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Abstract

Large language models (LLMs) often generate
inaccurate or fabricated information and gen-
erally fail to indicate their confidence, which
limits their broader applications. Previous work
has elicited confidence from LLMs by direct
or self-consistency prompting, or constructing
specific datasets for supervised finetuning. The
prompting-based approaches have inferior per-
formance, and the training-based approaches
are limited to binary or inaccurate group-level
confidence estimates. In this work, we present
SaySelf, a novel training framework that
teaches LLMs to express more fine-grained
confidence estimates. In addition, beyond
the confidence scores, SaySelf initiates the
process of directing LLMs to produce self-
reflective rationales that clearly identify gaps
in their parametric knowledge and explain their
uncertainty. This is achieved by using an LLM
to automatically summarize the uncertainties in
specific knowledge via natural language. The
summarization is based on the analysis of the
inconsistency in multiple sampled reasoning
chains, and the resulting data is utilized for su-
pervised fine-tuning. Moreover, we utilize rein-
forcement learning with a meticulously crafted
reward function to calibrate the confidence
estimates, motivating LLMs to deliver accurate,
high-confidence predictions and to penalize
overconfidence in erroneous outputs. Experi-
mental results demonstrate the effectiveness of
SaySelf in reducing the confidence calibration
error and maintaining the task performance.
The generated self-reflective rationales are
also reasonable and can further contribute to
the calibration. The code is made public at
https://github.com/xu1868/SaySelf.

1 Introduction

While large language models (LLMs) exhibit re-
markable proficiency in reasoning and generating

*Equal contribution.
†Corresponding author.

effective responses (OpenAI, 2023; Touvron et al.,
2023; Jiang et al., 2023; Wang et al., 2024), they
often produce fabricated information (a.k.a, hallu-
cination) and typically hesitate to indicate their un-
certainty when faced with unfamiliar questions (Ye
et al., 2023; Liu et al., 2023). Determining how
to accurately obtain reliable confidence estimates
from LLMs is essential (Xiong et al., 2023; Zhou
et al., 2023), particularly when the responses are
not limited to single tokens1.

Previous work on eliciting confidence from
LLMs includes prompting-based and training-
based approaches. Prompting-based methods, such
as direct prompting and self-consistency prompting
in Figure 1, employ specific prompts to generate
confidence scores or use answer consistency as a
confidence indicator, even though these can have
poor calibration performance or significantly in-
crease inference latency (Tian et al., 2023; Xiong
et al., 2023; Diao et al., 2023). Training-based
approaches, such as group-based calibration train-
ing and R-Tuning in Figure 1, develop specialized
datasets for fine-tuning that encourage LLMs to
express confidence. However, these methods often
provide suboptimal or binary confidence estimates,
failing to accurately reflect the models’ confidence
levels (Lin et al., 2022; Zhang et al., 2023a; Yang
et al., 2023). In conclusion, previous work tends
to suffer from the following problems: (1) Poor
calibration performance; (2) Coarse-grained confi-
dence levels; (3) Long inference latencies.

In this work, we present SaySelf, a training
framework that teaches LLMs to generate more
accurate and fine-grained confidence estimates. It
successfully tackles the aforementioned problems
in previous work. More importantly, SaySelf
also goes beyond the confidence elicitation in
previous work, and further enables LLMs to

1The confidence of a single-token answer can be derived
from its token probability, which typically exhibits high cali-
bration (OpenAI, 2023; Chen et al., 2023b).
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Direct Prompting /
Group-based Calibration Training

Self-Consistency
Prompting

Previous Work

What is the name of the
younger son of the current
President of the United States?

Robert Hunter Biden. My overall confidence is 3.

Robert Hunter Biden. According to my knowledge, there is a slight
possibility that the current President is Trump. My overall confidence is 8. SaySelf

Ground TruthGround TruthGround Truth

Robert Hunter Biden

Robert Hunter Biden. I’m sure. R-Tuning

Robert Hunter Biden.

Robert Hunter Biden.

Robert Hunter Biden.

Robert Hunter Biden.

Sampling Robert Hunter Biden. 
My overall confidence is 7. 

Robert Hunter Biden.

Robert Hunter Biden.

Robert Hunter Biden.

Barren Trump.

Barren Trump.

Barren Trump.

Figure 1: The comparison between SaySelf and previous work. SaySelf can produce the self-reflective rationale
that explains why the model is uncertain and the fine-grained and accurate confidence estimates. This simple
example is constructed for illustration purposes, and the reasoning chain is omitted for brevity.

generate self-reflective rationales that indicate
their knowledge gap and explain their confidence
estimates (Figure 1). We accomplish this by
automatically generating a model-specific dataset
for supervised fine-tuning using an off-the-shelf
LLM (e.g., GPT-4 (OpenAI, 2023)). Specifically,
for each question, we sample multiple reasoning
chains from LLMs. We then perform clustering
of the reasoning chains based on the semantic sim-
ilarity and retain one instance per cluster. GPT-4
is then tasked with analyzing these instances from
various clusters, summarizing uncertainties in
natural language from a first-person perspective,
which is subsequently used for fine-tuning.

For accurate and fine-grained confidence esti-
mates, we employ reinforcement learning to cali-
brate LLMs’ confidence estimate in each response.
We design a reward function that incentivizes
LLMs to produce accurate, high-confidence predic-
tions and imposes penalties for overconfidence in
incorrect responses. In addition, the self-reflective
rationales and confidence estimates are generated
without multiple sampling, significantly reducing
the inference time.

We evaluate SaySelf on multiple knowledge-
extensive question-answering tasks. We show that
SaySelf significantly reduces the confidence cal-
ibration error and maintains the task performance.
The generated self-reflective rationales effectively
capture the internal uncertainty and can further
improve the calibration performance. In addition,
we find that SaySelf enables LLMs to produce
low confidence in unanswerable questions.

Our research has the potential to exert influence
on both related academic research and real-world
applications, including but not limited to the fol-

lowing cases: (1) A clear confidence expression
with explanations can promote trustworthiness in
AI, from the perspective of LLMs’ alignment. (2)
The self-reflective rationales can guide LLMs to
perform subsequent steps, like invoking external
tools or asking clarification questions, for better
interaction and performance. (3) We also antici-
pate promising developments in training protocols
once LLMs are trained with SaySelf, including
proactive learning algorithms that enhance LLMs’
interactions with humans for continued learning.

2 Related Work

LLMs’ Confidence Elicitation Eliciting accu-
rate confidence estimates for LLM-generated an-
swers that contain multiple tokens is challeng-
ing (Borji, 2023; Zhou et al., 2024). Previous
work can be categorized into prompting-based and
training-based approaches. Prompting-based ap-
proaches use a specific prompt to guide LLMs
to generate confidence scores for their predic-
tions (Tian et al., 2023; Kadavath et al., 2022),
or prompt LLMs to generate the answers multiple
times and use the consistency levels as indicators
of their confidence (Xiong et al., 2023; Lyu et al.,
2024; Diao et al., 2023; Yang et al., 2023). These
approaches can cause inferior performance or lead
to extensive inference-time latency. Training-based
approaches construct a specialized dataset for su-
pervised fine-tuning, encouraging LLMs to express
their uncertainty. Lin et al. (2022) first group exam-
ples based on their types of question as the label,
then obtains the confidence score for each example
using the empirical accuracy for the whole group.
This approach can lead to suboptimal confidence
estimates since not all examples in the same group
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are equal. R-Tuning (Zhang et al., 2023a) recon-
structs the SFT data to add “I am sure/unsure” at
the end of the correct/incorrect responses, which
can only generate binary uncertainty estimates. As
mentioned in Section 1, SaySelf addresses the lim-
itations of the previous methods and guides LLMs
to generate more accurate and fine-grained confi-
dence estimates.

LLMs’ Hallucination & Uncertainty Expression
LLMs’ hallucination refers to instances where
these models generate information that is not sup-
ported by their training data or the input pro-
vided (Zhang et al., 2023b; Liang et al., 2024;
Agrawal et al., 2023). Numerous research is dedi-
cated to exploring the causes of hallucination (Dziri
et al., 2022; McKenna et al., 2023; Han et al., 2024)
and developing methods to detect or mitigate hallu-
cination (Varshney et al., 2023; Rawte et al., 2023;
Andriopoulos and Pouwelse, 2023). Besides the
hallucination, the reluctance of LLMs to express
uncertainty when they are unable to solve tasks can
further erode trust in these systems (Ji et al., 2023;
Zhou et al., 2024). Existing research identifies the
tendency in LLMs to fabricate information when
addressing unknown questions (Liu et al., 2023;
Hu et al., 2023; Amayuelas et al., 2023). This in-
ability can be traced back to the supervised instruc-
tion finetuning (SFT) stage, which trains LLMs on
human-written or GPT-synthesized (instruction, re-
sponse) pairs (Wang et al., 2022; Peng et al., 2023).
This paradigm neglects the discrepancy between
pretraining and SFT data, potentially inducing hal-
lucinations by instructing LLMs to appear help-
ful, even when they are unable to solve the prob-
lem, and discouraging them from expressing uncer-
tainty or declining responses (Zhang et al., 2023a).
In this work, we propose SaySelf to train LLMs
to express accurate confidence estimates and self-
reflective rationales as an efficient method against
hallucinations, as they can guide end users to ver-
ify information in responses and help them regain
confidence in LLMs.

LLMs’ Explainability Our work is also related
to explainability for LLMs regarding the self-
reflective rationales generation (Zhao et al., 2024;
Singh et al., 2024). Previous work on natural lan-
guage explanations for LLMs provides motivation
to explain the models’ decision-making process
for a prediction (Costa et al., 2018; Cambria et al.,
2023). The typical approaches to producing natural
language explanations involve training LLMs with

the ground-truth labels and the human-annotated
explanations that can serve as effective augmented
supervision that guide LLMs to reason in a right
way (Rajani et al., 2019; Luo et al., 2021; Yordanov
et al., 2021). Another line of research adopts chain-
of-thought (CoT) reasoning as natural language
explanations (Wei et al., 2022; Lyu et al., 2023; Xu
et al., 2024; Chen et al., 2023a). Compared to pre-
vious methods, SaySelf significantly departs from
existing methods by generating rationales that not
only justify the predictions but also elucidate the
confidence estimates. Most importantly, SaySelf
adopts LLMs’ internal reasoning process to gen-
erate self-reflective rationales, instead of human-
annotated explanations, which may not be faithful
to specific LLMs. Unlike CoT, which primarily
clarifies the rationale behind predictions, SaySelf
also explicates the sources of uncertainty.

3 SaySelf

We present SaySelf, a training framework to teach
LLMs to express fine-grained confidence with self-
reflective rationales (see Figure 2). SaySelf con-
sists of 2 essential stages: (1) Supervised Fine-
Tuning: We establish a model-specific dataset con-
taining self-reflective rationales and confidence es-
timates. This dataset is built from multiple sampled
responses from LLMs. (2) Reinforcement Learn-
ing from Task Supervision: We use reinforcement
learning with a carefully designed reward function
to further calibrate the confidence estimates for
each instance. For both 2 stages, we adopt the
training samples in HotpotQA (Yang et al., 2018),
which typically require multi-step reasoning on
knowledge facts to derive the answer. After the
two-stage training, the trained models can directly
answer questions with confidence estimates and
self-reflective rationales without additional compu-
tational overhead.

3.1 Supervised Fine-Tuning

In this stage, our goal is to construct a supervised
dataset D, where each sample contains a question
q, an answer with the reasoning chain s, the self-
reflective rationale r, and the confidence estimate
c. Basically, r summarizes specific knowledge that
the LLM is uncertain about, and is generated by
analyzing the inconsistency in multiple selective
responses sampled from the vanilla LLM M . c is
an integer from 1 to 10, and is derived based on the
consistency of s.
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Current president: Joe Biden 
His younger son: Robert Hunter
Biden. 
The younger son of the current
president: Robert Hunter Biden.

Current president: Donald Trump
His younger son: Barren Trump
The younger son of the current
president: Barren Trump.

Correctness?

The current president of the U.S. is
Donald Trump. His younger son is
Barren Trump. So the younger son of
the current president of the U.S. is
Barren Trump.

Similar responses *20

... ...
...

Supervised 
Fine-tuning

8

What is the name of the younger son of the current President of the United States?

Robert Hunter Biden. The current president of the U.S. is Joe Biden. His younger
son is Robert Hunter Biden. So the younger son of the current president of the U.S.
is Robert Hunter Biden.

I’m uncertain on who is the current president of the United States.

q

s

c

r

Reinforcement Learning
from Task Supervision

Reward

The current monarch of the United
Kingdom is Charles III. His older son
is William, Prince of Wales. So the
answer is William, Prince of Wales.
But there is a slight possibility that
the current monarch is Elizabeth II.
My overall confidence is 7.

Rationale Summarization

Computing Reward

Confidence level: 7

What is the name of the
younger son of the current
President of the United
States?

Sampling (N=100) Reasonings Clustering

Sampling

The current president of the U.S. is
Joe Biden. His younger son is Robert
Hunter Biden. So the younger son of
the current president of the U.S. is
Robert Hunter Biden.

Vanilla LLM Instructor GPT-4

Similar responses *80

I’m uncertain about who
is the current president
of the United States.

... ...
...

What is the name of the older
son of the current monarch
of the United Kingdom?

Finetuned LLM

... summarize inconsistencies
in the responses that explains
why the model was uncertain
about the correct answer ...

Stage 1:Stage 1:

Stage 2:Stage 2:

   (response) = 1I

Ground TruthGround TruthGround Truth

William, Prince of Wales

Ground TruthGround TruthGround Truth

Robert Hunter Biden

Normalize

Figure 2: The overview of SaySelf, consisting of the supervised fine-tuning and reinforcement learning from task
supervision stages. The former stage trains LLMs to generate self-reflective rationales and confidence estimates
based on multiple sampling, and the latter stage employs reinforcement learning to further calibrate the confidence
estimates based on task supervision. q, s, c, and r denote question, response, confidence estimate, and self-reflective
rationale respectively.

We adopt 90K questions in HotpotQA. For each
question, we prompt M to generate the reason-
ing chain and the answer N times. We perform
clustering on the N responses to obtain K repre-
sentative clusters based on the semantic similarity
among responses since there is significant redun-
dancy. Specifically, we adopt the Instructor (Su
et al., 2022), an instruction-finetuned text embed-
ding model that produces text embeddings cus-
tomized to the specific task and domain. Our clus-
tering process involves examining each response,
identifying those within the similarity threshold T ,
and grouping them accordingly until all responses
have been processed. The cluster size S is defined
as the number of responses in the cluster. We ran-
domly pick one selected response per cluster for
the following steps, as empirical evidence suggests

significant similarity among responses within the
same cluster (see Appendix B for details).

To derive the confidence estimate c, we first
check the correctness of the selected response from
each group using the golden answer annotated
in HotpotQA. Samples with no correct responses
are removed to avoid training LLMs on incorrect
examples. The correct response is taken as the
golden s for this sample, and c is computed as:
c = round(Sc

N ∗10), where Sc is the size of s’s clus-
ter, and round(x) returns the nearest integer of x.

To derive the self-reflective rationale r, we in-
struct GPT-4 to carefully analyze and compare all
selected responses, focusing on the inconsistency
in the provided knowledge facts. Then GPT-4 is
required to summarize “why M is uncertain” in
natural language from a first-person perspective.
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The summary is thus taken as the self-reflective ra-
tionale r. The prompt is provided in Appendix A.

We train the vanilla M on D via supervised fine-
tuning. The objective function is:

max
Θ

∑

(q,s,r,c′)∈D
[ logP (s|q; Θ)

+ logP (r|s, q; Θ) + logP (c′|s, r, q; Θ)] (1)

where Θ represents the parameters of M , c′ is the
natural language expression of the confidence esti-
mate c (a.k.a., “My confidence is c”). The objective
function is meant to maximize the sum of these log
probabilities over all the tuples (q, s, r, c′) in the
dataset D.

3.2 Reinforcement Learning from Task
Supervision

Due to the nature of supervised fine-tuning, the
model tends to produce homogeneous confidence
levels, such as relatively lower confidence levels
for correct responses and higher levels for incor-
rect responses. To address this issue, we use rein-
forcement learning to further calibrate LLMs’ fine-
grained confidence estimates and guide the model
to produce more accurate and differentiated values.
During the sampling phase, LLMs are prompted
to produce responses, self-reflective rationales, and
confidence levels. To optimize the model, we com-
pare the generated response with the ground truth.
Subsequently, we formulate a reward function con-
sidering answer accuracy and model confidence. To
encourage the model towards more differentiated
values, the reward function has a quadratic output:

R = 1−2∗(I(response)−confidence level)2 (2)

where I() is the indicator function, which returns
1 if the generated response is correct, else 0. The
confidence level is normalized between 0 and 1.
This reward function reinforces LLMs for high
confidence in accurate samples while penalizing
them for being overconfident in incorrect ones.

We utilize the Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017) to train
LLMs based on this defined reward function. The
optimization objective is expressed as:

max
Θ

Et[ min(rt(Θ)Ât, clip(rt(Θ),

1− ϵ, 1 + ϵ)Ât)] (3)

where rt(Θ) calculates the probability ratio of the
newly proposed policy to the old policy. The ad-
vantage estimate Ât, crucial for directing updates,

is calculated from the difference between the antic-
ipated future rewards under the current policy and
the baseline or value function. This advantage esti-
mate is directly influenced by the reward R, which
in turn ties the optimization process closely with
both response accuracy and confidence level.

3.3 Implementation Details

For the supervised dataset collection, the sampling
time N is set to 100 and the temperature is 1.2.
The similarity threshold T is set to 0.9. For super-
vised fine-tuning, the learning rate is set to 7e-5
and the batch size is set to 8. For the reinforcement
learning stage, the learning rate is set to 1e-5 and
the batch size is set to 8. To check the correctness
of the responses, we utilize a verification method
where annotated answers must be present within
the responses. This heuristic demonstrates high
precision in knowledge-based QA tasks.

4 Experiments

4.1 Evaluation Setting

Evaluation Datasets We follow Zhang et al.
(2023a) to evaluate LLMs on knowledge-extensive
QA tasks. We include the following datasets: Hot-
potQA (Yang et al., 2018), a dataset of multi-hop
reasoning question-answer pairs; TruthfulQA (Lin
et al., 2021), a dataset that tests whether mod-
els generate truthful answers to questions specif-
ically designed to induce false answers; Strat-
egyQA (Geva et al., 2021), a dataset of true/-
false questions requiring multi-hop reasoning;
FEVER (Thorne et al., 2018), a dataset used to as-
sess the ability of models to verify the factuality of
statements against Wikipedia documents; HaluE-
val (Li et al., 2023), a dataset that evaluates the hal-
lucination of models; ParaRel (Elazar et al., 2021),
a dataset that measures the model’s performance in
understanding paraphrased relational facts.

Evaluation Environments The experiments are
run on a server with 4 Nvidia A6000 GPUs
and 256GB RAM. The models are implemented
with the Huggingface Transformers (https://
huggingface.co/) library. The reported data are
all average values of three runs. Both stages take
approximately 1 hour to train during the two-stage
training process.

Evaluation Metrics We measure various ap-
proaches from 3 aspects. (1) Confidence Calibra-
tion Performance: We adopt 2 calibration metrics.
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First, we use the ECE score to measure the con-
fidence calibration error (Guo et al., 2017; Chen
et al., 2023b). Basically, ECE evaluates the corre-
lation between the confidence scores assigned by
LLMs and their corresponding correctness. For
responses from LLMs A, it can be calculated as

ECE =
1

|A|
∑

a∈A
|I(a)− conf(a)|, (4)

where I() is the indicator function defined in Equa-
tion 2, and conf() returns the confidence level of
LLMs. Second, we adopt the AUROC score fol-
lowing (Hendrycks and Gimpel, 2016). It measures
the ability of LLMs to distinguish between correct
and incorrect responses across different threshold
settings. It can be calculated as

AUROC =

∫ 1

0
TPR(FPR−1(x))dx, (5)

where x is the threshold confidence level, TPR
is the true positive rate under this threshold con-
fidence level, and FPR is the false positive rate
under the threshold. (2) Task Performance: We
measure the typical accuracy on the test split of
the datasets. (3) Faithfulness of the Generated
Self-Reflective Rationales: We make the first ef-
fort to measure the faithfulness of the provided
self-reflective rationales. We suggest employing
the same intuition utilized in SaySelf. For each
question, we sample multiple responses (answers
with reasoning chains) from the LLM, and perform
clustering to retain several representative responses.
Subsequently, we utilize a proficient LLM (GPT-
4) to examine whether the provided self-reflective
rationales can faithfully express the uncertainty
demonstrated in the sampled responses, and give a
score from 1 to 10. The final faithfulness score is
the average over all samples.

Baselines We compare with the following ap-
proaches: (1) Direct prompting for confidence ex-
traction (DP): We directly ask the vanilla LLMs
to give a confidence score from 1 to 10 in their
previous response (Tian et al., 2023). (2) Self-
consistency-based confidence estimate (SC): We
use the self-consistency-based approach to derive
the confidence estimates of LLMs. Confidence is
calculated as the ratio of response frequency to
the number of samples (Xiong et al., 2023). (3)
Prompting for correctness (PC): We ask the vanilla
LLMs to judge whether their responses are cor-
rect or not (Kadavath et al., 2022). (4) R-Tuning:

We train LLMs to generate binary confidence es-
timates (sure vs. unsure) using a model-specific
dataset (Zhang et al., 2023a). (5) Aligning with
self-consistency-based confidence (AS): We train
LLMs to generate the confidence estimates de-
rived from self-consistency prompting (Yang et al.,
2023). (6) Grouping-based confidence estimates
for calibration training (GCE): We group the sam-
ples in HotpotQA via clustering, and use the ac-
curacy of samples in the group as the confidence
estimates for all samples within that group. The
constructed dataset is thus used for fine-tuning (Lin
et al., 2022). We implement the baseline ap-
proaches and SaySelf on Mistral-7B (Jiang et al.,
2023) for fair comparison. To prove that SaySelf
can generalize on multiple models, we also im-
plement the baseline approaches and SaySelf on
Llama 3 8B (Team, 2024) in Appendix D.

4.2 Main Experimental Results
Confidence Calibration Performance. We
show the ECE results (Table 1) and the AUROC
results (Table 5 in the Appendix) that measure the
correlation between the expressed confidence and
the actual performance. We observe that SaySelf
significantly outperforms all baseline approaches
in reducing the calibration error (ECE) and
improving the distinction of confidence in correct
and incorrect responses (AUROC). This conclusion
holds in both in-distribution (HotpotQA) and
out-of-distribution datasets, which demonstrates
the general applicability of SaySelf. Also, the
difference of SaySelf from other baselines is
mostly statistically significant (p < 0.05), further
demonstrating its capability to provide effective
confidence estimates.
Task Performance. We show the accuracy results
in Table 2. SC, which uses multiple sampling,
achieves overall better performance compared to
other approaches. However, this results in high
inference latency. Compared to other baseline ap-
proaches, SaySelf can overall maintain the origi-
nal task performance. This indicates that the task
of confidence estimates doesn’t conflict with the
original task, consistent with previous work (Chen
et al., 2023b; Zhang et al., 2023a).
Faithfulness of the Generated Self-Reflective
Rationales. The evaluation prompt for GPT-4 is
shown in Appendix A. We show the faithfulness
results in Table 3. Due to the budget limits for GPT-
4 evaluation, we sample 100 instances from each
dataset for evaluation. The instances with multiple
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Method | Dataset HotpotQA TruthfulQA StrategyQA FEVER HaluEval ParaRel

DP 0.6667 0.3437 0.5357 0.4529 0.6746 0.5129
SC 0.3830 0.5204 0.3957 0.4537 0.4242 0.5458
PC 0.5515 0.4963 0.4379 0.4659 0.3080 0.5071
R-Tuning 0.4141 0.4111 0.4477 0.4007 0.2777 0.6797
AS 0.3833 0.4308 0.4125 0.3973 0.4344 0.3926
GCE 0.3597 0.3639 0.4474 0.4473 0.5819 0.4634

SaySelf 0.3558* 0.3368* 0.3907* 0.3704* 0.2661* 0.3272*
w/o RL 0.3704 0.3887 0.3951 0.3903 0.2804 0.3628
w/o R & CE 0.5063 0.4286 0.4195 0.4313 0.4143 0.3972
w/o R 0.3750 0.3609 0.3938 0.3854 0.4294 0.4730
w/ Naive RF 0.6129 0.4356 0.4062 0.4238 0.2812 0.3316

Table 1: The ECE evaluation results of baselines, SaySelf, and various ablations. Lower is better. HotpotQA
is the only in-distribution dataset. p-Values are the p-values comparing SaySelf over other methods. In this
table, DP denotes direction prompting, SC denotes self-consistency, PC denotes prompting for correctness, AS
denotes aligning with self-consistency-based confidence, GCE denotes grouping-based confidence estimates for
calibration training; w/o RL denotes SaySelf without reinforcement learning, w/o R & CE denotes SaySelf
without self-reflective rationales and confidence estimates, w/o R denotes SaySelf without self-reflective rationales,
w/ Naive RF denotes using another naive reward function. The numbers with asterisk marks (*) mean significant
advantage with the statistical significance threshold of p-value 0.05 in the paired t-test comparing with baselines.

Method | Dataset HotpotQA TruthfulQA StrategyQA FEVER HaluEval ParaRel

DP 0.1562 0.5125 0.3904 0.5713 0.4650 0.3971
SC 0.3288 0.5777 0.3697 0.5578 0.8498 0.6631
PC 0.3281 0.5546 0.4450 0.4968 0.7012 0.4841
R-Tuning 0.3664 0.5216 0.5318 0.5530 0.8125 0.1430
AS 0.3379 0.4861 0.3670 0.4539 0.7547 0.5684
GCE 0.3635 0.4425 0.5504 0.5506 0.8074 0.6168

SaySelf 0.3585 0.5353 0.5956 0.5393 0.8425 0.6319
w/o RL 0.3708 0.4667 0.5340 0.5523 0.8527 0.6198
w/o R & CE 0.3411 0.4623 0.3811 0.4004 0.7198 0.5373
w/o R 0.3650 0.4964 0.4224 0.4848 0.7652 0.5707
w/ Naive RF 0.3715 0.5721 0.5811 0.5443 0.8450 0.6577

Table 2: The accuracy evaluation results of baselines, SaySelf, and various ablations.

Method | Dataset HotpotQA TruthfulQA StrategyQA FEVER HaluEval ParaRel

DP / SC 6.5 7.8 5.9 6.2 7.5 7.0
PC 6.4 7.3 5.2 6.0 7.1 7.2
R-Tuning 6.7 7.4 6.0 6.2 6.7 6.1
AS 5.1 6.6 8.1 7.6 8.0 6.6
GCE 5.7 6.1 4.2 5.6 5.9 5.2
SaySelf 8.3 8.6 5.5 7.8 8.5 7.4

Table 3: The faithfulness evaluation results for self-reflective rationales.

selective reasoning chains are chosen for priority.
For all baseline approaches, we explicitly instruct
LLMs to provide reasoning for the confidence lev-
els assigned to their prior responses. The results for
DP and SC are combined, as both methods sample
from the same LLM.

The experimental results show that SaySelf can
generate more reasonable self-reflective rationales
that indicate the internal uncertainty in LLMs as
evidenced by inconsistencies across multiple sam-

pled responses. One exception is the StrategyQA
dataset, which only contains True/False questions.
Consequently, typically only one or two responses
are selected for each question, resulting in high
variance in the evaluation.

We conduct human annotations to justify the use
of GPT-4 for automatic evaluation. The details are
described in Appendix C. We observe a Spearman’s
rank correlation coefficient of 0.89 between the rat-
ings given by GPT-4 and humans, which demon-
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The Howard Centre is located in Letchworth, England. Letchworth was founded as the world's first garden city in 1903
by Ebenezer Howard. Therefore, the year Letchworth was founded as a garden city is 1903.

The Howard Centre is located in the town of Welwyn Garden City in Hertfordshire, England. The town was founded in
1920 as a model garden city, designed by the Ebenezer Howard's Garden Cities and Town Planning Association.
Therefore, Welwyn Garden City was founded in 1920.

The Howard Centre is located in Cambridge, United Kingdom. Cambridge was founded as a garden city in 1841 by Sir
Charles Barry and Ebenezer Howard. The garden city concept... (omitted)

 In what year was the town where the Howard Centre is located founded as a garden city?

Cluster 1

Cluster 2

Cluster 3

Question

I am uncertain about the exact location of the Howard Centre. There is a strong possibility that the Howard Centre
is in Letchworth, rather than Welwyn Garden City, and some belief it is in Cambridge. This leads to different
founding years for the town, either 1903 for Letchworth or 1920 for Welwyn Garden City, with an improbable
mention of Cambridge being founded as a garden city in 1841.

Rationale

Figure 3: Case study of SaySelf’s capability to generate insightful self-reflective rationales that effectively capture
the internal uncertainty in LLMs. Various clusters illustrate a selection from 100 sampled responses, and the
rationale is generated by LLMs. Another example is given in Figure 4 in the Appendix.

strates the reliability of automatic evaluation.

4.3 Ablation Study

We conduct an ablation study to verify several de-
sign choices in SaySelf: (1) w/o RL: We eval-
uate SaySelf without the reinforcement learning
from the task supervision stage. (2) w/o R & CE:
We evaluate SaySelf that directly trains LLMs
on the golden answer without the self-reflective
rationales and confidence estimates in the super-
vised fine-tuning stage. (3) w/o R: We evaluate
SaySelf that directly trains LLMs on the golden
answer and confidence estimates without the self-
reflective rationales in the supervised fine-tuning
stage. (4) w/ Naive RF: We verify the effective-
ness of the defined reward function in SaySelf. We
compare with a simple intuitive reward function:
R = I(correct)×confidence level−I(incorrect)×
confidence level.

The results are shown in Table 1, Table 6, Table 5
(Appendix), and Table 2 for direct comparison with
SaySelf. Compared with SaySelf w/o RL, our re-
sults indicate that while supervised fine-tuning can
enable LLMs to express calibrated confidence to a
certain extent, incorporating RL with task-specific
supervision further enhances the accuracy of these
confidence estimates. The ablation of the reward
function also justifies our design choice in the RL
stage. For the supervised fine-tuning stage, both
the self-reflective rationales and the confidence esti-
mates contribute significantly to the calibrated con-
fidence estimates. Overall, the ablation results ver-
ify the effectiveness of all components in SaySelf.

Unanswerable Answerable ∆

DP 0.6696 0.7646 0.0950
SC 0.2317 0.3561 0.1244
PC 0.8676 0.9974 0.1298
R-Tuning 0.7614 0.8210 0.0596
AS 0.4381 0.4503 0.0122
GCE 0.2987 0.2991 0.0004
SaySelf 0.4962 0.7406 0.2444

Table 4: The confidence in unanswerable and answer-
able subsets of SQUADRUN.

4.4 Unanswerable Questions

We measure whether LLMs demonstrate low con-
fidence in responding to unanswerable questions,
which serves as a clear indicator of their ability to
accurately delineate their knowledge boundaries
We choose the SQUADRUN dataset (Rajpurkar
et al., 2018), which contains both answerable and
unanswerable questions. We measure the average
confidence in the answerable and unanswerable
subsets (see Table 4). We show that SaySelf en-
ables LLMs to significantly reduce the confidence
in unanswerable questions while maintain the con-
fidence in the answerable parts, achieving the best
confidence gap (∆) between the two subsets.

4.5 Case Study

We perform a case study to better understand our
approach (see Figure 3 and Figure 4 in the Ap-
pendix). We choose two straightforward ques-
tions from HotpotQA and prompt LLMs trained via
SaySelf to generate the self-reflective rationales.
Then we perform multiple sampling (100 times)
and clustering to get a selection of representative
responses. These examples demonstrate SaySelf
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’s strong ability to detect and summarize internal un-
certainties. For example, in the first case, SaySelf
expresses uncertainty about the exact location of
the Howard Centre, identifying strong indications
that it is likely in Letchworth and not Welwyn Gar-
den City, with Cambridge being an unlikely option.
This rationale acknowledges the mixed information
leading to different founding years based on the
location—1903 for Letchworth and 1920 for Wel-
wyn Garden City, dismissing the 1841 Cambridge
claim as highly improbable. This capability for
self-reflective generation has a profound impact on
improving the reliability of LLM-based systems.

5 Conclusion

This paper presents a training framework SaySelf
for eliciting more accurate and fine-grained confi-
dence estimates and self-reflective rationales from
LLMs. SaySelf involves supervised finetuning
with a model-specific dataset constructed by sum-
marizing the difference between multiple reasoning
chains and reinforcement learning with a properly
designed reward function. Our evaluations across
diverse datasets confirm that SaySelf reduces cali-
bration errors, maintains performance, and gener-
ates insightful rationales.

Limitations

A potential limitation of SaySelf is its dependence
on multiple sampled chains of reasoning to de-
velop self-reflective rationales for training. There
is still an ongoing debate regarding the faithful-
ness of CoT reasoning, specifically questioning
whether it authentically represents the thinking pro-
cess of LLMs (Lanham et al., 2023; Bentham et al.,
2024; Turpin et al., 2024). The unfaithful CoT
reasoning can cause unfaithful self-reflective ra-
tionales. Nonetheless, our ablation study demon-
strates that these self-reflective rationales substan-
tially enhance calibration performance. Further
improvements in the effectiveness and faithfulness
of SaySelf could potentially be achieved by in-
tegrating methods from recent research aimed at
increasing the faithfulness of CoT reasoning, as
suggested by Lyu et al. (2023).

Ethical Considerations

This work aims to improve the performance of
LLMs in eliciting more fine-grained confidence
estimates and self-reflective rationales. In the case
of this work, it involves the use of Mistral 7B and

GPT-4, so the same risks from LLMs research are
also applicable to this work (Bender et al., 2021).

While SaySelf aims to enhance trust in AI by
providing clear confidence expressions and self-
reflective rationales, there is a risk that users might
over-rely on these confidence estimates. If the
self-reflective rationales are not accurate or fail to
capture the true uncertainty of the model, it could
lead to potentially harmful decisions based on the
model’s outputs. Therefore, users are advised to
check important information before making crucial
decisions.

This paper works on several publicly available
datasets including HotpotQA, TruthfulQA, Strate-
gyQA, FEVER, HaluEval, and ParaRel. They are
available for the research community to study un-
der Apache 2.0, Apache 2.0, MIT, CC-BY-SA 3.0,
Apache 2.0, and MIT licenses respectively. Data is
anonymized, thus our work does not propagate any
privacy problems about any specific entities.

Finally, we carried out human annotations for
analysis purposes. Since the amount of work is
small, we and the annotators agree to consider it as
a voluntary service. We have sufficiently discussed
the specific use of the annotations and potential
risks to annotators before the work.
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Appendix

A Prompt

A.1 GPT-4 Summarization Prompt

Your task is to analyze a question
↪→ provided to you along with a set
↪→ of correct and incorrect
↪→ responses generated by my model.
↪→ Your objective is to identify and
↪→ summarize the inconsistency in
↪→ the models ’ responses that can
↪→ explain why my model is uncertain
↪→ about the correct answer.

Please note that:
1. You should give the reasons from a

↪→ first -person perspective , as if
↪→ you are my model that gives the
↪→ provided responses and confidence
↪→ scores.

2. Limit your explanation to the
↪→ knowledge and facts the model
↪→ possesses about the question.

3. Keep your summary brief , aiming for
↪→ 1-3 sentences.

4. Each response is paired with a
↪→ confidence score at the beginning
↪→ . Include the confidence score
↪→ that accompanies each response in
↪→ your summary.

5. Please directly provide the
↪→ summarized reason without any
↪→ greetings or other unnecessary
↪→ information. If you find the
↪→ incorrect responses are
↪→ consistent with the correct
↪→ response regarding the question ,
↪→ please directly return N/A.

6. Importantly , my model doesn ’t have
↪→ access to the ground truth.
↪→ Therefore , the summarized reason
↪→ should not have any statement
↪→ about correctness or
↪→ incorrectness of the responses.
↪→ You should only focus on
↪→ discussing the uncertainty in the
↪→ knowledge and facts based on the
↪→ inconsistency in the responses.

7. Importantly !! My model only has
↪→ access to the correct response.
↪→ Thus , the summary should not
↪→ include any statement like "My
↪→ different responses have ...", "my
↪→ responses about ...", "the
↪→ multiple responses ...", etc. You
↪→ should not say "my responses" or
↪→ "the responses" anywhere in the
↪→ summary.

Here is an example:
Question: Sky High starred the actress

↪→ who is married to which actor?

Correct Response:
(6% confidence) The actress who starred

↪→ in "Sky High" (2005) and is
↪→ married to an actor is Kelly
↪→ Preston. Her husband is John
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Method | Dataset HotpotQA TruthfulQA StrategyQA FEVER HaluEval ParaRel

DP 0.3222 0.5667 0.5193 0.5371 0.5278 0.5291
SC 0.5765 0.4939 0.5498 0.5472 0.5843 0.5546
PC 0.6636 0.5244 0.5385 0.5139 0.5544 0.6181
R-Tuning 0.6529 0.5980 0.5406 0.5688 0.5330 0.5424
AS 0.4955 0.4835 0.5391 0.5101 0.5569 0.5713
GCE 0.5042 0.4966 0.5043 0.4942 0.4907 0.5031

SaySelf 0.7156 0.6107 0.6074 0.6481 0.7318 0.6816
w/o RL 0.6524 0.5675 0.5910 0.5798 0.5929 0.6003
w/o R & CE 0.5256 0.5724 0.5738 0.6059 0.6002 0.5823
w/o R 0.4928 0.4952 0.4567 0.4831 0.4893 0.4853
w/ Naive RF 0.5140 0.4907 0.5091 0.5137 0.5147 0.5053

Table 5: The AUROC evaluation results of baselines, SaySelf, and various ablations.

Method | Dataset HotpotQA FEVER HaluEval
ECE Accuracy ECE Accuracy ECE Accuracy

DP 0.4744 0.4762 0.6167 0.6282 0.7750 0.8884
SC 0.4798 0.3475 0.4775 0.6325 0.5220 0.7168
PC 0.4604 0.3678 0.4513 0.6062 0.3375 0.8159
R-Tuning 0.4094 0.4348 0.4250 0.5588 0.3393 0.6604
AS 0.3525 0.4230 0.3944 0.4937 0.3027 0.9150
GCE 0.4056 0.3480 0.4330 0.5860 0.3190 0.8650
SaySelf 0.3296 0.4284 0.3844 0.6125 0.2427 0.8552

Table 6: The ECE and accuracy evaluation results of baselines and SaySelf on a different base model, Llama 3 8B.

↪→ Travolta. The two have been
↪→ married since 1991 and have three
↪→ children together.

Incorrect Responses:
1. (33% confidence) The actress who

↪→ starred in "Sky High" (2005) and
↪→ is married to an actor is Kristen
↪→ Bell. Bell voiced the main
↪→ character , Layla , in "Sky High ,"
↪→ and she is married to Dax Shepard
↪→ , who is also an actor.

2. (17% confidence) The actress who
↪→ starred in "Sky High" (2005) and
↪→ is married to an actor is Kelly
↪→ Clarkson. Her acting debut was in
↪→ this film , and she married
↪→ singer and actor Brandon
↪→ Blackstock in 2013.

The output can be: I am uncertain about
↪→ the correct actress in "Sky High
↪→ ". There is a high probability
↪→ that the actress is Kristen Bell ,
↪→ instead of Kelly Preston. I am
↪→ confused about her voice acting
↪→ roles with on-screen appearances.
↪→ There is also some probability
↪→ that the actress is Kelly
↪→ Clarkson.

Now consier the following case:
Question: {}

Correct Response:
{}

Incorrect Responses:
{}

A.2 GPT-4 Evaluation Prompt

Your task is to analyze whether a
↪→ summarized explanation correctly
↪→ explains the inconsistency in
↪→ multiple sampled responses to a
↪→ question.

Note that each response is paired with a
↪→ proportion at the beginning ,
↪→ indicating the frequency of the
↪→ response in the sampled responses
↪→ . You should output a score from
↪→ 0 to 10, indicating the quality
↪→ of the explanation.

You should first provide your reasoning
↪→ for the correctness of the
↪→ explanation , and then assign a
↪→ score based on the quality of the
↪→ explanation. The output should
↪→ be in the following format:
↪→ reason: [REASON] score: [SCORE].

Here is an example:
Question: Sky High starred the actress

↪→ who is married to which actor?

Sampled Responses:
1. (6%) The actress who starred in "Sky

↪→ High" (2005) and is married to an
↪→ actor is Kelly Preston. Her
↪→ husband is John Travolta. The two
↪→ have been married since 1991 and
↪→ have three children together.

2. (33%) The actress who starred in "Sky
↪→ High" (2005) and is married to
↪→ an actor is Kristen Bell. Bell
↪→ voiced the main character , Layla ,
↪→ in "Sky High ," and she is
↪→ married to Dax Shepard , who is
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Zuffa was founded in 2001 by Lorenzo Ferlitta and Dana White. Dana White currently serves as the President and Chief
Executive Officer (CEO) of the Ultimate Fighting Championship (UFC), which was acquired by Zuffa in 2001.

Zuffa was founded in 2001 by Lorenzo Ferlitta and Frank Fertitta III. Frank Fertitta III currently serves as the CEO of
Station Casinos, a gaming and hospitality company based in Las Vegas. Therefore, Frank Fertitta III is the current CEO
of Station Casinos.

Zuffa was founded in 2001 by Lorenzo Ferlitta and another American entrepreneur who is the current CEO of what?

Cluster 1

Cluster 2

Question

I am uncertain about the other American entrepreneur who co-founded Zuffa alongside Lorenzo Fertitta. There is a
high probability that the co-founder is Dana White, distinct from Frank Fertitta III, the latter being positioned as a
co-founder in a response with lower confidence. This confusion extends to the titles held by these individuals within
their respective companies.

Rationale

Figure 4: Case study of SaySelf’s capability to generate insightful self-reflective rationales.

↪→ also an actor.
3. (17%) The actress who starred in "Sky

↪→ High" (2005) and is married to
↪→ an actor is Kelly Clarkson. Her
↪→ acting debut was in this film ,
↪→ and she married singer and actor
↪→ Brandon Blackstock in 2013.

Reason: I am uncertain about the correct
↪→ actress in "Sky High". There is
↪→ a high probability that the
↪→ actress is Kristen Bell , instead
↪→ of Kelly Preston. I am confused
↪→ about her voice acting roles with
↪→ on -screen appearances. There is
↪→ also some probability that the
↪→ actress is Kelly Clarkson.

Then your output can be:
reason: The provided reason is clear and

↪→ well -structured. The explanation
↪→ is logical and provides a clear
↪→ rationale for the uncertainty
↪→ expressed in the sampled
↪→ responses. score: 9

Now consier the following case:
Question: {}

Sampled Responses:
{}

Reason: {}

B Empirical Evidence

In our study, we conduct both quantitative and qual-
itative analyses of the diversity of reasoning chains
within each clustering group. The quantitative anal-
ysis reveals an average similarity of 0.94 across
the reasoning chains, indicating high consistency
and similarity within each cluster. For qualitative
analysis, we randomly pick 3 clusters and manually
inspect the reasoning chains in each cluster. We
discover that the exact similarity rates within these

clusters are 58%, 80%, and 74%, respectively, with
the variations primarily involving minor differences
in wording and sentence structure in the remaining
reasoning chains. This supports our design deci-
sion to select one instance per cluster at random.

C Human Annotations for GPT-4
Evaluation

We randomly select 200 questions from multiple
test datasets, providing each question along with
corresponding reasoning chains and self-reflective
rationales to two human annotators. The two hu-
man annotators are PhD students. These annotators,
guided by the instructions for GPT-4, are asked to
rate each case on a scale from 1 to 10, and the
final score for each case is the average over two
human annotators. We measure the pearman’s rank
correlation coefficient between human evaluation
and GPT-4 evaluation. The correlation coefficient
is 0.89, which proves the reliability of automatic
evaluation using GPT-4.

D Experiments of SaySelf on Llama

To test the generalizability of SaySelf, we test
SaySelf on a different base model, Llama 3 8B.
The baselines are the same as mentioned in Section
4.1. The experiment results are given in Table 6.
Our results indicate that SaySelf can generalize in
different base models and has superior performance
over other baseline methods in ECE, without a
significant loss in accuracy.
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