods.
Results are separately presented by grouping text with different source lengths.

applied 8-bit quantization for efficiency. Along-
side the previously discussed state eviction models,
we also include our proposed CItruS model. We
set k = 256, ls = 256 for these experiments to
simulate scenarios with small caches and long doc-
uments. The results are shown in Table 11:

Results show: 1) There is a large gap between the
performance of the previous cache eviction meth-
ods and the model that could “read” the full text. 2)
We would like to point out that this is not the ideal
case for our proposed CItruS, which is designed for
processing long sequences beyond the capacity of
LLMs. However, even with the short context, the
proposed method approaches the performance of
full-context models better than the baseline mod-
els. Notably, in the TriviaQA and Qasper datasets,
CItruS outperforms the models with the full text.
We hypothesize that it is because some noisy infor-
mation is eliminated during the eviction process.

F Prompt for Each Task

We show all of the prompts we used for each task
in Table 12.

G Setup for the Needle-in-a-Haystack
Task

Due to the computational cost limitation, we used
one fact to conduct this task. The fact is “The
best thing to do in San Francisco is eat a sandwich
and sit in Dolores Park on a sunny day.” and the
question input is “What is the best thing to do in
San Francisco?”. The document is concatenated
from documents from Paul Graham Essays. We cut

the first 7 tokens where the model always generate
“The best thing to do in San Francisco is” to avoid
the miscalculation of the information overlap. The
template we used is shown in Table 12.

H Experimental Results with Llama 3

We test the six reading comprehension tasks used
in our paper with the newly released Llama 3 8B
Instruct model. The results shown in Table 14 and
Table 15 demonstrates that our proposed model
continues to perform consistently better than other
state eviction models.

I Experimental Results with BABILong
Dataset

We conduct supplementary experiments with BA-
BILong (Kuratov et al., 2024), a newly proposed
dataset which contains long sequence needle-in-
the-haystack tasks involving multiple supporting
facts and requires the model to generate answers
using multi-hop reasoning and temporal dynamics.

We test our models and the baselines on the qa1,
qa2, and qa3 subsets of BABILong with a maxi-
mum length of 128k tokens. All results were ob-
tained using the Llama 3 8B Instruct model. The
results are shown in Table 16, Table 17, and Ta-
ble 18, where the “0k”, “1k”, and “64k” represent
the context length of the subset.

Results show that our method performs better
on these tasks, especially when the context length
is longer. However, we want to point out that it is
not guaranteed that our method could enhance the
reasoning ability of LLMs. We are only claiming
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Cache Type Avg. Rank Avg. Results Qasper Multifieldqa_En Hotpot QA TREC TriviaQA SamSum

Streaming LLM 2.83 33.94 23.58 16.25 38.27 44.29 46.39 34.85
TOVA 3.00 36.07 15.50 17.60 44.84 47.14 57.10 34.26
RoCo 2.50 34.00 21.83 25.47 28.33 42.86 51.93 33.58
H2O 4.33 37.96 16.39 25.69 40.20 54.29 62.17 29.03

Standard CSE 3.33 35.84 15.87 18.48 39.02 44.29 60.25 37.12
+ Individual Cache 7.00 49.12 23.17 46.43 50.95 47.14 88.89 38.12
+ Shared Cache 7.67 49.82 26.73 47.61 49.90 48.57 88.89 37.20

H2O + Shared Cache 5.83 45.97 18.63 39.44 48.06 48.57 85.44 35.66

Full Text 7.67 49.87 23.97 52.29 46.56 54.29 83.45 38.65

Table 11: The average results and the average reversed ranks of the Llama 3 8B Instruct model on six different long
sequence tasks, where Avg. Rank represents the averaged reversed rank and Avg. Results represents the averaged
results.

Datasets Prompt

Qasper You are given a scientific article and a question. Answer the
question as concisely as you can, using a single phrase or sentence
if possible. If the question cannot be answered based on the
information in the article, write “unanswerable”. If the question
is a yes/no question, answer “yes”, “no”, or “unanswerable”. Do
not provide any explanation.\n\nArticle: {context}\n\nAnswer
the question based on the above article as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the article, write
“unanswerable”. If the question is a yes/no question, answer “yes”,
“no”, or “unanswerable”. Do not provide any explanation.\n\n
Question: {input}\n\n Answer:

MultifieldQA Read the following text and answer briefly.\n\n{context}\n\nNow,
answer the following question based on the above text, only give
me the answer and do not output any other words.\n\nQuestion:
{input}\n Answer:

HotpotQA Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nThe following
are given passages.\n\n{context}\n\n Answer the question based
on the given passages. Only give me the answer and do not output
any other words.\n\nQuestion: {input}\n Answer:

TriviaQA Answer the question based on the given passage. Only give
me the answer and do not output any other words. The follow-
ing are some examples.\n\n\n\n{context}\n\n\n\n Question: {in-
put}\n\n\n\nAnswer:

TREC Please determine the type of the question below. Here are some
examples of questions.\n\n\n\n{context}\n\n{input}

SamSum Summarize the dialogue into a few short sentences. The following
are some examples.\n\n\n\n{context}\n\n\n\n{input}

Passkey Retrieval There is an important info hidden inside a lot of irrelevant text.
Find it and memorize them. I will quiz you about the important
information there.{context}\n\n\n\nWhat is the pass key? The pass
key is

needle-in-a-haystack system: You are a helpful AI bot that answers questions for a user.
Keep your response short and direct \n\n user: {context}\n\nuser:
{Question} Don’t give information outside the document or repeat
your findings\n\n system:

Table 12: The prompt used in our experiments. Text in
blue represents the context while text in red represents
the instruction we used.

that our method can better help the state eviction
methods retain more relevant information for down-
stream tasks when processing long sequences. The
reasoning abilities depend on the model and how
it leverages the information in the retained hidden
states, which is fundamentally influenced by the
pretraining process.

Datasets Prompt

Instruction 1 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: How
is the ground truth for fake news established?\nAnswer:

Instruction 2 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: What
architecture does the encoder have?\nAnswer:

Instruction 3 Answer the question based on the given passages. Only give
me the answer and do not output any other words.\n\nQuestion:
Which case was brought to court first Miller v. California or Gates
v. Collier ?\nAnswer:

Instruction 4 Answer the question based on the given passages. Only give
me the answer and do not output any other words.\n\nQuestion:
What occupation is shared by both Marge Piercy and Richard
Aldington?\nAnswer:

Instruction 5 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: What
is their definition of tweets going viral?\nAnswer:

Instruction 6 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: Were
any of these tasks evaluated in any previous work?\nAnswer:

Instruction 7 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: What
sentiment classification dataset is used?\nAnswer:

Instruction 8 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: The
historical Nimavar school in the Nimavar Bazaar, or bazar, is
located in which country?\nAnswer:

Instruction 9 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: For
what type of work is the production company for The Year Without
a Santa Claus best known?\nAnswer:

Instruction 10 Answer the question based on the given passages. Only give me
the answer and do not output any other words.\n\nQuestion: The
physicist who is responsible for identifying the Rabi cycle won
what award?\nAnswer:

Table 13: The instruction used in the perplexity experi-
ments.

J Results of Perplexity with Other
Instructions

We used 10 different instructions, shown in Ta-
ble 13. We show the perplexity of models of CItruS
with Shared cache when using these ten different
instructions in Figure 9, Figure 10, Figure 11, and
Figure 12. As these results demonstrate, the per-
plexity of our Shared Cache CSE remains consis-
tent across a wide variety of instructions, similar to
the standard CSE and streaming LLM methods.
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Cache Type 0-4k 4-8k 8k+

Streaming LLM 2.17 2.33 1.83
TOVA 2.00 2.33 3.83
Roco 3.67 4.67 5.33
H2O 3.83 2.67 3.00
H2O + Shared Cache 6.67 6.33 4.83
Standard CSE 3.33 3.00 3.33

+ Individual Cache 6.67 7.00 7.17
+ Shared Cache 7.17 7.33 6.33

Table 14: The averaged reversed rank results among all
the 8 models on six different reading comprehension
tasks with Llama 3 8B Instruct, where 8 is the highest
score and 1 is the lowest score. Results are presented
by grouping text with lengths of 0-4k, 4k-8k, and 8k+.
Best results are bolded.

Cache Type 0-4k 4-8k 8k+

Streaming LLM 39.75 38.82 34.20
TOVA 41.09 39.88 38.65
Roco 45.17 45.10 42.41
H2O 45.45 42.24 39.13
H2O + Shared Cache 50.85 51.86 48.24
Standard CSE 44.82 41.48 37.17

+ Individual Cache 50.66 52.10 53.03
+ Shared Cache 51.17 53.20 51.66

Table 15: The averaged results among all the 8 mod-
els on six different reading comprehension tasks with
Llama 3 8B Instruct, where 8 is the highest score and 1
is the lowest score. Results are presented by grouping
text with lengths of 0-4k, 4k-8k, and 8k+. Best results
are bolded.

K Discussion

In this paper, we argue that the cache used in stan-
dard chunked state eviction (CSE) is primarily re-
sponsible for maintaining the perplexity of lan-
guage models, whereas an instruction-aware cache
offers advantages for long-sequence downstream
tasks. This claim is supported by the following
observations from our experiments: (1) perplexity
evaluations and previous work on state eviction
methods (Zhang et al., 2024b; Oren et al., 2024)
indicate that the basic cache effectively maintains
language model perplexity; (2) performance im-
provements are observed when using an instruction-
aware cache, which is only information that the
model could access when generating the response
during the task-solving thread. It is important to
note that it is not solely the case that the standard
cache only impacts perplexity while the instruction-
aware cache solely affects task performance; there
is potential overlapping, as demonstrated in our
intersection calculation experiments discussed in

Section 3. However, the primary focus of these two
types of caches remains distinct.

L Analysis on initial tokens

Xiao et al. (2023) show that the initial tokens play
a critical role in long-sequence language model-
ing by serving as “attention sinks”. Although our
proposed method does not specifically process the
initial tokens, we assert that it can adaptively re-
tain the hidden states of these tokens because they
consistently receive a large proportion of attention
weights. In this section, we conduct experiments
that always preserve the first 4 initial tokens during
the eviction process.

Shown in Table 19 and Table 21, we demonstrate
that the difference between our methods with and
without the initial tokens are limited, showing the
capability of keeping the “attention sink” tokens
using our method.

M More Related Work

M.1 Long Sequence Processing
Long sequence language modeling have attracted
more and more research interests in recent
years (Tiezzi et al., 2024), as large language mod-
els continue to advance (Li et al., 2024a). Vari-
ous long document processing tasks are proposed
to evaluate the long sequence modeling of lan-
guage models (Zhao et al., 2021; Luo et al., 2021;
Bai et al., 2023). Longformer, leveraging sparse
self-attention pattern, save the memory cost to
make the model process long document (Beltagy
et al., 2020). Memorizing transformer uses a ex-
ternal memory to save the information during the
long sequence modeling process (Wu et al., 2022).
Mistral applied Pre-fill and chunking sliding win-
dow methods to model longer sequences (Jiang
et al., 2023). State space models and their vari-
ations are also popular recently (Gu et al., 2022;
Gu and Dao, 2023; Wang et al., 2022). Unlimit-
edformer wraps pretrained encoder-decoder trans-
former, and offloads the cross-attention computa-
tion to a single k-nearest-neighbor index, while
the returned kNN distances are the attention dot-
product scores (Bertsch et al., 2024). Nawrot et al.
(2024) propose to compress the key-value cache to
make the model process longer sequences. Xiong
et al. (2023) conduct continual pretraining from
Llama 2 (Touvron et al., 2023) with longer training
sequences and on a dataset where long texts are
upsampled. Rotary Position Embedding and the
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Model qa1_0k qa1_1k qa1_2k qa1_4k qa1_8k qa1_16k qa1_32k qa1_64k qa1_128k Avg_qa1

Streaming LLM 0.98 0.83 0.74 0.43 0.25 0.16 0.08 0.03 0.03 0.39
TOVA 0.98 0.83 0.68 0.48 0.41 0.29 0.15 0.04 0.02 0.43
Roco 0.98 0.83 0.60 0.51 0.31 0.13 0.04 0.05 0.01 0.38
H2O 0.98 0.83 0.31 0.20 0.13 0.05 0.01 0.01 0.01 0.28
H2O + Shared Cache 0.98 0.90 0.87 0.75 0.62 0.51 0.28 0.16 0.10 0.57
Standard CSE 0.98 0.90 0.69 0.53 0.39 0.30 0.21 0.09 0.03 0.46
+ Individual Cache 0.98 0.89 0.82 0.73 0.63 0.56 0.50 0.31 0.26 0.63
+ Shared Cache 0.98 0.89 0.84 0.79 0.75 0.69 0.59 0.66 0.43 0.74

Table 16: The results on BABILong qa1 subset. Results are evaluated on test examples with different lengths. Best
results are bolded.

Model qa2_0k qa2_1k qa2_2k qa2_4k qa2_8k qa2_16k qa2_32k qa2_64k qa2_128k Avg_qa2

Streaming LLM 0.14 0.14 0.39 0.23 0.08 0.01 0.01 0.00 0.00 0.11
TOVA 0.14 0.12 0.21 0.27 0.18 0.09 0.07 0.04 0.02 0.13
Roco 0.14 0.10 0.02 0.29 0.11 0.05 0.03 0.01 0.01 0.08
H2O 0.14 0.10 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.03
H2O + Shared Cache 0.14 0.12 0.11 0.05 0.01 0.00 0.00 0.00 0.00 0.05
Standard CSE 0.14 0.13 0.12 0.27 0.23 0.10 0.05 0.04 0.02 0.12
+ Individual Cache 0.14 0.12 0.13 0.15 0.26 0.24 0.28 0.26 0.24 0.20
+ Shared Cache 0.14 0.12 0.19 0.12 0.11 0.04 0.12 0.14 0.25 0.14

Table 17: The results on BABILong qa2 subset. Results are evaluated on test examples with different lengths. Best
results are bolded.

positional interpolation based on it are also used
enable the model process longer sequences (Su
et al., 2024; Chen et al., 2023). Text summariza-
tion has also been known by its relation with long
sequence processing area (Du and Gao, 2023; Gao
et al., 2024; Li et al., 2024b). ReadAgent are pro-
posed by using a large language model agent to
process long sequences (Lee et al., 2024). LONG-
HEADS enhances the long-context processing of
large language models by allowing multi-head
attention to attend to selected important context
chunks within the trained length (Lu et al., 2024).
Infini-Transformer leverage a compressive mem-
ory between different context segment to achieve
modeling long range text (Munkhdalai et al., 2024).
Hwang et al. (2024) propose TransformerFAM, a
novel architecture with a feedback loop for attend-
ing to latent representations, enables Transformers
to process indefinitely long sequences without addi-
tional weights. Zhang et al. (2024a) leverage plug-
and-play positional encoding to make the model
better collect the information in the middle of the
document.

Except LONGHEADS which requires storing all
the past key-value states, all the above needs further
training to make the model able to handle the long
sequence processing task. Our work do not need
any training and can be applied directly to any open-
source transformer-based large language models.

Retrieval-augmented generation techniques also
share similar aspects with our methods. RAG tech-
niques usually involve two steps: first, retrieving
relevant information (usually a document) from
a large database, and second, concatenating the
document and the user query to enhance the perfor-
mance of generating the response text. The similar-
ity between our method and RAG methods mainly
lies in the fact that our method can be applied to
long document question-answering tasks, which
is the typical form of the final step of the RAG
methods. In this sense, our method is orthogonal to
them, as it aims to improve the LLMs themselves
and can handle documents that exceed the length
limitations of LLMs in the RAG process. Hence, it
is not appropriate to directly compare our methods
to RAG techniques.

M.2 State Eviction for Large Language
Models

Liu et al. (2024) explore the persistence of impor-
tance hypothesis for the key-value cache of large
language models. They establish that the key-value
cache that useful for large language modeling are
consistent for all the following text. Based on this,
various methods that evicts the key-value cache
during the language modeling has been proposed
for improving the efficiency of the LLM inference.
Xiao et al. (2023) propose that “attention sink” ex-
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Model qa3_0k qa3_1k qa3_2k qa3_4k qa3_8k qa3_16k qa3_32k qa3_64k qa3_128k Avg_qa3

Streaming LLM 0.25 0.26 0.27 0.32 0.31 0.10 0.07 0.02 0.00 0.18
TOVA 0.25 0.24 0.21 0.40 0.31 0.19 0.10 0.06 0.01 0.20
Roco 0.25 0.26 0.02 0.19 0.23 0.12 0.07 0.04 0.01 0.13
H2O 0.24 0.23 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.06
H2O + Shared Cache 0.24 0.23 0.22 0.07 0.04 0.02 0.02 0.01 0.01 0.10
Standard CSE 0.25 0.23 0.19 0.32 0.28 0.16 0.11 0.07 0.04 0.18
+ Individual Cache 0.24 0.22 0.25 0.20 0.25 0.25 0.25 0.25 0.21 0.24
+ Shared Cache 0.24 0.22 0.26 0.19 0.19 0.22 0.32 0.33 0.34 0.26

Table 18: The results on BABILong qa3 subset. Results are evaluated on test examples with different lengths. Best
results are bolded.

Param. Settings
Llama 2 7B Mistral 7B

0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Start size = 0
Standard CSE 36.72 37.07 38.36 34.52 30.57 20.92

+ Individual Cache 43.45 43.26 45.93 45.15 45.11 41.55
+ Shared Cache 43.22 44.07 46.37 43.96 41.56 36.61

Start size = 4
Standard CSE 36.30 34.80 37.42 31.44 28.51 21.10

+ Individual Cache 43.48 43.89 46.36 45.69 44.55 42.22
+ Shared Cache 43.44 43.65 46.97 44.22 41.74 36.05

Table 19: Results of the different start sizes averaged
on six different long sequence tasks. Best results are
bolded. “Param.” stands for hyperparameters.

ists during the sequence processing of large lan-
guage models. By keeping the key-value states of
the initial tokens, and evict the key-value states out
of a sliding window maintained for recent tokens,
the model could maintain the perplexity while pro-
cessing 1 million tokens. Zhang et al. (2024b) use
accumulative attention scores to evict the unnec-
essary key-value cache states. Oren et al. (2024)
uses the attention of the last token as a metric to
evict the hidden states. Ge et al. (2023) profile all
the attention heads and maintain different hidden
states for different heads. Attendre (Yang and Hua,
2024) brings the preference of future tokens into
the state eviction process.

Besides inference-only state-eviction, a lot of
methods also explore to learn to prune tokens dur-
ing the training process in computer vision (Wang
et al., 2023a; Kim et al., 2022; Ye et al., 2021) or
natural language processing (Zhuang and Wang,
2019; Frantar and Alistarh, 2023; Yun et al., 2023;
Anagnostidis et al., 2024). There is also work that
delete tokens from the discrete prompt (Weston and
Sukhbaatar, 2023).

Compared to this paper, the previous work rarely
focuses the state eviction technique on the long
sequence modeling scenario and does not related
to the specific optimization for the down-stream
tasks.
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Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 10.30 12.43 25.00 23.86 21.75 14.50 34.14 28.58 34.09 47.00 50.00 42.00 68.88 71.73 79.50 36.00 30.49 33.61
+ Individual Cache 20.43 18.82 29.64 39.99 32.17 37.79 43.87 36.28 43.36 57.00 64.00 63.00 63.32 77.14 77.19 38.06 34.72 33.89
+ Shared Cache 20.14 18.07 27.49 40.00 33.69 37.06 43.47 41.77 44.26 56.00 63.00 55.00 61.42 66.59 58.91 37.50 33.81 36.72

Mistral
7B Instruct

Standard CSE 24.95 19.05 8.49 36.36 27.86 17.88 34.95 27.88 23.47 47.00 46.00 28.50 33.18 34.75 34.96 17.75 15.24 11.02
+ Individual Cache 32.00 28.45 15.80 57.42 39.76 47.02 47.02 41.63 30.00 51.00 64.00 56.00 59.43 61.32 67.01 28.40 28.90 25.38
+ Shared Cache 32.08 24.10 19.48 56.78 39.69 47.58 45.67 50.20 38.66 51.00 61.00 58.00 54.19 31.49 24.52 23.12 26.83 17.90

Table 20: The detailed results on six different long sequence tasks, where ls = 64, k = 768 for all methods. Results
are separately presented by grouping text with different source lengths.

Models Settings
Qasper MultifieldQA HotpotQA Trec TriviaQA SamSum

0-4k 4k-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+ 0-4k 4-8k 8k+

Llama 2
7B Chat

Standard CSE 9.27 11.22 25.00 26.15 23.38 15.26 31.11 31.17 33.44 49.00 53.00 54.00 67.46 61.89 65.32 34.83 28.11 31.52
+ Individual Cache 21.32 17.49 28.47 37.21 29.16 28.08 42.19 39.02 40.40 54.00 65.00 65.00 69.07 80.10 81.60 37.06 32.56 34.61
+ Shared Cache 21.33 15.70 33.19 38.19 30.76 25.46 44.36 37.93 42.21 56.00 65.00 64.00 64.14 80.05 82.28 36.60 32.43 34.66

Mistral
7B Instruct

Standard CSE 25.91 21.99 9.25 41.60 28.47 19.17 32.04 28.17 21.81 44.00 47.00 34.00 29.55 30.22 27.04 15.52 15.22 15.35
+ Individual Cache 30.37 27.09 15.30 56.32 40.28 47.21 47.74 45.98 33.80 49.00 64.00 56.00 61.99 59.69 66.14 28.73 30.26 34.87
+ Shared Cache 30.39 25.59 19.49 54.85 40.90 44.92 44.88 44.63 36.72 51.00 62.00 51.00 57.43 47.16 35.19 26.78 30.17 28.97

Table 21: The detailed results on six different long sequence tasks, where the start size is set to 4 and ls = 256, k =
768 for all methods. Results are separately presented by grouping text with different source lengths.

Figure 9: The language modeling results on the Llama 2 7B chat model. The instructions 1 to 5 listed in table 13 are
used for the Shared Cache CSE method, respectively. The line chart is smoothed with a window size of 4096 for
better visibility.
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Figure 10: The language modeling results on the Llama 2 7B chat model. The instructions 6 to 10 listed in table 13
are used for the Shared Cache CSE method, respectively. The line chart is smoothed with a window size of 4096 for
better visibility.

Figure 11: The language modeling results on the Mistral 7B Instruct model. The instructions 1 to 5 listed in table 13
are used for the Shared Cache CSE method, respectively. The line chart is smoothed with a window size of 4096 for
better visibility.

5929



Figure 12: The language modeling results on the Mistral 7B Instruct model. The instructions 6 to 10 listed in table
13 are used for the Shared Cache CSE method, respectively. The line chart is smoothed with a window size of 4096
for better visibility.
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