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Abstract

Chinese Spell Checking (CSC) aims to de-
tect and correct spelling errors in sentences.
Despite Large Language Models (LLMs) ex-
hibit robust capabilities and are widely applied
in various tasks, their performance on CSC
is often unsatisfactory. We find that LLMs
fail to meet the Chinese character-level con-
straints of the CSC task, namely equal length
and phonetic similarity, leading to a perfor-
mance bottleneck. Further analysis reveals that
this issue stems from the granularity of tok-
enization, as current mixed character-word tok-
enization struggles to satisfy these character-
level constraints. To address this issue, we
propose C-LLM, a Large Language Model-
based Chinese Spell Checking method that
learns to check errors Character by Character.
Character-level tokenization enables the model
to learn character-level alignment, effectively
mitigating issues related to character-level
constraints. Furthermore, CSC is simpli-
fied to replication-dominated and substitution-
supplemented tasks. Experiments on two CSC
benchmarks demonstrate that C-LLM achieves
an average improvement of 10% over exist-
ing methods. Specifically, it shows a 2.1%
improvement in general scenarios and a sig-
nificant 12% improvement in vertical domain
scenarios, establishing state-of-the-art perfor-
mance. The source code can be accessed at
https://github.com/ktlKTL/C-LLM.

1 Introduction

Chinese Spell Checking (CSC) involves detecting
and correcting erroneous characters in Chinese sen-
tences, playing a vital role in applications (Gao
et al., 2010; Yu and Li, 2014). Although Large Lan-
guage Models (LLMs) exhibit potent capabilities
and are increasingly being applied to a variety of
tasks (Wang et al., 2023; He and Garner, 2023; Wu
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Figure 1: Encoding differences between the original
LLMs and C-LLM.

et al., 2023a), previous studies (Li and Shi, 2021)
showed that generative models, such as LLMs (Li
et al., 2023a), do not perform well on CSC.

The CSC task inherently involves character-level
length and phonetic constraints. The character-
level length constraint requires the predicted sen-
tence maintain the same number of characters as
the source sentence. Additionally, the phonetic
constraint necessitates that the predicted characters
closely match the phonetics of the source charac-
ters, as approximately 83% of spelling errors are
phonetically identical or similar to the correct ones
(Liu et al., 2010). We find that LLMs often fail
to meet these character-level length and phonetic
constraints in the CSC task.

Using GPT-4 (Achiam et al., 2023) as an ex-
ample, we observed that under few-shot prompt-
ing, 10% of the model’s predicted sentences did
not match the character count of the source sen-
tences. In contrast, this issue was entirely ab-
sent in BERT-style models. Additionally, 35% of
predicted characters were phonetically dissimilar
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to the source characters, and errors due to non-
homophone predictions account for approximately
70% of all prediction errors. These deficiencies in
character length and phonetic similarity result in
outputs that fail to meet task requirements, leading
to suboptimal correction performance.

We find that the underlying issue lies in the
granularity of the LLM’s tokenization. The cur-
rent mixed character-word tokenization results in a
character-to-word mapping. This prevents LLMs
from learning character-level alignment and tends
to produce predictions that do not satisfy character-
level constraints. As shown in Figure 1, under the
mixed character-word tokenization, the LLM needs
to infer that multiple tokens corresponds to a single
token (e.g., "胆(bold)","大(large)","的(of)"->"大
量的(large amount)") and deduce implicit char-
acter alignment (e.g., "胆(bold)"->"大(large)").
These reasoning processes complicate the CSC, as
the majority of CSC cases involve simply replicat-
ing characters. For example, the correct character
"量(amount)" is copied directly from the source.
Despite the advancements in the semantic under-
standing capabilities of LLMs across various tasks,
unclear character alignment can still lead to mis-
corrections and over-corrections. Therefore, it is
vital to establish explicit character-level alignment.

Building on this concept, we propose C-LLM,
a Large Language Model-based Chinese Spell
Checking method that learns to check errors
Character by Character. Our motivation is to en-
code at the character level and establish character-
level alignment for training sentence pairs, thereby
alleviating the issues related to character-level con-
straints. As shown in Figure 1, this approach en-
sures that the number of tokens in sentence pairs
remains consistent, making it easier for LLMs to
learn the phonetic mappings between Chinese char-
acters. Furthermore, CSC is simplified to the tasks
of replicating correct characters and replacing in-
correct ones, without complex reasoning.

Specifically, we construct the character-level to-
kenization to ensure that tokens are encoded ac-
cording to individual Chinese characters. To adapt
the model to the new vocabulary, we perform con-
tinued training on a large dataset. Furthermore, to
enable the LLMs to learn CSC, we conduct super-
vised fine-tuning on CSC datasets. Experiments
on the general dataset CSCD-NS (Hu et al., 2022)
and the multi-domain dataset LEMON (Wu et al.,
2023b) show that C-LLM outperforms existing
methods in both general and vertical domain sce-

narios, establishing state-of-the-art performance.
The contributions of this work can be summa-

rized in three aspects: (1) We find that mixed
character-word tokenization hinders LLM from
effectively understanding the character-level con-
straints in CSC. (2) We propose the C-LLM, which
learns character-level alignment and can check er-
rors character by character. (3) Through testing
on general and multi-domain datasets, we found
that C-LLM achieves state-of-the-art performance,
providing insights for the design of future error
correction models.

2 Related Work

BERT-style CSC Models With the emergence of
pre-trained language models, the dominant method
for CSC has shifted to BERT-style models (Devlin
et al., 2019), which treat CSC as a sequence label-
ing task. These models map each character in a sen-
tence to its correct counterpart and are fine-tuned
on pairs of sourece and reference sentences. Addi-
tionally, some studies have integrated phonological
and morphological knowledge to improve the label-
ing process (Cheng et al., 2020; Guo et al., 2021;
Huang et al., 2021; Zhang et al., 2021). However,
due to parameter constraints, these models under-
perform in low-frequency and complex semantic
scenarios compared to LLMs.

Autoregressive CSC models Unlike BERT-style
models, which can infer each token in parallel, au-
toregressive CSC models process tokens sequen-
tially. Previous research (Li and Shi, 2021) indi-
cates that autoregressive models like GPT-2 (Rad-
ford et al., 2019) may underperform on CSC. With
the advancement of LLMs, several studies have
investigated their text correction capabilities. The
study (Li et al., 2023b) finds that while ChatGPT
1 know the phonetics of Chinese characters, they
can not understand how to pronounce it, making
phonetic error correction challenging. Other stud-
ies (Fang et al., 2023; Wu et al., 2023a) note that
ChatGPT often produces very fluent corrections
but also introduces more over-corrections. These
findings align with our observations, emphasizing
the need to enhance LLMs’ performance on CSC.

3 Motivation

3.1 Problem Formulation
The CSC task aims to detect and correct all er-
roneous characters in Chinese sentence. Con-

1https://chat.openai.com
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Model
Sentence Level (%) Character Level (%)

Detection Correction Detection Correction
P R F1 P R F1 P R F1 P R F1

GPT-4 58.50 60.23 59.35 53.35 54.93 54.13 58.52 65.78 61.94 51.41 57.79 54.41
BERT 75.54 60.88 67.42 71.34 57.49 63.67 79.65 61.79 69.59 74.96 58.15 65.49
SMBERT 75.68 62.96 68.74 71.45 59.44 64.90 79.97 64.12 71.17 75.53 60.56 67.22
SCOPE 79.49 66.96 72.69 76.39 64.35 69.86 83.30 68.08 74.92 79.72 65.15 71.70

Table 1: The performance of GPT-4 and BERT-style models (Devlin et al., 2019; Zhang et al., 2020; Li et al., 2022)
on the CSCD-NS test set is evaluated at both the sentence and character levels, with precision (P), recall (R), and F1
score (F1) reported (%) for both detection (D) and correction (C) tasks.

sider a source sentence 𝑋𝑐 = {𝑥𝑐1 , 𝑥𝑐2 , .., 𝑥𝑐𝑛 }
consisting of 𝑛 characters, which may contain
spelling errors. The corresponding reference sen-
tence 𝑌𝑐 = {𝑦𝑐1 , 𝑦𝑐2 , .., 𝑦𝑐𝑛 } contains the same
number of characters as 𝑋𝑐 , and with all errors cor-
rected. Notably, a significant proportion of the cor-
rected characters 𝑦𝑐𝑖 are phonetically identical or
similar to erroneous character 𝑥𝑐𝑖 . The CSC model
identifies character-level spelling mistakes in the
input 𝑋𝑐 and generates the predicted sentence 𝑌

′
𝑐 ={

𝑦
′
𝑐1
, 𝑦

′
𝑐2
, .., 𝑦

′
𝑐𝑚

}
, where 𝑦

′
𝑐𝑖 is the character pre-

dicted for 𝑥𝑐𝑖 and 𝑚 should be equal to 𝑛 according
to the CSC. In this process, the tokens of the source
sentence and the reference sentence after tokeniza-
tion can be represented as 𝑋𝑡 = {𝑥𝑡1 , 𝑥𝑡2 , ..., 𝑥𝑡𝑛 }
and 𝑌𝑡 = {𝑦𝑡1 , 𝑦𝑡2 , ..., 𝑦𝑡𝑚 }, respectively.

3.2 Analysis of LLMs in CSC

LLMs now exhibit powerful language processing
capabilities and are widely used (Zhao et al., 2023).
Similar to previous studies (Wang et al., 2023; Wu
et al., 2023a), we conduct a preliminary analy-
sis of LLM performance on the CSC using GPT-
4 (Achiam et al., 2023) with in-context learning
(Brown et al., 2020). Our experiments leverage the
GPT-4 API and employ few-shot prompt (see Ap-
pendix A.3) on the CSCD-NS (Hu et al., 2022) test
set for spelling correction. The prompt comprised
five positive and five negative examples, randomly
selected from the CSCD-NS training set.

As shown in Table 1, GPT-4’s performance in
spelling correction is inferior to that of BERT-style
models. Our analysis indicates that GPT-4 strug-
gles to meet two key constraints of the CSC task:
character-level length and phonetic similarity. This
misalignment results in a significant portion of
the predictions that do not meet task requirements,
leading to suboptimal correction performance.

Statistics reveal that 10% of GPT-4’s predicted
sentences fail to meet the character-level length

35%

phonetically dissimilar
phonetically similar

70%

phonetically dissimilar
phonetically similar

97%

correct
wrong

Predicted Characters Wrong Predicted Characters

Figure 2: Statistic results of non-homophone characters.

constraint, adversely affecting both precision and
recall. Additionally, as illustrated in Figure 2, GPT-
4 generates 35% of characters that are not phonet-
ically similar to the source ones. Among these,
97% are incorrect, and these incorrect phonologi-
cally dissimilar characters constitute a significant
portion (70%) of all prediction errors, severely im-
pacting the model’s performance. Therefore, iden-
tifying the root causes of LLMs’ inability to satisfy
character-level length and phonetic constraints is
crucial for improving their performance.

3.3 Mixed Character-Word Tokenization
By analyzing the tokenization used by the LLMs
for CSC, we find that the current mixed character-
word tokenization is the primary reason why LLMs
struggle to meet the character-level length and pho-
netics constraints. Under this tokenization, sen-
tences with spelling errors result in a character-to-
word mapping that prevents LLM from establish-
ing a clear character-level alignment. We analyze
this issue through the following two scenarios (see
cases in Appendix A.2), where 𝑥𝑐𝑒 and 𝑦𝑐𝑒 denotes
the erroneous character and the corresponding ref-
erence character, respectively, "⇒" denotes the
correspondence between the tokens and characters:

𝑥𝑡𝑖 ⇒ {𝑥𝑐𝑒−1} , 𝑥𝑡𝑖+1 ⇒ {𝑥𝑐𝑒 , 𝑥𝑐𝑒+1} (1)

𝑦𝑡𝑖 ⇒ {𝑦𝑐𝑒−1 , 𝑦𝑐𝑒 , 𝑦𝑐𝑒+1} (2)
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Figure 3: Overview of C-LLM. With an LLM (e.g., QWEN (Bai et al., 2023)) as the core, the implementation
process of C-LLM consists of multiple steps as illustrated in the figure.

(1) Comparing Equation 1~ 2, the number of tokens
in the source sentence does not match the reference
sentence, resulting in multiple tokens correspond-
ing to a single token.

𝑥𝑡𝑖 ⇒ {𝑥𝑐𝑒−1} , 𝑥𝑡𝑖+1 ⇒ {𝑥𝑐𝑒 , 𝑥𝑐𝑒+1} (3)

𝑦𝑡𝑖 ⇒ {𝑦𝑐𝑒−1 , 𝑦𝑐𝑒 } , 𝑦𝑡𝑖+1 ⇒ {𝑦𝑐𝑒+1} (4)

(2) In Equation 3~ 4, even if the token counts are
consistent, the characters may not align clearly due
to erroneous characters and reference characters
being placed in mismatched tokens.

In both cases, LLM cannot directly map charac-
ters (e.g., 𝑥𝑐𝑒 -> 𝑦𝑐𝑒 ). This leads to three problems:
(1) The inconsistency in the number of tokens be-
tween sentence pairs prevents LLM from learning
the constraint of equal character length. (2) The un-
clear character correspondence hinders LLM from
learning the constraint of similar character pronun-
ciation. (3) The CSC task becomes more complex,
involving numerous inference scenarios rather than
character copying and replacement.

However, in the CSC task, most correct charac-
ters in the source sentence can be directly copied
during prediction, with only a small proportion
of misspelled characters requiring replacement.
Therefore, establishing a clear alignment between
characters is crucial for this task.

4 Methodology

The CSC task requires a character-level map-
ping, necessitating character-by-character correc-
tion rather than token-by-token. Since current
LLMs process sentences at the token level, map-
ping each character to a token can intuitively re-
duce the complexity of CSC for LLMs. Based on
this concept, we propose C-LLM (as shown in Fig-
ure 3), a Large Language Model-based Chinese

Spell Checking method that learns to check errors
Character by character. This approach consists of
three main steps, as detailed below.

4.1 Character-Level Tokenization
The vocabulary of LLMs is typically multilingual.
However, since CSC primarily addresses errors in
Chinese, we only focus on the Chinese portion of
the vocabulary. As shown in Equations 1∼4, LLMs
often map multiple characters to a single token
during tokenization, complicating the CSC task by
preventing a direct alignment between characters.
To mitigate this issue, we construct character-level
tokenization to ensure that each Chinese character
is mapped to a single token. This approach facil-
itates a clear alignment between characters in the
tokenized sentences, as represented by the follow-
ing equation:

𝑥𝑡𝑖 ⇒{𝑥𝑐𝑒−1} , 𝑥𝑡𝑖+1 ⇒{𝑥𝑐𝑒 } , 𝑥𝑡𝑖+2 ⇒{𝑥𝑐𝑒+1} (5)

𝑦𝑡𝑖 ⇒{𝑦𝑐𝑒−1} , 𝑦𝑡𝑖+1 ⇒{𝑦𝑐𝑒 } , 𝑦𝑡𝑖+2 ⇒{𝑦𝑐𝑒+1} (6)

Specifically, the approach for constructing the
character-level tokenization of LLM (e.g., QWEN
(Bai et al., 2023)), is detailed in Algorithm 1. For
the BPE (Gage, 1994) tokenization, we refine the
vocabulary and the merging rules. With the new
vocabulary, the model is unable to recognize words
composed of multiple Chinese characters, result-
ing in each Chinese character being mapped to a
separate token according to the revised merging
rules. Experimental results indicate that the new
vocabulary size is reduced to 89.2% of the original.

4.2 Continued Pre-training
To mitigate the potential impact on the LLM’s
language modeling ability due to vocabulary con-
straints, we continued pre-training LLM (based on

5947



Models Government Movie General Game Tech Finance Avg
Original-7B 8.84 50.27 12.57 37.19 28.16 10.18 24.53
Char-7B 164.12 931.99 170.02 641.76 560.99 120.99 431.65
Char-PT-7B 11.80 64.48 14.92 48.90 34.99 11.89 31.16
Original-14B 8.25 46.67 11.75 34.60 25.57 9.49 22.72
Char-14B 131.31 758.01 130.71 506.21 410.33 95.40 338.66
Char-PT-14B 10.51 58.76 14.13 44.04 32.20 11.63 28.55

Table 2: The perplexity of LLMs (e.g., QWEN1.5-14B and QWEN1.5-7B) were evaluated using the Chinese domain
modeling dataset (from Skywork (Wei et al., 2023)). "Original" refers to the original LLMs, "Char" denotes LLMs
with character-level tokenization, and "Char-PT" indicates the model that was further pre-trained.

Algorithm 1 Methods for Constructing Our
Character-Level Tokenization.
Input:

The vocabulary of LLMs, 𝑉; The merge rules
applied during tokenization, 𝑀.

Output:
The updated vocabulary 𝑉

′
and merge rules

𝑀
′

for the LLMs;
1: Initialization: The list of word 𝐷𝑤 and the list

of merging rules 𝐷𝑚 to be filtered.
2: for 𝑤𝑜𝑟𝑑 in 𝑉 do
3: if len(𝑤𝑜𝑟𝑑) > 1 and 𝑤𝑜𝑟𝑑 is chinese string

then
4: add 𝑤𝑜𝑟𝑑 in 𝐷𝑤; update 𝐷𝑤;
5: end if
6: end for
7: for 𝑚𝑒𝑟𝑔𝑒_𝑟𝑢𝑙𝑒 in 𝑀 do
8: 𝑎, 𝑏 = 𝑚𝑒𝑟𝑔𝑒_𝑟𝑢𝑙𝑒[0], 𝑚𝑒𝑟𝑔𝑒_𝑟𝑢𝑙𝑒[1]
9: if decode(𝑎 + 𝑏) in 𝐷𝑤 or decode(𝑎) in 𝐷𝑤

or decode(𝑣) in 𝐷𝑤 then
10: add 𝑚𝑒𝑟𝑔𝑒_𝑟𝑢𝑙𝑒 in 𝐷𝑚; update 𝐷𝑚;
11: end if
12: end for
13: Update 𝑉 and 𝑀 by removing the words and

merge rules recorded in 𝐷𝑤 and 𝐷𝑚 , resulting
in 𝑉

′
and 𝑀

′
.

14: return 𝑉
′

and 𝑀
′
.

15: Update the model’s input and output embed-
ding according to the new vocabulary 𝑉

′
.

QWEN (Bai et al., 2023)) to adapt it to the new
vocabulary. Specifically, we performed continued
pre-training with LoRA (Hu et al., 2021) on the
Chinese open-source pre-training dataset provided
by Tigerbot (Chen et al., 2023b), which includes
Chinese books, internet content, and encyclopedias.
The training data comprised approximately 19B
tokens, but we trained for 30,000 steps, covering
about 2B tokens. More implementation details are
provided in the Appendix A.1.

To evaluate the impact of the character-level tok-
enization and continued pre-training on the LLM’s
language modeling ability, we measure the per-
plexity of LLMs using the Chinese domain model-
ing competency assessment dataset from Skywork
(Wei et al., 2023). As shown in Table 2, the perplex-
ity increased significantly after applying character-
level tokenization, indicating a substantial impact
on language modeling ability. However, this effect
was mitigated after continued pre-training, bring-
ing the language modeling ability close to that of
the original LLM. This demonstrates that the model
effectively adapted to the new vocabulary.

4.3 Supervised Fine-tuning
After continue pre-training, LLM only learns gen-
eral language features and does not understand the
specific requirements of the CSC. Therefore, su-
pervised fine-tuning is necessary for the LLM to
learn the CSC task. We utilize LoRA (Hu et al.,
2021) for the fine-tuning. The training loss is de-
fined as follows and the implementation details are
provided in Appendix A.1 and Section 5.

ℒ(𝒯 )=
𝑁∑
𝑖=1

log(ℙ
(
𝑌

′
𝑐 | 𝐼 , 𝑋𝑐 )) (7)

where loss is calculated as the conditional proba-
bility of the predicted sentence 𝑌

′
𝑐 given the task

description of the CSC 𝐼 and source sentence 𝑋𝑐 .

5 Experiments

In this section, we present the details of fine-tuning
and the evaluation results of models on the two
CSC benchmarks: the general dataset CSCD-NS
and the multi-domain dataset LEMON.

5.1 Fine-tuning Datasets and Metrics
Datasets Previous studies (Liu et al., 2021; Xu
et al., 2021) chose SIGHAN (Wu et al., 2013; Yu
et al., 2014; Tseng et al., 2015) as the benchmark.
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However, an increasing number of studies (Hu
et al., 2022; Yin and Wan, 2023; Li et al., 2022)
have identified numerous issues with this dataset,
such as semantically incoherent and annotation er-
rors. Consequently, in our study, we chose two new
CSC benchmarks, namely CSCD-NS and LEMON:
(1) CSCD-NS (Hu et al., 2022): CSCD-NS supe-
rior in quality to SIGHAN, is the first CSC dataset
where the primary source of character errors stems
from pinyin input methods, containing a significant
amount of homophonic and word-level errors. (2)
LEMON (Wu et al., 2023b): LEMON is a novel,
large-scale, multi-domain CSC dataset featuring
various real-world spelling errors. It spans seven
different sub-domains, including game (GAM), en-
cyclopedia (ENC), contract (COT), medical care
(MEC), car (CAR), novel (NOV), and news (NEW),
typically testing the model’s domain correction ca-
pabilities in a zero-shot setting. Appendix A.4
shows the data statistics.

Following the fine-tuning approach of previous
work (Li et al., 2022; Liang et al., 2023), we com-
bined the training data from CSCD-NS and 271K
pseudo-data generated by ASR or OCR (denoted
as Wang271K) (Wang et al., 2018) as our training
set. The validation data from CSCD-NS was used
as our validation set, and we test the models on the
CSCD-NS test data and LEMON, respectively.

Evaluation Metrics We report sentence-level
and character-level precision, recall, and F1 scores
to evaluate different models. These metrics are
reported separately for detection and correction
tasks. We calculate metrics using the script from
CSCD-NS (Hu et al., 2022). For predictions from
LLMs that do not match the source sentence length,
we first employ ChERRANT (Zhang et al., 2022)
to extract non-equal length operations, then replace
these with the source before calculating the metrics.

5.2 Baselines
We use the following CSC models for compari-
son. BERT-style models. (1) BERT (Devlin et al.,
2019): BERT approaches CSC as a sequence label-
ing task, encoding the input sentence and employ-
ing a classifier to select the appropriate characters
from the vocabulary. (2) Soft-Masked BERT (SM-
BERT) (Zhang et al., 2020): SMBERT composed
of a detection and correction network, enhances
BERT’s error detection capabilities. (3) SCOPE
(Li et al., 2022): SCOPE incorporates an auxiliary
pronunciation prediction task with an adaptive task
weighting scheme to improve CSC performance.

For the selection of LLMs, we carry out a se-
ries of experiments using QWEN1.5 (Bai et al.,
2023). As one of the most potent open-source
LLMs in China, QWEN exhibits robust Chinese
processing capabilities and has released model pa-
rameters of multiple scales. We evaluate the perfor-
mance of LLMs under the following two settings,
and the prompts for LLMs are detailed in the Ap-
pendix A.3.

Fine-tuned LLM (LLM-SFT): The original
LLMs (Original), the LLMs with character-level
tokenization (Char), and the further pre-trained
character-level LLMs (Char-PT) are each fine-
tuned on the aforementioned dataset.

LLM with In-Context Learning (LLM-ICL):
The original LLMs (Original), ChatGPT and GPT-4
are adapted to perform the CSC task using prompts.

5.3 Main Results

The main results on the CSCD-NS and LEMON
test sets are presented in Table 3, revealing several
observations: (1) The model’s error correction per-
formance with prompts is suboptimal. Even with
GPT-4, achieving satisfactory results is challenging.
However, supervised fine-tuning significantly im-
proves performance, emphasizing its importance.
(2) Compared to C-LLM, LLMs without contin-
ued pre-training (Char-SFT) show a decline in av-
erage performance, highlighting the necessity of
continued pre-training for better adaptation to new
vocabulary and improved performance. This is
also evident in the perplexity comparison in Sec-
tion 4.2. (3) In domain-specific data, the concise
nature of news language in the NEW dataset and
the idiomatic expressions in the GAM dataset make
models with continued pre-training more prone to
incorrect corrections. (4) The original LLM outper-
forms BERT-style models in error correction, indi-
cating that LLMs have an advantage over BERT-
style models in CSC tasks, especially in vertical
domains, consistent with the insights in Section 2.
(5) C-LLM demonstrates superior error correction
performance in both general and vertical domains
compared to BERT-style models and the original
LLM, achieving state-of-the-art performance. This
confirms the effectiveness of character-level error
correction.

6 Analysis and Discussion

In this section, we further analyze and discuss our
model from both quantitative and qualitative per-
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Models CAR COT ENC GAM MEC NEW NOV CSCD-NS Avg
BERT (Devlin et al., 2019) 46.87 52.61 45.74 23.41 42.73 46.63 32.35 65.49 44.48
SMBERT (Zhang et al., 2020) 49.91 54.85 49.33 26.18 46.91 49.16 34.56 67.22 47.26
SCOPE (Li et al., 2022) 50.71 54.89 45.23 24.74 44.44 48.72 33.17 71.70 46.70
ChatGPT 44.88 57.11 51.46 28.78 49.85 44.40 31.77 52.50 45.09
GPT-4 (Achiam et al., 2023) 54.44 62.82 55.12 36.27 56.36 56.09 45.64 54.41 52.64
Original-ICL-7B 21.48 37.33 33.38 22.12 27.82 23.95 19.22 19.10 25.55
Original-SFT-7B 53.38 56.55 54.44 37.33 59.21 58.96 39.12 68.66 53.46
Char-SFT-7B 52.10 57.02 52.55 39.00 59.85 59.01 40.34 70.41 53.78
Char-PT-SFT-7B (C-LLM) 53.87 58.04 54.57 37.43 61.16 60.07 41.42 71.64 54.77
Original-ICL-14B 36.75 46.72 46.92 25.15 42.48 40.40 31.27 41.09 38.85
Original-SFT-14B 54.56 56.82 53.44 32.59 58.89 63.32 40.58 72.63 54.10
Char-SFT-14B 55.36 59.11 54.30 37.21 60.43 65.28 42.33 72.78 55.85
Char-PT-SFT-14B (C-LLM) 57.54 60.40 56.48 38.02 65.31 64.49 43.92 73.80 57.49

Table 3: Overall performance (%) of C-LLM and baseline models, are presented as character-level correction F1
scores. The best results are highlighted in bold. All the results of the BERT-style models are reproduced by us.

Figure 4: The trend of character-level correction F1 scores for C-LLM (based on QWEN) across various parameter.
Results are presented for both CSCD-NS and LEMON datasets.

spectives.

6.1 Scaling Trends

To further investigate the impact of model size on
correction performance for LLMs, we also conduct
experiments under 4B, 1.8B, and 0.5B parameters,
while keeping the fine-tuning dataset and training
hyperparameters consistent. As shown in Figure 4,
the correction performance of the LLMs decreases
on both test sets as the parameter size reduces.

Comparing C-LLM with BERT-style models,
C-LLM outperforms BERT-style models at both
14B and 7B parameter sizes on the CSCD-NS and
LEMON, particularly excelling in vertical domain
tasks. However, smaller models exhibit weaker per-
formance. We speculate that despite the simplifica-
tion of the CSC through character-level tokeniza-

tion, smaller models still struggle to understand the
task adequately, resulting in poor performance.

Comparing C-LLM with the original LLM, C-
LLM consistently outperforms the original LLM
across various parameter sizes on the CSCD-NS
dataset, although the performance gap narrows at
1.8B. This indicates that C-LLM has superior er-
ror correction capabilities compared to the original
LLM. However, on the LEMON dataset, C-LLM
underperforms the original LLM at sizes of 4B and
smaller. We attribute this to the substantial amount
of domain-specific data included in the pre-training
of original LLM (Bai et al., 2023), whereas our
continued pre-training for C-LLM only includes
general Chinese data. This may lead to the forget-
ting of some domain knowledge in LLM. Larger
C-LLM models (14B and 7B) suffer less from this
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forgetting due to their larger parameter sizes. De-
spite some domain knowledge being forgotten, the
character-level correction approach allows larger C-
LLM models to achieve better performance, while
smaller models are more affected by knowledge
forgetting, resulting in poorer performance.

Comparing C-LLM with Char-SFT, Char-SFT
consistently underperforms C-LLM across both
datasets and all model sizes. This underscores the
importance of continued pre-training, which en-
ables the model to better adapt to new vocabulary
and achieve improved performance.

6.2 Analysis of Length and Phonetic

Models Equal-length Non-homophon Ratio
Original-ICL-14B 22.86% 53.70% 84.42%
Original-SFT-14B 96.92% 8.63% 38.52%
Char-PT-SFT-14B 99.78% 3.83% 18.43%
Target 100% 1.74% /

Table 4: Statistical results from the length and pho-
netic perspective, using the 14B models as an example.
"Target" refers to the reference sentences in the test set.
"Ratio" indicates the ratio of non-homophone characters
in incorrect predictions.

C-LLM alleviates issues related to character-
level length constraints. To evaluate the effec-
tiveness of Char-PT-SFT (C-LLM) in addressing
character-level length constraints, we select sen-
tence pairs from the CSCD-NS test set. These
pairs exhibit tokenization discrepancies between
the source and reference sentences, highlighting
character-to-word mapping issues. By comparing
the model’s predictions on these sentence pairs to
see if it maintains the same number of characters
as the source sentence, we can better assess its un-
derstanding of character-level length. As shown in
Table 4, Original-SFT increases the proportion of
predictions maintaining the character-level length
to 96.92% compared to Original-ICL, indicating
that fine-tuning helps LLMs adhere to character-
level length constraints.

Under C-LLM, the consistency in character-level
length further improves to 99.78%. This finding
demonstrates that the one-to-one correspondence
between tokens and Chinese characters enables
LLMs to more easily generate sentences that meet
character-level length constraints, resulting in su-
perior performance.

C-LLM can reduce phonologically dissimi-
lar predictions. We calculate the proportion of
non-homophonic characters among all predicted

Models #Tokens #Characters AR Time (s)
Original-SFT-7B 83530 128676 86.50% 2028.77
Char-PT-SFT-7B 127057 128801 93.88% 2481.97

Table 5: Analysis of Inference Speed. "AR" indicates
the acceptance rate generated by draft model.

characters and the proportion of non-homophonic
errors among all incorrect predicted characters
in the CSCD-NS test set. As shown in Table 4,
Original-ICL produces more than half of the non-
homophonic errors, with the majority of its incor-
rect predictions being non-homophonic errors. In
contrast, Original-SFT significantly reduced both
proportions, indicating that supervised fine-tuning
helps the LLMs maintain phonetic constraints.

C-LLM generates fewer non-homophonic pre-
diction errors, reducing the proportion of non-
homophonic errors among total prediction errors
by approximately 20% compared to Original-SFT.
This suggests that although C-LLM still produces
some non-homophonic predictions, the impact of
these errors on LLMs’ correction performance has
been greatly diminished.

6.3 Inference Speed Analysis

Using a character-level tokenizer can decrease the
model’s inference speed. In this study, we perform
a quantitative analysis of this impact by employ-
ing speculative decoding (Chen et al., 2023a). Our
evaluation uses samples containing spelling errors
from the CSCD-NS test set. The target model has
7B parameters, while the draft model has 1.8B pa-
rameters, with draft tokens set to 4. Specifically, to
test the speculative decoding capability of Original-
SFT-7B, we use Original-SFT-1.8B as the draft
model. For Char-PT-SFT-7B, we use Char-PT-SFT-
1.8B as the draft model.

As shown in Table 5, under Char-PT-SFT-7B,
the number of decoded tokens increased by 52%
compared to Original-SFT-7B, but the overall time
consumption only increased by 22.33%. This is
because the task complexity was reduced by Char-
PT-SFT-7B, leading to a higher acceptance rate for
speculative decoding compared to original LLM.

7 Conclusion

This paper indicates that LLMs fail to meet the Chi-
nese character-level constraints of the CSC task,
namely equal length and phonetic similarity, which
hinders their correction performance. We find that
the root cause lies in the granularity of tokeniza-
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tion, which mixes characters and words, making it
difficult to satisfy these character-level constraints.
To address this issue, we propose C-LLM, which
establishes mappings between Chinese characters,
enabling the model to learn correction relationships
and phonetic similarities. This approach simplifies
the CSC task to character replication and substitu-
tion. Experimental results demonstrate that C-LLM
outperforms previous methods on both general and
multi-domain benchmarks, achieving state-of-the-
art performance.

8 Limitations

Our work has three main limitations. First,
our method is specifically designed for Chinese
spelling checking and may not effectively address
sentences with English errors, as we did not pro-
cess English words in the vocabulary. Second, our
model has room for improvement, especially in
handling new and trending words, which may re-
quire integrating methods such as RAG. Finally,
our model’s inference time is longer compared to
the original model, indicating a need for further
optimization for practical applications.
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A Appendix

A.1 Implementation Details
Hyparameters of Continued Pre-training Our ex-
periments are conducted on eight NVIDIA A100-
SXM4-40GB GPUs. We provide a overview of
the hyperparameter settings used in continued pre-
training with LoRA (Hu et al., 2021), as illustrated
in Table 6. Our implementation is based on Hug-
gingface’s Transformers (Wolf et al., 2020) in Py-
Torch.

Configurations Values
learning_rate 1e-5
batch_size 128
adam_beta1 0.9
adam_beta2 0.999
adam_epsilon 1e-8
tokens/batch 216

steps 30000
lora_r 16
lora_alpha 32
lora_dropout 0.1

Table 6: Hyparameters used in continued pre-training.

Hyparameters of Supervised Fine-tuning Our
experiments are conducted on eight NVIDIA A100-
SXM4-40GB GPUs. We also provide the overview
of the hyperparameter settings used in fine-tuning
with LoRA (Hu et al., 2021), as illustrated in Ta-
ble 7.

Configurations Values
learning_rate 1e-4
batch_size 32
adam_beta1 0.9
adam_beta2 0.999
adam_epsilon 1e-8
num_train_epochs 10
lora_r 16
lora_alpha 32
lora_dropout 0.1

Table 7: Hyparameters used in fine-tuning.

A.2 Examples for illustration
During model training, the mapping between
source tokens and reference tokens is learned. The
Table 8 presents examples illustrating the mismatch
between source and reference tokenization in two
scenarios, using sentences containing a single error
as examples:

(1) Case1 corresponds to Equations 1~ 2 in the
paper, where the number of tokens in the source
sentence does not match the reference sentence,
resulting in multiple tokens mapping to a single
token (e.g., "胜(win)", "名(name)", "的(of)"->"著
名的(famous)").

(2) Case2 corresponds to Equations 3~ 4, where
the token counts are consistent, but the characters
may not align clearly due to erroneous and refer-
ence characters being placed in mismatched tokens
(e.g., The tokens where "达(reach)" and "大(big)"
are located are not aligned). However, even if the
characters can be placed in matched tokens (e.g.
"目前(present)"->"开幕(open)"), the semantic cor-
respondence between tokens may be disrupted due
to improper tokenization.

The examples above fail to establish a clear
character-level mapping, requiring the model to de-
duce implicit character alignment (e.g., "胜(win)"-
>"著(write)", "达(reach)"->"大(big)", "目(eye)"-
>"幕(screen)"). This complicates the CSC by turn-
ing it into a semantic inference problem, thereby
hindering the model’s ability to effectively learn
character-level length and phonetic constraints.

A.3 Prompts Setting

Table 9 presents the prompts used to evaluate the er-
ror correction performance of the fine-tuned LLM,
along with the few-shot prompts for ChatGPT, GPT-
4 and Original-ICL. The few-shot prompt consists
of 10 examples: 5 sentence pairs without typos and
5 with typos. These positive and negative examples
are randomly selected from CSCD-NS, and their
positions within the prompt are also randomized.

A.4 Data Statistics

The statistical results for the Wang271K, CSCD-
NS and LEMON datasets are presented in Table 10.
The LEMON spans seven different sub-domains,
including game (GAM), encyclopedia (ENC), con-
tract (COT), medical care (MEC), car (CAR), novel
(NOV), and news (NEW). To better evaluate model
performance, we filtered out sentences from the
LEMON dataset where the source and reference
sentences had unequal character-level lengths or
where the source sentence exceeded 1000 charac-
ters.

A.5 Case Study

Table 11 compares the performance of C-LLM and
the original LLM.
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Case1 Sentence pair with inconsistent token counts
Source 1 胜/名/的/酒店 Winning Hotels
Reference 1 著名的/酒店 Famous Hotels
Case2 Sentence pairs with consistent token counts
Source 1 高达/的/公众/形象 Gundam’s public image
Reference 1 高/大的/公众/形象 Tall public image
Source 2 游戏/展开/目前/一天 The game unfolds for the current day
Reference 2 游戏/展/开幕/前一天 The day before the game begins

Table 8: Examples illustrating the tokenization mismatches in two scenarios. ’/’ indicates participle position.

Models Prompts

Fine-tuned LLM
任务: 纠错文本,输入: "原句",输出:
(Task: Correct the text, Input: {𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒}, Output:)

ChatGPT, GPT-4, Original-ICL
纠正句子中的错别字，并返回纠正后的句子。(Identify and
correct the spelling errors in the sentence, then provide the cor-
rected version.)
{𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒1}=> {𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒1} ... {𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒10} =>
{𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒10} => {𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒} =>
Table 9: Prompts used for testing.

Train #Sent #Errors #Phonetically Similar Errors Avg.Length
CSCD-NS 29,999 15,142 14,804 57.39
Wang271K 271,329 381,962 157,907 44.4
Dev #Sent #Errors #Phonetically Similar Errors Avg.Length
CSCD-NS 5,000 2,554 2,497 57.45
Test #Sent #Errors #Phonetically Similar Errors Avg.Length
CSCD-NS 5,000 2,528 2,484 57.63
CAR 3245 1,911 1,500 43.44
COT 993 486 341 40.11
ENC 3271 1,787 1,401 38.30
GAM 393 164 130 32.81
MEC 1942 1,032 827 39.18
NEW 5887 3,260 2,698 25.15
NOV 6000 3,415 2,585 36.24

Table 10: Statistics of the training, development and test datasets.

In the first case, although the correct mapping
is from "这也(as well)" to "这一(this)", the model
fails to understand the relationship between the
incorrect characters. It splits "这也(as well)" into
two tokens and predicts characters that do not meet
phonetic constraints.

In the second case, the original LLM should
map the characters "详(comprehensive)" and
"析(analyze)" to the word "详细(detail)". How-
ever, it incorrectly maps "详(comprehensive)" to
"实(accurate)", with the predicted characters not
being phonetically similar to the source ones.

These errors indicate that the original LLM lacks
a clear understanding of characters and words,
making it unable to accurately correct misspelled
words. In contrast, C-LLM can correctly cor-
rect misspelled characters within words through
character-level tokenization.

However, the third case shows that C-LLM may
also make errors when correcting single incorrect
characters, indicating that there is still room for
improvement in our model. For some new popular
words it may be necessary to combine the RAG
(Lewis et al., 2020) method to do error correction.
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Models Cases in CSCD-NS test set

Original
Src: 这也 /更新/，/让... This also update allows ...
Ref: 这一 /更新/，/让... This update allows ...
Pre: 这/此 /更新/，/让... This this update allows ...

C-LLM
Src: 这/也 /更/新/，/让... This also update allows ...
Ref: 这/一 /更新/，/让... This update allows ...
Pre: 这/一 /更/新/，/让... This update allows ...

Original
Src: 可/查询/详/析 /数据/信息 Can query analyzied data information
Ref: 可/查询/详细/数据/信息 Can query detailed data information
Pre: 可/查询/详/实 /数据/信息 Can query accurate data information

C-LLM
Src: 可/查/询/详/析 /数/据/信/息 Can query analyzied data information
Ref: 可/查/询/详/细 /数/据/信/息 Can query detailed data information
Pre: 可/查/询/详/细 /数/据/信/息 Can query detailed data information

Original
Src: 关注/微信/火 /下载/都有/机会 Follow WeChat fire download for a chance
Ref: 关注/微信/或 /下载/都有/机会 Follow WeChat or download for a chance
Pre: 关注/微信/或 /下载/都有/机会 Follow WeChat or download for a chance

C-LLM
Src: 关/注/微/信/火 /下/载/都/有/机/会 Follow WeChat fire download for a chance
Ref: 关/注/微/信/或 /下/载/都/有/机/会 Follow WeChat or download for a chance
Pre: 关/注/微/信/号 /下/载/都/有/机/会 Follow WeChat account download for a chance

Table 11: Case study of correction results between models C-LLM and Original LLM (with 14B parameters) on the
CSCD-NS test set. We mark the wrong/correct characters.
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