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Abstract

LLMs acquire a wide range of abilities dur-
ing pre-training, but aligning LLMs under Re-
inforcement Learning with Human Feedback
(RLHF) can lead to forgetting pretrained abili-
ties, which is also known as the alignment tax.
To investigate alignment tax, we conducted ex-
periments with existing RLHF algorithms us-
ing OpenLLaMA-3B, which revealed a pro-
nounced alignment tax in NLP tasks. Whereas,
despite various techniques to mitigate forget-
ting, they are often at odds with the RLHF per-
formance, leading to a trade-off between align-
ment performance and forgetting mitigation,
leading to an alignment-forgetting trade-off.

In this paper we show that model averaging,
which simply interpolates between pre and post
RLHF model weights, surprisingly achieves
the most strongest alignment-forgetting Pareto
front among a wide range of competing meth-
ods. To understand its effectiveness, we offer
theoretical insights into model averaging, re-
vealing that it enhances performance Pareto
front by increasing feature diversity on the lay-
ers where tasks share overlapped feature spaces.
Empirical evidence corroborates our analysis
by showing the benefits of averaging low-level
transformer layers. Building on the analysis
and the observation that averaging different lay-
ers of the transformer leads to significantly dif-
ferent alignment-forgetting trade-offs, we pro-
pose Heterogeneous Model Averaging (HMA)
to Heterogeneously find various combination
ratios of model layers. HMA seeks to maxi-
mize the alignment performance while incur-
ring minimal alignment tax. Moreover, we val-
idate HMA’s performance across a range of
RLHF algorithms over OpenLLaMA-3B and
further extend our findings to Mistral-7B which
is evaluated by open-sourced preference model
and GPT4. Code available here1.

*indicates equal contributions, random order. Correspond
to <hlinbh@connect.ust.hk>

1https://github.com/avalonstrel/
Mitigating-the-Alignment-Tax-of-RLHF.git

1 Introduction

Large Language Models (LLMs), such as GPT4
(OpenAI, 2023), Bard (Google, 2023), and Claude
(Anthropic, 2023), have attracted widespread atten-
tion due to their remarkable achievements. LLMs
are pre-trained on vast datasets, which equip them
with the ability to effectively handle diverse tasks,
e.g., GPT-3 showcases its prowess in various
tasks such as reasoning, common sense question-
answering (QA), translation, and so on.

While LLMs exhibit strong abilities among vari-
ous benchmarks, they still require alignment with
human preferences, including the principles of be-
ing helpful, honest, and harmless as outlined by
(Askell et al., 2021). The goal is to ensure that
LLMs are designed to assist users in completing
tasks, provide truthful information without decep-
tion, and avoid causing harm, whether physical,
psychological, or social, to individuals or the en-
vironment. The process of aligning LLMs with
human preferences often involves the application
of Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022), as shown in Figure 1.
Although RLHF allows LLMs to align with human
expectations, prior studies (Askell et al., 2021; Ope-
nAI, 2023; Song et al., 2023) have found that this
approach can lead to forgetting in the diverse abili-
ties that the LLMs have already acquired, as illus-
trated in Figure 1. This phenomenon, also known
as the “alignment tax" in the literature, has accu-
mulated substantial attention from both academia
and industry (Ouyang et al., 2022; Anthropic, 2023;
Askell et al., 2021; Tu et al., 2023; Noukhovitch
et al., 2023).

Investigating alignment tax. In this paper,
we first conduct a comprehensive investigation on
alignment tax and develop methods to reduce align-
ment tax while maintaining the alignment perfor-
mance. In particular, we followed the approach pre-
sented by (Ouyang et al., 2022) and evaluated align-
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Figure 1: Illustration of RLHF procedure and the align-
ment tax.

ment tax using multiple NLP benchmarks from
common sense QA, such as ARC Easy and Chal-
lenge (Clark et al., 2018), Race (Lai et al., 2017),
and PIQA (Bisk et al., 2020), reading compre-
hension benchmarks including SQuAD (Rajpurkar
et al., 2018) and DROP (Dua et al., 2019), and trans-
lation tasks, including WMT 2014 French to En-
glish translation (Bojar et al., 2014) (c.f. Section 3).
Our primary focus is on aligning the OpenLLaMA-
3B on the helpfulness and harmlessness dataset
(Bai et al., 2022) using Rejection Sampling Fine-
tuning methods (Dong et al., 2023) (also known
as the best-of-n algorithm). In the later part, we
extend our experiments to Mistral-7B and Direct
Preference Optimization (DPO, (Rafailov et al.,
2023)). We mainly focus on RSF and DPO since
they are popular and nearly all of the latest open-
sourced LLMs on the leaderboards are aligned by
these two methods2. Indeed, we observed a sub-
stantial alignment tax on these benchmarks consis-
tently, confirming the findings of (Ouyang et al.,
2022; Gao et al., 2023). Specifically, as we gained
a higher reward during RLHF, indicating better
alignment with human preference, the alignment
tax also increased simultaneously, clearly inducing
a alignment-forgetting trade-off.

Surprising effectiveness of model averaging
over. We then compare various methods developed
in different communities as potential rescues to al-
leviate the alignment tax. This includes the model
averaging method (Wortsman et al., 2022b,a; Lin
et al., 2023) from out-of-distribution (OOD) gener-
alization literature, regularization-based techniques
from the continual learning literature (Panigrahi
et al., 2023; Xuhong et al., 2018; Buzzega et al.,
2020; Huang et al., 2021), low-rank adaptation
(LoRA) (Huang et al., 2021) from the parameter-
efficient fine-tuning literature, as well as the uti-
lization of reward penalty from the reinforcement
learning literature (Ziegler et al., 2019; Wu et al.,
2021a; Ouyang et al., 2022; Yuan et al., 2023). In-
terestingly, we found that model averaging, which

2
https://tatsu-lab.github.io/alpaca_eval/

simply interpolates between the weights of models
before and after RLHF, achieves the most efficient
alignment-forgetting Pareto front. In Appendix C.1,
we further show and discuss the in-effectiveness
of Experience Reply (Rebuffi et al.) method com-
pared with MA.

Understanding the effectiveness of model av-
eraging. To understand the effectiveness of model
averaging, we provide theoretical insights based on
the framework of (Lin et al., 2023). In particular,
we show that the method can enhance Pareto front
by increasing feature diversity on layers where two
tasks share similar feature spaces. Empirical evi-
dence also indicates that averaging the low-level
layers of Transformers consistently improves both
alignment reward and NLP task performance. This
aligns with our theoretical insights, as tasks could
share similar lower-level features, e.g., better word
representation on low-level layers benefits both
NLP and alignment tasks.

Heterogeneous model averaging. We noticed
that averaging different layers of the Transform-
ers unveiled notably distinct patterns of alignment-
forgetting trade-off, aligning with our earlier anal-
ysis that tasks may exhibit varying overlapping
feature spaces in different layers. Motivated by
this observation, we propose Heterogeneous Model
Averaging (HMA), which adaptively averages dif-
ferent parts of the models during model averag-
ing. We start by dividing the transformer into K
parts and assigning unique averaging ratios for each
part, represented as αi ∈ [0, 1] for the ith part.
HMA aims to maximize alignment reward by op-
timizing the averaging ratios (α1, . . . , αK) while
maintaining the overall alignment tax, thus con-
sistently improve the alignment-forgetting Pareto
front. To demonstrate the efficiency of HMA, we
also contrasted our method with other RLHF tech-
niques, including Direct Preference Optimization
(DPO). (Rafailov et al., 2023) We further substanti-
ate our findings on Mistral-7B where evaluations
conducted by open sourced perference model and
GPT4, which further corroborates our empirical
findings on OpenLLaMA-3B.

We summarize our contributions as follows:

• We provide a comprehensive investigation of
the alignment tax challenge in RLHF on NLP
tasks. We systematically compare a wide
range of methods to alleviate alignment tax
and highlight model averaging as a particu-
larly effective approach.
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• We provide theoretical insights into the effi-
ciency of model averaging in enhancing the
alignment-forgetting trade-off, demonstrating
that both NLP and alignment tasks can bene-
fit from the increased feature diversity from
model averaging in the shared feature space.

• Motivated by our analysis, we introduce Het-
erogeneous Model Averaging (HMA), which
optimizes the averaging ratios of different
model layers to maximize alignment per-
formance. HMA consistently improves the
Pareto front across different benchmarks, and
it also generalizes well across various RLHF
algorithms and different model types, such as
OpenLLaMA-3B and Mistral-7B, evaluated
by open-sourced preference model and GPT4.

The paper is structured as follows: we conduct
a systematic investigation of existing methods in
Section 3-4. In Section 5, we provide insights into
the effectiveness of model averaging. Subsequently,
we propose Heterogeneous Model Averaging in
Section 6. We conclude the paper in Section 7.

2 Discussion with existing works.

In this section, we provide comparison of this work
with existing works to highlight the novelty of our
findings. We defer more comprehensive related
works to Appendix A.

Existing works of model averaging for LLMs.
Previous research has covered certain aspects of
model averaging. (Ramé et al., 2024) demonstrate
the utilization of model averaging to construct
a more resilient reward model for reinforcement
learning with human feedback (RLHF). In a similar
vein, (Rame et al., 2024) employ model averaging
to merge policy models trained for distinct objec-
tives, facilitating multi-objective RLHF. (Sanyal
et al., 2023) introduce the integration of moving
averaging to enhance pre-training. However, none
of these studies investigate the alignment tax, and
their findings are independent of our research.

Existing works on finding adaptive combina-
tions for model merging. Previous studies (Yang
et al., 2023; Akiba et al., 2024) have also discussed
the idea of dynamically assigning different weights
to different layers when merging models, aiming
to maximize performance on a specific task (e.g.,
Ti). These approaches assume access to the task-
specific data Ti. However, considering the nature
of alleviating alignment tax, which aims to miti-
gate forgetting across a extremely wide range of

tasks (Tj1 ...TjK ), these methods fail to effectively
optimize performance for multiple tasks simulta-
neously. In the Appendix E.4, we demonstrate
that using the method proposed by (Yang et al.,
2023), which optimizes for a single task, does not
effectively address forgetting on the other tasks.
Furthermore, our work is the first to provide an ex-
planation for the surprising effectiveness of model
averaging in alleviating forgetting, as well why we
should assign heterogeneous combination ratios.

Existing works on the forgetting of language
models. Most research on forgetting in language
models focuses on sequentially pre-training (Chen
et al., 2023; Gong et al., 2022; Jin et al., 2021; Qin
et al., 2022; Liu et al., 2021) or fine-tuning tasks
(Sun et al., 2019; Razdaibiedina et al., 2023; Wu
et al., 2021b; Zhang et al., 2022; Madotto et al.,
2020), e.g., sequentially training on task Ti and
then task Tj . They evaluate forgetting by measur-
ing the model’s performance on a task (e.g., task
Ti) after training it on another task (e.g., task Tj).
However, these methods have not explored the ef-
fectiveness of model averaging. In our case, we
demonstrate the significant power of model aver-
aging which outperform a wide range of existing
methods. Furthermore, existing works assume that
the data size of each task is comparable (i.e., the
dataset size of Ti and Tj is similar), allowing for a
subset (e.g., 10%) of old task data replay, which is
shown to effective alleviate the forgetting without
excessive computation overhead in their settings.
However, in our alignment tax situation, we aim
to preserve a wide range of abilities gained dur-
ing pre-training, which is challenging since pre-
training datasets are often not publicly available.
In Appendix C.1, we show that even when we have
access to the pre-training data and replay a subset
up to four times larger than the RLHF data (which
costs significant computation overhead), experi-
ence replay still under-performs model averaging
in two out of three benchmarks. This is likely due
to the vast size of the pre-training data, where the
subset only covers a small fraction of it (e.g., only
covers ~0.01% of the pre-training data). So replay
methods are less practical for alleviating alignment
tax.

3 Experimental Settings

Basic Setting. We chose the OpenLLaMA-3B
model (Geng and Liu, 2023) because (1) it is
computational friendly compared with 7B models
(2) it has openly available pre-training dataset,
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which is convenient to investigate Experience
Replay in Appendix. C.1. Furthermore, we extend
the experiments to Mistral-7B in Sec. 6. Following
the standard procedure outlined in (Ouyang et al.,
2022), we initially conducted instruction tuning,
followed by RLHF. Here, θ represents an LLM
with parameters θ, with the pre-trained model
denoted as θpre. We commenced with instruction
fine-tuning for θpre on ShareGPT 3, which yielded
θ0. Subsequently, RLHF was performed on θ0 to
obtain θ. Similar to the methodology proposed in
(Ouyang et al., 2022), the alignment tax was eval-
uated by comparing the performance regression
of θ with θ0 across various NLP tasks. The whole
procedure and notations are illustrated in Fig. 1.

Datasets for Evaluating Alignment Tax. Fol-
lowing the approach in (Ouyang et al., 2022), our
evaluation of alignment tax encompasses various
NLP benchmarks: (a) Common Sense QA: This
includes ARC Easy and Challenge (Clark et al.,
2018), Race (Lai et al., 2017), and PIQA (Bisk
et al., 2020), with the performance being assessed
using accuracy. (b) Reading Comprehension: we
employ SQuAD (Rajpurkar et al., 2018) and DROP
(Dua et al., 2019) to gauge reading comprehension
ability, with evaluation based on the F1 score for
both datasets. (c) Translation: Our evaluation uti-
lizes WMT 2014 French to English translation (Bo-
jar et al., 2014), with performance measured using
BLEU (Papineni et al., 2002) scoring.

RLHF Basics. In our notation, πθ denotes the
policy induced by the LLM θ. Additionally, x rep-
resents the input prompt and a denotes the output
(which is also referred to as an action in RL lit-
erature (Schulman et al., 2017)). Drawing from
(Ouyang et al., 2022; Bai et al., 2022; Dong et al.,
2023; Touvron et al., 2023; Rafailov et al., 2023),
we assume the existence of a ground-truth reward
function r∗(x, a) : X ×A → [0, 1], where X and
A denote the spaces of x and a respectively. The
primary objective of RLHF is to maximize:

max
θ

ExEa∼πθ(·|x)[r
∗(x, a)]. (1)

RLHF Algorithm. We adopt Rejection Sampling
Finetuning (RSF) for our main experiments (Dong
et al., 2023; Touvron et al., 2023; Yuan et al.,
2023; Gulcehre et al., 2023) and also further ver-
ify our findings on Proximal Policy Optimization
(PPO) (Schulman et al., 2017) and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023)

3
https://huggingface.co/datasets/anon8231489123/ShareGPT_
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Figure 2: Illustration of Heterogeneous Model Averag-
ing (HMA) when K = 3.

in Sec. 6. Essentially, the RSF learns from the
best-of-n policy (Nakano et al., 2021), which sam-
ples n responses for each prompt query and returns
the one with the highest reward. As suggested
by (Dong et al., 2023; Touvron et al., 2023; Gul-
cehre et al., 2023), we adopt an iterative training
set-up for the implementation instead of always
sampling the samples from the starting checkpoint
because we find that the iterative training is far
more sample-efficient. Specifically, for each itera-
tion, we first sample a batch of prompts and gener-
ate n responses for each prompt from the current
model. Then, we use the reward model to compute
the rewards for each prompt-response pair, and for
each prompt, we select the one with the highest
reward into a small subset. By this process, we
collect a batch of samples from the best-of-n policy
that are with high reward. We simply fine-tune the
current model on this subset to get the next model
and the next iteration begins.

4 Evaluating Existing Methods

In Figure 12 of Appendix E.1, we visualize the
training procedure in terms of the alignment-
forgetting trade-off during RLHF. Specifically, we
can clearly see that as the RLHF proceeds, the re-
ward begins to increase while the translation and
reading comprehension ability continues to drop.
Interestingly, we observe that the performance of
common sense increases first and then drops. Given
that alignment tax is inherently a catastrophic for-
getting issue, we then proceed to explore methods
to reduce alignment tax. Research focused on re-
ducing forgetting is mainly classified into two main
categories, depending on the availability of the pre-
training dataset. We also investigate the reward
penalty method developed in RL community in
Appendix C.2.

4.1 Basic Methods
To explore methods for alleviating alignment tax,
we initially examine solutions that do not rely on
pre-training datasets. These methods encompass
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the following:(a) Early stopping. (b) Regulariza-
tion towards θ0 in the weight space as follows:

max
θ

ExEa∼πθ(·|x)[r
∗(x, a)] + λ∥θ − θ0∥α, (2)

where we use α = 1, 2 which corresponds to the
L1 and L2 (Xuhong et al., 2018) penalties, respec-
tively. (c) Low-Rank Adaptation (LoRA) (Hu et al.,
2021). It introduces trainable rank decomposition
matrices into linear layers to update θ − θ0 during
RLHF. (d) Knowledge distillation (Buzzega et al.,
2020; Huang et al., 2021). We use πθ0 serves as
the teacher and πθ as the student, with a penalty
imposed as:

max
θ

ExEa∼πθ(·|x)[r
∗(x, a)] + λ∥πθ(x)− πθ0(x)∥22.

(e) Model Averaging (MA) (Wortsman et al.,
2022a,b). This involves simply interpolating be-
tween θ0 and θ to yield the policy π(1−α)θ0+αθ,
where α is a hyper-parameter ranging from 0
to 1. (f) Stochastic Moving Averaging (SMA)
(Noukhovitch et al., 2024). More implementation
details are provided in the appendix.

Results. Figure 3 depicts the performance of
each aforementioned method. The results demon-
strate that these approaches effectively alleviate the
alignment tax; however, they also result in a reduc-
tion in the RLHF reward, indicating a clear trade-
off between reward and alignment tax. Notably,
despite its simplicity, the Pareto-front of model av-
eraging supersedes nearly all other methods across
various hyper-parameters. In Appendix C.1 and
C.2, we compared model averaging with Experi-
ence Replay (ER) and KL reward penalty methods
for Proximal policy optimization (Schulman et al.,
2017) algorithms, the conclusions are similar.

5 Unravelling the Mysteries of Model
Averaging for Alleviating Alignment
Tax

Given the promising performance of model aver-
aging, we try to understand the efficacy of model
averaging in this Section and motivate our method
to improve it. We utilize the theoretical framework
proposed by (Lin et al., 2023) to gain insights into
its effectiveness in alignment tax. While the frame-
work addresses classification problems, the insights
derived can aid our understanding of model aver-
aging. We also conduct empirical analysis using a
generative model (Openllama-3B) to verify these
theoretical insights. Analyzing the performance

of model averaging in alignment tax is more in-
tricate compared to the work of the study by (Lin
et al., 2023) focuses on out-of-distribution (OOD)
scenarios, where the same task is performed under
different distributions. In contrast, our focus in
alignment tax is to comprehend the performance
trade-offs among different tasks. To illustrate, con-
sider the entire feature space Y and two tasks with
label spaces Ya ⊂ Y and Yb ⊂ Y , with the sim-
plifying assumption that |Ya| = |Yb| = K. While
(Lin et al., 2023) only considers the case where
Ya = Yb, we extend these results to encompass the
case where Ya ̸= Yb.

Theoretical Settings. Suppose we have many
features Sx = {xi}Di=1 where each feature xi ∈
Rd and the observed feature x ∈ Rd×D is a con-
catenation of x1, ...,xD. Following (Lin et al.,
2023), we adopt a simplified model f(x) = wΦ(x)
where w ∈ Rd×K , Φ(x) =

∑D
i=1Φixi and

Φi ∈ {0, 1}, ∀i. Suppose we have two models
fa(·) = waΦa(·) and fb = wbΦb(·) for tasks
Ta and Tb, respectively, relying on feature sets
Sx,a ⊂ Sx and Sx,b ⊂ Sx, with |Sx,a| = |Sx,b| =
n, and |Sx,a ∩ Sx,a| = no overlapped features.
The averaged model of fa and fb is favg(·) =
wavgΦavg(·), where wavg = (wa + wb)/2 and
Φavg,i = (Φa,i +Φb,i)/2,∀i (Lin et al., 2023). To
gain an intuitive understanding, we compare model
averaging in two cases: Case (1) when the tasks
are quite similar (|YA ∩ YB| = K) and Case (2)
when the tasks are independent (|YA ∩ YB| = 0).
4 Furthermore, even if the tasks are very similar,
fitting two models on them can rely on different
features due to randomness in data or training pro-
cedures (Lin et al., 2023; Allen-Zhu and Li, 2020).
We will investigate the performance of model aver-
aging in Case (1) and (2) to gain insights on when
it works. Following (Lin et al., 2023), we assume
each feature is weak, failing with probability p.
The effectiveness of model averaging is given by

ξ =
1

2
(Aa(favg)−Aa(fa) +Ab(favg)−Ab(fb)) ,

where Aa(f) and Ab(f) denote the accuracy of f
on task a and b, respectively. We use ξ(1) to denote
the effective averaging robustness for Case (1) and
similarly define ξ(2) for Case (2).

4Notably, the overlap in features is independent of the
overlap in label space. For instance, when classifying a dog,
we can use either the animal shape or the texture (overlapped
label space, non-overlapped feature); when classifying a dog
or a cat, we can both use the animal shape (non-overlapped
label space, overlapped feature).
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Figure 3: Existing methods without access to pre-training data

Proposition 5.1. Consider the assumptions speci-
fied in the appendix. We have:

ξ(1) − ξ(2) =Fp

(√
2(1− p)n√
n+ no

)

− Fp

(
(1− p)

√
n
)
≥ 0,

where the equality holds when no = n and Fp(x)
is a cumulative density function in Appendix F.4.

Implications. Proposition 5.1 demonstrates that
when Ta and Tb are more similar, the averaging
of models (fa and fb) yields greater improvement.
However, this improvement is reduced if fa and
fb use more overlapping features. Recall that each
weak feature can fail with probability p. If Ta and
Tb are similar, the feature utilized by the two mod-
els would be projected into a shared space, allowing
model averaging to take advantage of a more di-
verse set of features. This diversity reduces the
probability of model failure because a diverse set
of features is less likely to fail together simultane-
ously (Lin et al., 2023). However, if Ta and Tb are
dissimilar, for example, if |Ya ∩ Yb| = 0 and the
feature spaces corresponding to Ya and Yb are dis-
joint, then the features in the space of Ya would not
provide any information for predicting Yb. There-
fore, averaging fa and fb would not improve the
prediction of either task in this case. Refer to Ap-
pendix F.3 for a detailed discussion.

Notably, the model θ0 excels in NLP abilities
before RLHF, while the model θ excels in align-
ment reward after RLHF. Using an analogy, we
can equate NLP tasks with Ta, alignment with Tb,
θ0 to fa, and θ to fb. Recall that we adopt a sim-
plified model for theoretical analysis by consid-
ering only one layer feature learner, although, in
practice, we average a deep Transformer with 26
layers. Research has shown that different layers
in deep neural networks capture varying levels of
features (Yosinski et al., 2015; Zeiler and Fergus,
2014; Simonyan and Zisserman, 2014). For in-
stance, low-level layers capture low-level features.

Furthermore, tasks share similar feature space at
a low level (alternatively, from the perspective of
low-level layers, tasks look more similar). For
example, improving the low-level features such
as better word representation could enhance both
RLHF reward and NLP tasks. Therefore, according
to Proposition 5.1, averaging the low-level layers
could potentially elicit more improvements in both
Ta (NLP tasks) and Tb (alignment reward) than
higher layers.

Empirical Validation. We categorize the 26
transformer layers of Openllama into three parts:
the input part (layers 1-8), the middle part (lay-
ers 9-17), and the output part (layers 18-26). This
division is depicted in Figure 4. We use the super-
scripts [1], [2], and [3] to denote the input, middle,
and output parts, respectively. For instance, θ[2]

represents the middle layers (9-18) of θ. Here, θ0
and θ respectively refer to the models before and
after RLHF. We investigate the impact of averaging
one part instead of the whole Transformer: given
a combination ratio α ∈ [0, 1], we average the i-th
part of θ (i.e., θ[i]) with the corresponding part of θ0
(i.e., θ[i]0 ), while keeping the remaining two parts of
θ unchanged. So when we average the input part,
the j-th part of the averaged model is:

jth part =

{
αθ[j] + (1− α)θ

[j]
0 , if j = 1,

θ[j], if j = 2, 3.

The results of the above scheme are denoted as
“Input Part MA". “Middle Part MA" and “Output
Part MA" represent that we average the middle and
output parts, respectively. Figure 4 illustrates that
the alignment-forgetting trade-off varies distinctly
when different parts of the transformers are aver-
aged. Specifically, when we average the low-level
layers, we observe a “magical” improvement in
both the NLP tasks and alignment rewards, which
is consistent with our previous analysis. Further-
more, we show results in Appendix E.2 that the
magical improvement in averaging the low-level
parts is consistent among DPO and PPO models.
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Figure 4: (Left) Illustration of proof of concept experi-
ments. We divide the Transformer into 3 parts. We only
average one part each time. (Right) Merging different
parts of the transformers.

6 Heterogeneous Model Averaging

We have already shown that averaging different
layers results in diverse patterns of alignment-
forgetting trade-off (Wu et al., 2022; Lee et al.,
2022b). Therefore, different layers should not be
equally treated during averaging. This leads to a
natural question: can we enhance the alignment-
forgetting trade-off by using adaptive weights for
different layers? Consequently, we conduct proof-
of-concept experiments to provide affirmative an-
swers to this question and subsequently propose a
practical algorithm.

Proof of Concept. The following proof of con-
cept experiments provide insights into average dif-
ferent layers with various ratios. We use different
averaging ratio, i.e., α1, α2, α3, for the three parts.
Specifically, the ith part of the averaged model is
simply αiθ

[i] + (1− αi)θ
[i]
0 . We try three patterns

experiment given a base α ∈ {0.2, 0.3, 0.4} : (a)
α1 = α2 = α3 = α; (b) α1 = α2 = α, α3 =
α− 0.1, and (c) α1 = α, α2 = α3 = α− 0.1. We
use (α|α|α), (α|α|α−0.1) and (α|α−0.1|α−0.1)
to denote these three patterns, respectively. These
results confirm that certain ratio combinations ex-
ceed the trade-off curve of vanilla model averaging,
as displayed in Figure 9 in Appendix C.3. Notably,
some combination ratios consistently outperform
the equal ratio across various benchmarks. This
affirms the potential to identify consistent combina-
tion ratios that demonstrate superior performance
across a broad spectrum of benchmarks in terms of
alignment-forgetting trade-off.

Heterogeneous Model Averaging. Upon divid-
ing the Transformer into K parts, our objective is
to adaptively determine a combination ratio for dif-
ferent layers that consistently perform well across
an extensive range of tasks. The conventional aver-
aging method uses a shared α for all layers, playing
a crucial role in defining the trade-off between re-

ward and tax. We aim to identify an optimized com-
bination of (α1, ..., αK) to replace a uniform α. Let
θ(K) represent the model merged by (α1, ..., αK).
In particular, the kth component of the merged
model θ(K) is given by

θ[k](K) := αkθ
[k] + (1− αk)θ

[k]
0 , ∀k ∈ 1, ...,K.

To optimize the Pareto-front influenced by α,
we identify combination ratios corresponding
to each α. Subsequently, we establish the
mean of (α1, ..., αK) as α and ascertain the
best combination of (α1, ..., αK) to maximize
the reward. Specifically, denoting Ω :={

1
K

∑
k αk = α, α1, ..., αK ∈ [0, 1]

}
, we solve:

max
(α1,...,αK)∈Ω

ExEa∼πθ(K)(·|x) [r
∗(x, a)] . (3)

The intuition behind HMA is outlined as follows:
(1) When maintaining the mean, i.e., 1

K

∑
k αk, as

α, we can compare HMA performance with the
performance of vanilla model averaging with the
same α. (b) We only optimize K parameters, where
K is typically small. For example, we adopt K = 3
by default and also include results with varying K
to the ablation study. This helps to ensure that the
forgetting level of (α1, ..., αK) remains close to
α. Intuitively, if we optimize a large number of
parameters, it could easily lead to over-fitting in
the in-domain (RLHF reward) and may also result
in more significant forgetting. The whole algorithm
is summarized Algorithm 1 in appendix.

Results. The results of HMA are shown in Fig-
ure 5. We can see that HMA can consistently push
forward the Perato-front of the vanilla model aver-
aging. Furthermore, such improvement is consis-
tent over various RLHF algorithms. More detailed
results (e.g., on Commonsense QA and Translation
with different RLHF algorithms) of HMA can be
found in Appendix E.5.

Ablation results on different K. We tested dif-
ferent values of K with α = 0.2, 0.4, 0.6 as il-
lustrated in Figure 5 (Right). The trade-off curve
shows a slight decrease as we increase K from 3
to 6 and 9, but still consistently improves over the
vanilla model averaging. This decrease is likely
due to overfitting. Specifically, comparing the per-
formance of HMA with different K for the same
mean ratio, we observe that as the alignment re-
ward increases with an increase in K from 3 to 9,
the reading comprehension performance drops.

How to choose the averaging ratio. In prac-
tice, we determine the averaging ratio α for adopt-
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Figure 5: Results of our HMA. (Top) HMA for RSF ( α ∈ [0.1, 0.6]), (Bottom) HMA for DPO ( α ∈ [0.1, 0.6]).
(Right) HMA for RSF with different choices of K. Refer to Appendix E.5 for more results.
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Figure 6: Results of Zephyr-7B-β evaluated by open
sourced preference model. (Top) Similar trends eval-
uated by PairRM when we average different blocks.
(Bottom) Our HMA consistently improve over MA.

ing vanilla MA or our HMA. Changing the av-
eraging ratio for MA and HMA is convenient as
these methods are applied after training the vanilla
RLHF checkpoint. The comprehensive results in
Figures 3, 5, and 16 (details in Appendix C.4) show
that α = 0.2 can consistently alleviate the align-
ment tax without hurting alignment performance.
Further results of Zephyr-7B are shown in Figure 6.
Additionally, the performance of the averaging ra-
tio on different benchmarks (Figure 9) exhibits sim-
ilar trends. Hence, we believe α = 0.2 is a suitable
choice that can generalize to more tasks.

Model Win-Rate Reading CommonSense Trans

Zephyr-7B-β 8.10% 37.47 66.34 36.55
HMA (Ours) 9.32% 38.93 66.55 37.23

Zephyr-7B-Gemma 11.3% 41.15 66.3 38.09
HMA (Ours) 11.5% 42.45 66.4 38.71

Table 1: GPT4 evaluation of experiments of Zephyr-
7B-β and Zephyr-7B-Gemma on Alpaca benchmark.
Reading is short for Reading Comprehension, which is
evaluated by F1. CommonSence is evaluated by Accu-
racy (%). Trans is short for Translation Fr-En, evaluated
by BLEU.

Other models results. To further validate our
method on larger LLMs, e.g., Mistral-7B (Jiang
et al., 2023a) based models, we apply model av-
eraging (MA) and Heterogeneous Model Aver-
aging (HMA) on Zephyr-7B-β5 (Tunstall et al.,
2023) which is trained with DPO on the SFT ver-
sion, Mistral-7B-SFT-β6. We also apply HMA on
Zephyr-7B-Gemma 7 which is aligned based on
Gemma-7B8 model. Here we use the the publicly
available preference model PairRM (Jiang et al.,
2023b) to judge the helpfulness and evaluate mod-
els on AlpacaEval 2.0 (Li et al., 2023). We re-
ports the win rates of each model. Figure 6 (Top)
shows that the trends of averaging different layers
evaluated by PairRM are similar with the results
evaluated by our own reward model. The results
range across α = 0, 0.2, . . . , 1.0 depicted in Fig-
ure 6 (Bottom) demonstrate that MA effectively
achieves a strong Pareto front to mitigate forgetting
in the Mistral-7B models. Additionally, our HMA
algorithm shows further improvement compared to
the MA method.

GPT4 Evaluation. We also use GPT4 to evalu-
ate HMA on AlpacaEval 2.0 (Li et al., 2023). Due
to the limited quota, we only compare HMA with
α = 0.2 with vanilla Zephyr-7B-β (α = 0.2 is rec-
ommended by the previous discussion). In Table 1,
we summarize their Win-Rate against GPT4 as well
as their performance on NLP tasks. We show that
HMA consistently outperforms Zephyr-7B-β on
all the metrics.

7 Conclusion

In this paper, we highlight the surprisingly effec-
tiveness of model averaging and propose the Het-
erogeneous Model Averaging (HMA) framework
to further enhance the performance.

5
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta

6
https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta

7
https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1

8
https://huggingface.co/google/gemma-7b
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Limitations

Though our HMA significantly alleviates the align-
ment tax, it has not been fully eliminated. Future
work could explore the theoretical lower bound
of the alignment tax and determine which method
could achieve the optimal trade-off.

References
Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David

Ha. 2024. Evolutionary optimization of model merging
recipes. arXiv preprint arXiv:2403.13187.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Mar-
cus Rohrbach, and Tinne Tuytelaars. 2018. Memory aware
synapses: Learning what (not) to forget. In Proceedings
of the European conference on computer vision (ECCV),
pages 139–154.

Zeyuan Allen-Zhu and Yuanzhi Li. 2020. Towards understand-
ing ensemble, knowledge distillation and self-distillation
in deep learning. arXiv preprint arXiv:2012.09816.

Anders Andreassen, Yasaman Bahri, Behnam Neyshabur,
and Rebecca Roelofs. 2021. The evolution of out-of-
distribution robustness throughout fine-tuning. arXiv
preprint arXiv:2106.15831.

Anthropic. 2023. Introducing claude.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep
Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph,
Ben Mann, Nova DasSarma, et al. 2021. A general
language assistant as a laboratory for alignment. arXiv
preprint arXiv:2112.00861.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot,
Daniel Guo, Daniele Calandriello, Michal Valko, and Rémi
Munos. 2023. A general theoretical paradigm to under-
stand learning from human preferences. arXiv preprint
arXiv:2310.12036.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell,
Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort,
Deep Ganguli, Tom Henighan, et al. 2022. Training a
helpful and harmless assistant with reinforcement learning
from human feedback. arXiv preprint arXiv:2204.05862.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al.
2020. Piqa: Reasoning about physical commonsense in
natural language. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 7432–7439.
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A Related Work

Large Language Models. Large Language Models (LLMs) are pre-trained using vast amounts of data
and has the ability to handle a diverse set of tasks. An excellent line of LLMs includes GPT (Brown
et al., 2020; OpenAI, 2023), Bard (Google, 2023), Claude (Anthropic, 2023), LLaMA (Touvron et al.,
2023), Galactica (Taylor et al., 2022), Bloom (Scao et al., 2022). It is a common practice to fine-tune
the LLMs to obtain better performance on a specific task (Diao et al., 2023), follow the instruction of
humans (Ouyang et al., 2022; Sanh et al., 2021; Wang et al., 2022) and align with humans’ preferences
(Christiano et al., 2017; Askell et al., 2021; Bai et al., 2022; Ouyang et al., 2022; Dong et al., 2023).

Reinforcement Learning with Human Preference (RLHF). RLHF (Christiano et al., 2017) has
attracted considerable attention in the past few years, particularly after the tremendous success of the
ChatGPT (Ouyang et al., 2022; OpenAI, 2023). There is a rich literature on RLHF and the related
discussions which cannot be comprehensively reviewed here due to the space constraint. We thus refer the
interested readers to the survey paper like (Casper et al., 2023) but focus on the algorithmic designs here.
Proximal Policy Optimization (PPO) (Schulman et al., 2017) is the predominant approach in RLHF whose
effectiveness has been showcased by ChatGPT (OpenAI, 2023), Claude (Anthropic, 2023), and Bard
(Google, 2023). However, it is known that the PPO is unstable and sample-inefficient in aligning LLMs
(Choshen et al., 2019) and imposes a heavy burden on the GPU resources as it requires loading multiple
(typically four) models at the same time (Yuan et al., 2023; Dong et al., 2023). In view of this, attempts
have been made to propose alternative approaches to the PPO algorithm. There is a line of work using the
rejection sampling (also referred to as the best-of-n sampling in the literature) (Nakano et al., 2021), to
reinforce the dataset used to finetune the LLM, including (Dong et al., 2023; Yuan et al., 2023; Touvron
et al., 2023; Gulcehre et al., 2023). Among them, (Dong et al., 2023; Touvron et al., 2023; Gulcehre
et al., 2023) adopt an iterative framework, which is more sample-efficient and effective, while (Yuan et al.,
2023) highlights the importance of sampling strategy. In comparison to the original rejection sampling
algorithm, which generates n responses but only output the one with the highest reward, the LLMs aligned
by iterative rejection sampling balance the goal of alignment and the inference cost. Meanwhile, there is
also another line of work aiming to derive algorithms from the reverse KL-constrained contextual bandit
(Rafailov et al., 2023; Zhao et al., 2023; Wang et al., 2023a; Azar et al., 2023; Xiong et al., 2023), whose
theoretical property is studied in (Xiong et al., 2023). Among them, Direct Preference Optimization (DPO)
(Rafailov et al., 2023) has appeared to be one of the most attractive algorithms, which optimizes the LLMs
without the reward modeling and directly by preference learning from an offline dataset. In view of the
success of DPO, there has also been a debate on whether reward modeling is necessary, where (Rafailov
et al., 2023; Zhao et al., 2023; Azar et al., 2023) support bypassing reward modeling. Although there are
many works on reward optimization, the forgetting issue (also referred to as the alignment tax (Casper
et al., 2023) in the literature) of RLHF algorithms has not been comprehensively studied. Therefore, we
choose three representative algorithms, including the PPO (Schulman et al., 2017), RSF (Dong et al.,
2023), and DPO (Rafailov et al., 2023) in this work, to study the catastrophic forgetting issue of LLMs
after RLHF.

Pretraining, fine-tuning, and distributional shift. Before the emergence of foundation models, the
pre-training and fine-tuning paradigm had already achieved remarkable accomplishments across numerous
applications (He et al., 2016; Radford et al., 2021; Devlin et al., 2018). However, when deploying pre-
trained models into real-world applications and fine-tuning them, a common challenge arises: encountering
novel samples from a target distribution that differs from the fine-tuning distribution (Andreassen et al.,
2021; Goyal et al., 2022; Zhang and Ré, 2022; Lin et al., 2022a; Zhou et al., 2022a,b; Lin et al., 2022b;
Tan et al., 2023). To address this issue, several approaches have been proposed. For instance, (Wortsman
et al., 2021; Cha et al., 2021b; Chu et al., 2022) suggest leveraging the weight ensemble of the pre-trained
model and the fine-tuned model to enhance out-of-distribution (OOD) performance. Another strategy,
as proposed in (Kumar et al., 2022), is the LP-FT technique, which involves initializing the pre-trained
feature extractor with a reasonably good classifier. This initialization is particularly important when the
classifier is randomly initialized, as the pre-trained features can easily be distorted to accommodate the
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random classifier during fine-tuning, exacerbating the issue of catastrophic forgetting.

Catastrophic forgetting and continual learning. DNN tends to lose the knowledge of previously
learned task (e.g., pretraining task) when it begins to learn a new task (e.g., the fine-tuning task) (McClel-
land et al., 1995). Various attempts have been made to alleviate catastrophic forgetting. (Xuhong et al.,
2018; Ritter et al., 2018; Aljundi et al., 2018; Schwarz et al., 2018) impose a penalty on the change of
the parameter on the new task. (Yu et al., 2021) transfers knowledge from related new knowledge types
back to the old types by continually training the representations of old knowledge with the data for new
knowledge using a self-training loss. (Yu and Ji, 2023) observes that LLMs tend to rely on pre-existing
knowledge, neglecting recent facts and leading to incorrect reasoning chains that ultimately diminish the
efficacy of information updates, and proposes to mitigate exposure bias by incorporating the selection of
relevant facts into training losses. (Kirkpatrick et al., 2017) gain intuition from Taylor expansion of the
losses of the old task at the point of fine-tuned parameter, and further proposes EWC by incorporating the
Hassien matrix into parameter regularization. The reply-based method tries to approximate and recover
the old data distribution. Popular methods in this direction include sampling methods which store a few
old training samples with a small memory buffer (Vitter, 1985; Riemer et al., 2018; Chaudhry et al., 2018;
Cha et al., 2021a; Caccia et al., 2021), and generative methods which generate samples from the old
distributions with a generative model (Caccia et al., 2020). Knowledge distillation (KD) methods try to
keep the prediction of the fine-tuned model close to that of the old model. KD can be naturally combined
with experience reply. For example, (Rebuffi et al., 2017) proposes to perform KD on the samples of new
tasks as well as the old samples stored in the buffer.

Notably, previous continual learning focuses on sequentially learning tasks which learns a sequence of
tasks in order and measures the forgetting of older tasks when learning new tasks (Wang et al., 2023b).
Whereas, we focus on the generality forgetting of the pre-trained foundation model during fine-tuning a
specific task.

Alignment tax. (Ouyang et al., 2022) reports that they observe significant alignment tax when develop-
ing InstructGPT. They have also tried to adopt Experience Replay to alleviate this issue, which is followed
by (Zheng et al., 2023). However, we show in Appendix C.1 that Experience Relay is less favorable when
compared with model averaging. (Noukhovitch et al., 2024) tried to use stochastic weight averaging,
which still under-performs our method as shown in Figure 3. (Li et al., 2024) finds that DPO induces
less alignment tax compared with other RLHF algorithms, which is consistent with our findings (e.g.,
Figure 5). (Askell et al., 2021) reports that they didn’t observe significant alignment tax when prompting
LLM to align with humans. However, we focus on a more standard setting that the LLM is fully fine-tuned
for RLHF.

B RLHF Basics

Following (Ouyang et al., 2022; Bai et al., 2022; Dong et al., 2023; Touvron et al., 2023; Rafailov et al.,
2023), we assume that there exists a ground-truth reward function r∗(x, a) : X ×A → [0, 1] where X
and A are the spaces of prompt and action. The preference ranking satisfies the Bradley-Terry model
(Bradley and Terry, 1952): the probability of a1 ∈ A being preferred is

P(a1 ≻ a2|x, a1, a2) = exp(r∗(x, a1))
exp(r∗(x, a1)) + exp(r∗(x, a2))

. (4)

We denote an LLM by a policy π that maps x to a distribution over the response space A. The main
goal of RLHF is to align the staring checkpoint πθ0 with the human preference so that it achieves
high reward measured by r∗, but we may also impose additional constraints to avoid overfitting like
requiring the models to stay close to the πθ0 . In practice, we learn from a preference dataset of the form
D = {(x, aw, al)}, where aw is the preferred response. Typically, we will first train a reward model r as
the Maximum Likelihood Estimation (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023) on the
preference dataset D and then perform reward optimization by different algorithms.

Rejection Sampling Finetuning (RSF) is proposed in (Dong et al., 2023; Touvron et al., 2023; Yuan
et al., 2023; Gulcehre et al., 2023) with several variants. Essentially, the RSF learns from the best-of-n
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policy (Nakano et al., 2021), which samples n responses for each prompt query and returns the one with
the highest reward. As suggested by (Dong et al., 2023; Touvron et al., 2023; Gulcehre et al., 2023), we
adopt an iterative training set-up for the implementation instead of always sampling the samples from the
starting checkpoint because we find that the iterative training is far more sample-efficient. Specifically, for
each iteration, we first sample a batch of prompts and generate n responses for each prompt from current
model. Then, we use the reward model to compute the rewards for each prompt-response pair and for
each prompt, we select the one with the highest reward into a small subset. By this process, we collect a
batch of samples from the best-of-n policy that are with high reward. We simply fine-tune the current
model on this subset to get the next model and the next iteration begins.

PPO is the the classical method for RLHF and has gained its success in aligning Chat-GPT (OpenAI,
2023). In contrast to the implementation in traditional DRL scenario, for alignment of LLMs, following
(Ziegler et al., 2019; Wu et al., 2021a; Ouyang et al., 2022; Rafailov et al., 2023; Liu et al., 2023), we
modify the reward optimization as the following KL-regularized form:

r̃(x, a) = r(x, a)− η log
π(a|x)
πθ0(a|x)

,

where η > 0 is a hyper-parameter to control the level of KL penalty.
Direct Preference Optimization (DPO) is proposed by (Rafailov et al., 2023) from the following

KL-constraint optimization problem:

max
π

ExEa∼π(·|x)

[
r∗(x, a) + η log

πθ0(a|x)
π(a|x)

]
. (5)

It is known that (5) admits the following closed-form solution π∗(·|x) = 1
Z(x)π0(·|x) · exp

(
1
η r

∗(x, ·)
)

(see e.g. Proposition 7.16 of (Zhang, 2023)), where Z(x) is the normalization constant. We can now
represent r∗ by π∗ as follows:

r∗(x, a) = η log
π∗(a|x)
π0(a|x)

+ η logZ(x).

Plugging the reparameterization of r∗ into the preference model in (4), we get

P(a1 ≻ a2|x, a1, a2) = 1

1 + exp
(
η log π∗(a2|x)

π0(a2|x) − η log π∗(a1|x)
π0(a1|x)

) . (6)

The idea of DPO is to find a model π so that it maximizes the likelihood given in (6) on the offline
preference dataset. Therefore, it chooses to minimize the following loss function:

L(θ, πθ0 ,D) = −
∑

(x,aw,al)∈D

[
log σ

(
η log

πθ(aw|x)
πθ0(aw|x)

− η log
πθ(al|x)
πθ0(al|x)

)]
, (7)

where the reward modeling step is bypassed.

B.1 Algorithm of Heterogeneous Model Averaging
Reward Preserving Updating. It is noteworthy that Eqn. (3) represents a RL problem. To implement
Eqn. (3), RL algorithms such as RSF, PPO, or DPO need to be implemented, involving extra implementa-
tion details that depend on the algorithm. To address this issue, we propose a proxy distillation method.
Specifically, given a policy πθ after RLHF, we generate a proxy dataset by

Dθ = {(x, a) : a ∼ πθ(·|x), for x ∈ X}. (8)

Since the data in Dθ is generated by πθ, this data should have a high reward. Therefore, maximizing the
likelihood on Dθ could result in a model with a high reward. Specifically, we optimize the following

max
α1,...,αK∈Ω

1

|Dθ|
∑

(x,a)∈Dθ

log[πθ(K)(a|x)]. (9)
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Figure 7: Comparison of model averaging with Experience Replay.

The algorithm of Heterogeneous Model Averaging is summarized as follows:

Algorithm 1 HMA: Heterogeneous Model Averaging

Input: The reward model r(·, ·), initial policy πθ0 , prompt set Dx, hyper-parameter K, merge ratio α.
Output: The output policy πθ(K).

1: Perform vanilla RLHF by Eqn (1) and obtain πθ.
2: Distill Dθ from πθ according to Eqn. (8).
3: Initialize α1, ..., αK ∈ [0, 1] for the K parts of the Transformer, respectively.
4: Obtain the averaged model θ(K) with α1, ..., αK .
5: Solve Heterogeneous ratios α1, ..., αK according to Eqn. (9).
6: Return the θ(K) with the optimized α1, ..., αK .

C More Results

C.1 Experience Replay

In our alignment tax situation, we aim to preserve a wide range of abilities gained during pre-training.
It is possible to replay a small subset of pretraining data, which also known as Experience Replay (ER)
(Rebuffi et al.; Shin et al., 2017). However, this method is less practical since pre-training datasets of
most models are often not publicly available. Further more, even if we can access the pre-training data,
retaining a subset of the pre-training data entails extra computational costs and implementation intricacies,
making it less preferable (Noukhovitch et al., 2023). In this part, we compare ER with MA. Specifically,
we include a small proportion of randomly subsampled pre-training data during the RLHF stage. Here,
we denote Dpre as the pre-training data distribution, and our objective is to solve the following:

max
θ

ExEa∼πθ(·|x)[r
∗(x, a)] + λE(x,a)∼Dpre

log πθ(a|x)

We experiment with different penalty weights λ such as 0.25, 0.5, 1, 2, and 4. Importantly, we utilize
the data proportion as a proxy for setting the penalty weight. For instance, we do not explicitly apply a
penalty of 4 when λ = 4; instead, we include 4 times the replay data over the RLHF data in a batch. Refer
to the Appendix D for more details.

Results. The results of ER are displayed in Figure 7. Additionally, we include the performance of model
averaging for comparison. It is evident that while ER has access to pre-training data, it only demonstrates
superior performance over model averaging in the Reading Comprehension dataset (Figure 7 - Left), and
falls short of model averaging in the Commonsense QA (Figure 7 - Middle) and Translation (Figure 7 -
Right) benchmarks.

Discussion of ER results. The differing performance of ER compared to model averaging is somewhat
surprising. Despite maintaining extra pre-training data, which is four times larger than the RLHF data
(400M token), ER under-performs model averaging in two out of three benchmarks. This may be attributed
to the vast size of the pre-training data (1.2T token), such that even when replaying a subset four times
larger than the RLHF data, it only covers about 0.03% of the pre-training data. Consequently, the data
corresponding to certain abilities may be underrepresented in the replay dataset. With a substantial
pre-training dataset and a wide range of abilities to preserve, it becomes challenging to maintain all
abilities through replay.
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Figure 8: Comparison of model averaging with reward penalty for PPO.

C.2 Reward Penalty
It is a common practice to impose Kullback–Leibler (KL) penalty on the RL reward in the PPO. Such a
penalty can also regularize the policy to stay closer to the initial policy, which in return can reduce the
alignment tax. Following (Ziegler et al., 2019; Wu et al., 2021a; Ouyang et al., 2022; Yuan et al., 2023),
we modify the raw reward function with an additional KL penalty (Ziegler et al., 2019).

max
π

ExEa∼πθ(·|x)[r
∗(x, a)]−KL(πθ||πθ0), (10)

where we use KL(πθ||πθ0) to denote Ex[KL(πθ(·|x)||πθ0(·|x))] for short. We compare vanilla model
averaging methods with the reward penalty by considering different KL penalties in {0.05, 0.1, 0.2}.
The results are shown in Figure 8. We can see that while a larger KL penalty can partially mitigate the
forgetting issue, the model averaging is much more effective than the reward penalty in terms of the
alignment-forgetting trade-off.

C.3 Consistency of different combination ratios among various tasks
We try three patterns experiment given a base α ∈ {0.2, 0.3, 0.4} : (a) α1 = α2 = α3 = α; (b)
α1 = α2 = α, α3 = α− 0.1, and (c) α1 = α, α2 = α3 = α− 0.1. We use (α|α|α), (α|α|α− 0.1) and
(α|α− 0.1|α− 0.1) to denote these three patterns, respectively. These results confirm that certain ratio
combinations exceed the trade-off curve of vanilla model averaging, as displayed in Figure 9. Notably,
some combination ratios consistently outperform the equal ratio across various benchmarks. This affirms
the potential to identify consistent combination ratios that demonstrate superior performance across a
broad spectrum of benchmarks in terms of alignment-forgetting trade-off.
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Figure 9: Evaluation of different combination ratios.

C.4 Results of α = 0.2

The following results show that when we chose α = 0.2, MA and HMA consistently alleviate the
alignment tax without sacrificing any alignment performance.
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Figure 10: Illustration of α = 0.2 on vanilla model averaging

Figure 11: Illustration of α = 0.2 on HMA

D Implementation Details

In this section, we introduce the implementation details for the methods mentioned in Section 3.

D.1 Rejection Sampling Fine-tuning Implementation

The rejection sampling fine-tuning (RSF) is proposed in (Dong et al., 2023; Touvron et al., 2023; Yuan
et al., 2023; Gulcehre et al., 2023) with several variants. Essentially, RSF earns from the best-of-n policy
(Nakano et al., 2021), which samples n responses for each prompt query and returns the one with the
highest reward. In this work, we implement the algorithm with the official code provided in LMFlow9.
We adopt most of the hyper-parameters as suggested by (Dong et al., 2023) and focusing on tuning the
learning rate by searching over {1 × 10−6, 2 × 10−6, 1 × 10−5} and 1 × 10−5 is taken for our main
experiments.

As suggested by (Dong et al., 2023; Touvron et al., 2023; Gulcehre et al., 2023), we adopt an iterative
training set-up for the implementation instead of always sampling the samples from the starting checkpoint
because we find that the iterative training is far more sample-efficient. Specifically, for each iteration,
we first sample a batch (2048) of prompts and generate n = 32 responses for each prompt from current
model. Then, we use the reward model to compute the rewards for each prompt-response pair, and for
each prompt, we select the one with the highest reward into a small subset. Through this process, we
collect 2048 samples from the best-of-32 policy that are with high reward. We simply fine-tune the current
model on this subset to get the next model and the next iteration begins.

When RSF is combined with other methods for preventing the model from forgetting, we follow
(Touvron et al., 2023; Dong et al., 2023) to align the models in a distillation style. Specifically, we run
RSF algorithm as described above until the model converges to a rather stable level of reward. Then,
we collect the best-of-32 samples along the way of training and fine-tune the model from the starting
checkpoint with the additional methods for mitigating the forgetting issue. In comparison, we note that
(Touvron et al., 2023) only uses the largest 70B Llama 2-Chat models to collect best-of-n samples and
other smaller models are then fine-tuned on these collected data and (Dong et al., 2023) uses LLaMA-7B
to run RSF and uses the collected data to fine-tune other LLMs.

9https://github.com/OptimalScale/LMFlow
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D.2 Implementation of PPO
The experiments with PPO in this work are conducted using the open-source package Transformer
Reinforcement Learning (TRL)10. It is known that the PPO is significantly less stable as compared to
supervised learning (Choshen et al., 2019) and sensitive to the hyper-parameter and code-level optimization
(Engstrom et al., 2020). To tune PPO to its best performance, we include several empirical enhancements
and we record our tuning process, as well as the successful/unsuccessful attempts in this subsection for
interested readers.

First, we follow (Ramamurthy et al., 2022) to warm up by finetuning the model on the preferred samples
of the preference dataset for 1 epoch for a more stable training process. Moreover, in contrast to the
implementation in traditional DRL scenario, for alignment of LLMs, following (Ziegler et al., 2019; Wu
et al., 2021a; Ouyang et al., 2022; Rafailov et al., 2023; Liu et al., 2023), we will also modify the reward
optimization as the following KL-regularized form:

r̃(x, a) = r(x, a)− η log
π(a|x)
π0(a|x)

,

where η > 0 is a hyper-parameter to control the level of KL penalty.
However, even though we first finetune the models with the preferred samples and train with an

additional KL penalty, the PPO training can still lead to an unstable reward level and failure. For the
first issue, with the ultimate hyper-parameter, we will run PPO with three independent seeds and take the
best models. We now focus on the second issue. One notable failure signal of PPO training is that the
models suddenly refuse to answer the question (prompt), or reply with incomplete sentences, which may
be detected by (1) a shorter average response length; (2) the incomplete sentences in randomly displayed
sample responses within one iteration; (3) sudden drop in reward value. Once such a drop happens, the
models just collapse and the training fails.

Hyper-parameter tuning. To mitigate this issue, we carefully tune the learning rate, KL coefficient,
update epoch, batchsize by grid search. We observe that for full training (without LoRA), a learning rate
with 1 × 10−6 is most suitable in terms of the trade-off between reward learning and training stability.
Update epoch = 2 performs best in our preliminary experiments for parameter tuning. A batchsize that is
too large (2048) or too small (128) leads to unstable training. Therefore, we fix the batchsize as 512 and
the update epoch as 2 to further tune the KL coefficient and learning rate. Ideally, in the mathematical
formulation of KL-constrained RLHF, a smaller KL coefficient should lead to a higher reward value. In
practice, we observe that for KL coefficient β ∈ [0.05, 0.3], a smaller KL coefficient leads to a higher
ultimate reward value of the obtained policy. However, for β < 0.05, the model collapses before it
achieves the highest reward possible, leading to a even worse model compared to β = 0.05. The results
are observed across more than 20 independent runs. Therefore, in the ablation study of the impact of KL
coefficient for PPO, we choose β = 0.05 as the smallest KL coefficient. We mention in passing that due
to the same instability issue, the LoRA training may also achieve better reward because we can optimize
the model well with LoRA, while the full-trained models collapse before it achieve its best performance.

Restart trick in critic training. To further understand the reason why the PPO fails, we examine
several training records provided by wandb. We found that before (or simultaneously) the models collapse,
the critic loss increases significantly. After looking at the source code of TRL, we notice that there is a
scaling factor of the critic loss of 0.1, which may also suggest that the training processes of the critic and
actor are different. Motivated by these observations, we try out different learning rates for the critic: (1) a
larger learning rate for the critic; (2) a smaller learning rate for the critic; (3) decay/increase the learning
rate of the critic every 10 batch of the training. Unfortunately, we do not see significant improvement
in either the training stability or the ultimate reward value. We noticed that the instability from value
estimation (critic training) seems to be a well-studied problem in the DRL literature. For instance, (Lee
et al., 2022a) proposes to use a pessimistic (conservative) reward signal, which is obtained by reward
model ensemble, which is also recommended in theoretical RLHF studies (Zhu et al., 2023; Xiong et al.,
2023). However, this requires to load multiple reward models at the same time, which is infeasible for us

10https://github.com/huggingface/trl
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due to computational constraint. Motivated by the trick of PaLM (in the pre-trained stage) (Chowdhery
et al., 2023), which call back whenever the spikes happen in the loss curve, we simply train the model
twice. Specifically, we run PPO training first and save the intermediate models for every iteration. Once
the model collapses, we simply restart from a model 3 iterations before the training fails and re-initiate
the critic model. Then, we skip the actor training for 1 iteration as a warm-up stage of the restarted critic.
We observe that though the training still collapses easily after 10-20 iterations of training, we do achieve a
much higher reward value.

It is also interesting to design new algorithms to mitigate the value estimation error for a more stable
PPO-based training, and we leave it for future study since it is beyond the scope of this work.

D.3 Implementation of DPO

We implement DPO by the open-source package Transformer Reinforcement Learning (TRL). We mainly
use 0.1 in our experiments but also try out 0.3 and 0.5 since the authors of original paper recommend to
set it from 0.1 to 0.5. Then, we mainly tune the learning rate. We use the evaluation loss (which generally
aligns with the evaluation accuracy) on the validation set of reward modeling for the model selection. We
observe that for learning rate in {1× 10−6, 2× 10−6, 1× 10−5}, 1× 10−6 achieves the lowest evaluation
loss so it is adopted in our experiments. We train DPO for up to 3 epochs and evaluate the model every
0.5 epoch by the evaluation loss on the validation set. The lowest evaluation loss and highest evaluation
accuracy are achieved at the end of the first epoch so we use the model as the representative model of DPO
though we do observe the validation reward of the model at 0.5 epoch of the training is slightly higher. We
suspect that this is because the equivalence of reward modeling and policy training are equivalent for DPO
only when the optimization error is zero (see (Rafailov et al., 2023; Azar et al., 2023) for a detailed proof).
In practice, since the samples are finite and we may not solve the non-convex optimization by finding its
exact minimizer, the reward of the generator may not align with the accuracy of the discriminator (reward
model).

D.4 Implementations of Existing Methods to Alleviate Alignment Tax

We test existing methods mainly on the RSF method which is implemented as discussed in Appendix D.1.
Details about how we implement existing methods to mitigate forgetting are described as follows.

(a) Early Stopping: The whole RSF is conducted for 10 iterations and we choose the model of RSF at
numbers of iterations of 2,4,6,8 as the early stopping checkpoints.

(b) Regularization towards θ0 in the weight space: For these kinds of methods. We alternative the
training loss at the SFT stage in RSF by adding the regularization terms with different penalties.
Specifically, we test {0.04, 0.1, 0.4, 0.6, 1} for the L1 penalty and {0.01, 0.04, 0.06, 0.08, 0.1} for
L2 penalty.

(c) Low-Rank Adaptation (LoRA): We implement two levels of LoRA. The typical version only considers
the low-rank adaptation of MLP blocks and we have tested several ranks for 16-512, while only
rank 512 gives a reasonable performance on the final alignment result. The other is the low-rank
adaptation of both MLP and attention blocks, in this case, rank 16 makes a good performance on
alignment.

(d) Knowledge distillation: The implementation of this approach is similar to the Regularization method.
We add the knowledge distillation term as a regularization term in the SFT stage. The penalty used
here are {10−5, 10−3, 10−1}.

(e) Model Averaging: We simply interpolate the modules of linear layers in the whole model, e.g., Q, K,
V projection layers in attention and MLP layers. We will vary the α from 0 to 1. The start point of
the model averaging is the model after instruction following and the end point of that is the model
after RLHF.
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For the experience replay (ER) method, we uniformly sample the pre-trained data of Open-LLaMA-3B
according to the penalty. Specifically, given the alignment data of 400M tokens and a penalty of 2, we
will sample 800M token data from the pre-trained data. And then add data to conduct the SFT loss as a
penalty.

D.5 Implementations of Heterogeneous Model Averaging

Notice that it is difficult to directly solve the Eqn. (9) on the support set Ω. So instead of directly
optimizing the α1, . . . , αK , we reparameterize the α1, . . . , αK as follows,

α̂i = σ(si) + ϵ; αi =
α̂i∑

i=1,...,K α̂i
α (11)

where σ(x) = 1
1+exp(−x) is the sigmoid function si can take any real number. For each s1, . . . , sK , we

can easily find the corresponding α1, . . . , αK of Eqn. (11) belongs to the Ω. In this way we can optimize
on s1, . . . , sK rather than α1, . . . , αK . Moreover, the ϵ in Eqn. (11) can serve as a boundary control
parameter, that is, if we set K = 3, ϵ = 1, then each αi can just take values over [0.2α, 0.5α]. In practice,
we will search the ϵ ∈ {0, 0.1, . . . , 0.9} to get the best model.

To get Dθ, we will use the prompts from the training RLHF dataset to generate the full response with
different policy πθ. Then we sample about 2000 pieces generated responses from the set consisting of
the 5000 samples with the highest rewards. Then we can just take the s1, . . . , sK as the optimization
parameters and just finetuning them on the Dθ.

Besides directly optimizing the Eqn. (9), we also test adding regularization terms of α1, . . . , αK .
Generally we just add weighted L1 loss

∑
iwi|αi − α| as the regularization terms. wi is chosen to make

the middle part of the module change not too much.

Typically, we only average the weights in the linear layers and the α1, . . . , αK works on transformer
layers which contain self-attention and MLP. For the head layer, we just set the average weight as α.

We give the hyper-parameters for the optimization in Table 4

E More Results

E.1 The Alignment Tax during Training (Results of Early Stopping)

The following figure shows the RLHF reward and alignment tax during different training steps.
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Figure 12: The alignment-forgetting trade-off during training

E.2 More Results of Averaging Different Parts

In this part, we include the full results (e.g., RSF, DPO, PPO) of averaging different parts.
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Figure 15: Results of AdaMerging. We optimize AdaMerging on Reading Comprehension and found it can hardly
do well on Common Sense.
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Figure 13: The performance of averaging different parts. (Left) RSF; (Middle) DPO; (Right) PPO

E.3 Comparison of RLHF Algorithms

We compare the alignment-forgetting trade-off of RSF, DPO and PPO in Figure 14. We observe that RSF
is consistently better than DPO. However, we also note that this is not a fair comparison since DPO does
not directly optimize for the reward.
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Figure 14: Comparison of RLHF algorithms in terms of alignment-forgetting trade-off.

E.4 Results of AdaMerging (Yang et al., 2023)

Previous studies (Yang et al., 2023) have also discussed the idea of dynamically assigning different
weights to different layers when merging models, aiming to maximize performance on a specific task
(e.g., Ti). These approaches assume access to the task-specific data Ti. However, considering the nature
of alleviating alignment tax, which aims to mitigate forgetting across a extremely wide range of tasks
(Tj1 ...TjK ), these methods fail to effectively optimize performance for multiple tasks simultaneously.
Specifically, we want to preserve the abilities on a wide range of tasks and it is hard to get the data for all
these tasks. Further more, some ability such as in-context learning does not have a clear corresponding
training set. So it is less practical to find training set for AdaMerging.

Here we demonstrate when we use AdaMerging to optimizes for task A and the training set does not
cover task B, AdaMerging can not preserve the ability on task B. Specifically, we provide AdaMerging
with labeled data for Reading Comprehension (i.e., task A) and optimize the 26 layer-wise merging ratios
as (Yang et al., 2023). To have a clear comparison with vanilla model averaging, we try different mean
averaging ratio for AdaMerging among 0.2, 0.4 and 0.6. We also show both the results on task A and B.
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In contrast, our HMA only require the RLHF data and does not need any data from the tasks which we
want to preserve ability. Figure 16 shows that HMA can alleviate the alignment tax evaluated on a wide
range of tasks.

E.5 Detailed Results of Heterogeneous Model Averaging

We provide the detailed results of Heterogeneous model averaging on various benchmarks, e.g., Reading
Comprehension, Commonsense QA and translation, and different RLHF methods, e.g., RSF, PPO, and
DPO.
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Figure 16: Detailed results of Heterogeneous model averaging on various benchmarks and RLHF methods.

F Theoretical Settings, Proofs and Discussions

F.1 Re-statement of Formal Settings

Notation. Consider that the full class space M contains M classless, i.e. y ∈ {e1, e2, ..., eM}, where
ei denotes the M -dimensional unit vector with ith element equaling 1, e.g., e2 = [0, 1, 0, ..., 0]⊤. a(k)
means the kth element of vector a, A(k) means the kth column of matrix A. We use IM to represent a
M ×M identity matrix, e.g., IM = [e1, e2, ..., eM ]. We omit the subscript of I when no confusion arises.

Following (Lin et al., 2023), suppose we have N weak features {xi}Ni=1 where xi ∈ Rd and the whole

feature x ∈ Rd×N is the concatenation of them, i.e., x = Concat
(
{xi}Ni=1

)
= [x1, . . . ,xN ]. Consider

that each model f is composed of a featurizer Φ ∈ {0, 1}N and a classifier w ∈ Rd×K . Φ first selects
feature by xΦ. For example, suppose x = [x1,x2,x3] and Φ = [1, 1, 0]⊤, then xΦ = x1 +x2. Then the
classifier w ∈ Rd×K is fit based on the features selected by Φ as w = argminv E[ℓ(v⊤(xΦ),y)]+∥v∥22,
where ℓ is the cross-entropy loss function.

We simplified (Lin et al., 2023)’s Definition 1 and only consider weak features as following:

Definition F.1 (Data Generation Process). The whole data generation process is as follows:

y ∼ Unif {e1, e2, ...eM} ,x = Concat
(
{xi}Mi=1

)
,

Pθ(xi | y) = N
(
µiQiy, σ

2Id

)
, ∀i. (12)

where Qi ∈ {0, 1}M×M . the mth column of Q, i.e., Qj(m), is as follows for m = 1, 2, · · · ,M :

Qj(m) =

{
em, with probability 1− p

Unif{e1, · · · , eM}, with probability p.
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Definition F.2 (Model Averaging, Definition 4 of (Lin et al., 2023)). Given the two individual models
(w̄, Φ̄) and (w̃, Φ̃) , the prediction of the model averaging is favg(x) = 1

4(w̄ + w̃)⊤
(
x(Φ̄ + Φ̃)

)

We impose the following mild assumptions as (Lin et al., 2023).

Assumption F.3 (Small Noise). Denote Ns as the the maximum number of invariant features and
spurious features that a model can learn, respectively. We need the overall noise to be small to satisfy
FK( 1

σ(Ns)
) ≥ 1 − ϵ, in which F is the cumulative distribution function of standard Gaussian random

variable, and K refers to the class number.

Assumption F.4 (Orthogonal features (Lin et al., 2023; Allen-Zhu and Li, 2020)). (1) ∥µi(k)∥2 = 1 for
i = 1, · · · , n, (2) µi(k) ⊥ µi′(k

′) for any (i, k) ̸= (i′, k′), k, k′ = 1, · · · ,K, i, i′ ∈ 1, · · · , n.

F.2 Proof of Proposition 5.1

Estimating ξ(1) corresponding to Case (1). The estimation of ξ(1) is a direct application of Proposition
7 of (Lin et al., 2023). Specifically, according to Proposition 7 of (Lin et al., 2023), we have

Aa(fa) = Ab(fb) = Fb((1− p)
√
n),Aa(favg) = Ab(favg) = Fb((1− p)

√
2n√

n+ no
) (13)

Estimating ξ(2) corresponding to Case (2). Without loss of generality, we assume the Ya is {1, ...,K}
and Yb is {K + 1, ..., 2K}. Denote the feature learnt by (wa,Φa) and (wb,Φb) as x1, ...,xn and
xn−no+1, ...,xn, ...x2n−no . Since Aa(favg),Ab(favg) ≥ 0, we trivially have ξ(1) ≥ −Fp((1 − p))

√
n

by combing Proposition 7 of (Lin et al., 2023).
According to the Lemma 5 of (Lin et al., 2023), we have

w̄a(k) =
n∑

i=1

µi(k),∀k = 1, · · · ,K, w̄b(k
′) =

2n−no∑

i=n−no+1

µi(k
′),∀k′ = K + 1, · · · , 2K, .

We first estimate the accuracy of favg on task (a), i.e., Aa(favg), for a sample from class k ∈ 1, · · · ,K
and k′ ̸= k, k′ ∈ 1, · · · ,K. Then by |Ya ∩ Yb| = 0 and Assumption F.4, we have

(wa(k) +wb(k))
⊤x(Φ̄a + Φ̄b)|y=ek = wa(k)

⊤xΦ̄a +wb(k)xΦ̄b|y=ek = wa(k)
⊤xΦ̄a|y=ek

(wa(k
′) +wb(k

′))⊤x(Φ̄a + Φ̄b)|y=ek = wa(k
′)⊤xΦ̄a +wb(k

′)xΦ̄b|y=ek = wa(k
′)⊤xΦ̄a|y=ek

The last equality is due to wb(k) = 0 and wb(k
′) = 0 for k, k′ ∈ 1, ...,K. Then it is straightforward to

see that Aa(favg) = Aa(fa). We similarly have Ab(favg) = Ab(fb). Then we have ξ(2) = 0.
We finish the proof by collecting the results.

F.3 Discussion on the Effect of Task Similarity on Model Averaging

We illustrate why model averaging would not lead to much improvement if two tasks are dissimilar, i.e.,
|Ya ∩ Yb| = 0. Without loss of generality, we assume the Ya is {1, ...,K} and Yb is {K + 1, ..., 2K}.
Since w is the minimum norm solution based on Φ, we know that wb(k) = 0 for k = 1, ...,K. From the
previous proof, we know that

(wa(k) +wb(k))
⊤x(Φ̄a + Φ̄b)|y=ek = wa(k)

⊤xΦ̄a +wb(k)xΦ̄b|y=ek

Since wb(k) = 0, the above equation equals wa(k)
⊤xΦ̄a, which is simply the performance of fa.

Intuitively, wb(k)xΦ̄b maps the feature xΦ̄b into the space spanned by wb. However, since wb is all
zero in the dimension 1, ...,K, so wb(k)xΦ̄b has no impact on the prediction of task a (i.e., among class
1, ...,K).
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F.4 Close Form of Fp(x)

Here we provide the explicit expression of function Fp(x) in K class situation, which is monotonically
increasing with x.

We denote a K − 1-dim random variable η ∼ N (x,M), in which

M i,i =
p(K + 2− pK)

K
,M i,j =

p(K + 1− pK)

K
,

then Fp(x) is defined as
Fp(x) = P(η1 > 0, . . . ,ηK−1 > 0).

G Hyper-Parameters

Table 2: Hyper-parameters for RLHF experiments with Open-LLaMA-3B. ∆ means that the parameter will be
specified in each individual experiment. For LoRA training, the omitted hyper-parameters are set as the full training.

MODELS AND METHODS HYPER-PARAMETER VALUE

TEMPERATURE 1.0
DATA COLLECTION BATCH SIZE 512

PPO TRAINING LEARNING RATE 1× 10−6

UPDATE EPOCH 2
UPDATE BATCH SIZE 32

KL COEFFICIENT ∆
REWARD BASELINE 5.5625

LEARNING RATE 1× 10−5

UPDATE EPOCH 4
UPDATE BATCH SIZE 32

PPO LORA TRAINING KL COEFFICIENT ∆
REWARD BASELINE 5.5625

LORA RANK 16
LORA α 32

LORA DROPOUT 0.05

TEMPERATURE 1.0
RSF TRAINING BATCH SIZE 2048

LEARNING RATE 1× 10−5

EPOCH 2
UPDATE BATCH SIZE 32

LEARNING RATE 1× 10−5

EPOCH 2
RSF LORA TRAINING UPDATE BATCH SIZE 32

LORA RANK 16-512
LORA α 32

LEARNING RATE 1× 10−6

DPO BATCH SIZE 32
KL COEFFICIENT 0.1

605



Table 3: Hyper-parameters for auxiliary experiments.

MODELS AND METHODS HYPER-PARAMETER VALUE

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP

SHAREGPT SFT EPOCH 1
BATCH SIZE 128
BLOCK SIZE 2048

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP

HH-RLHF SFT EPOCH 1
BATCH SIZE 12
BLOCK SIZE 2048

LEARNING RATE 2× 10−5

RM SFT SCHEDULER COSINE DECAY WITH 0.03 WARM-UP

EPOCH 2
BATCH SIZE 12

LEARNING RATE 5× 10−6

RM TRAINING SCHEDULER COSINE DECAY WITH 0.03 WARM-UP

EPOCH 1
BATCH SIZE 16

TEMPERATURE λ 1.0
TEST SETTINGS MAX NEW TOKEN 196

DO SAMPLE TRUE

Table 4: Hyper-parameters for HMA experiments.

MODELS AND METHODS HYPER-PARAMETER VALUE

LEARNING RATE 2× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP

RSF HMA EPOCH 1
BATCH SIZE 1
BLOCK SIZE 512

LEARNING RATE 4× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP

PPO HMA EPOCH 1
BATCH SIZE 1
BLOCK SIZE 512

LEARNING RATE 4× 10−5

DPO HMA SCHEDULER COSINE DECAY WITH 0.03 WARM-UP

EPOCH 1
BATCH SIZE 1
BLOCK SIZE 512
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