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Abstract

Entity matching is the task of linking records
from different sources that refer to the same
real-world entity. Past work has primarily
treated entity linking as a standard supervised
learning problem. However, supervised entity
matching models often do not generalize well
to new data, and collecting exhaustive labeled
training data is often cost prohibitive. Further,
recent efforts have adopted LLMs for this task
in few/zero-shot settings, exploiting their gen-
eral knowledge. But LLMs are prohibitively
expensive for performing inference at scale for
real-world entity matching tasks.

As an efficient alternative, we re-cast entity
matching as a conditional generation task as op-
posed to binary classification. This enables us
to “distill” LLM reasoning into smaller entity
matching models via natural language expla-
nations. This approach achieves strong perfor-
mance, especially on out-of-domain generaliza-
tion tests (↑10.85% F-1) where standalone gen-
erative methods struggle. We perform ablations
that highlight the importance of explanations,
both for performance and model robustness.

1 Introduction

Entity matching, also known as record linkage or
data deduplication, refers to matching records from
different sources which refer to the same underly-
ing entity, in the absence of unique identifiers. This
is a practically important task across a diverse set
of domains, e.g., database management, healthcare,
customer relationship management, and financial
services; in such applications, normalizing entities
to realize a unified view of data is imperative.

Most prior work on entity matching has adopted
supervised techniques, training a model to link
entities within a particular domain. Performing
pair-wise comparison on all record pairs is com-
putationally prohibitive, especially on large scale

*Work perfomed during internship at Amazon.

Test Data

Binary Labeled Training Data

Figure 1: An example of the generalization problem in
entity matching: A model trained on a dataset of com-
puters (e.g., WDC-Computers) is tested on instances
taken from a corpus comprising shoes (WDC-Shoes).

datasets; typical entity resolution pipelines there-
fore perform blocking followed by matching (Li
et al., 2020; Wang et al., 2023a). The former step
entails identifying candidate record pairs which
may reference the same entity, while in the latter
one attempts to infer whether this candidate is in-
deed a match.

Assuming a supervised setting for this task is
limiting in a few key ways. First, collecting hu-
man supervision is inherently expensive. Second
and relatedly, training an entity matching model in
one “domain” (in this work, a domain is a prod-
uct category) via explicit supervision will yield a
model which is unlikely to readily transfer to other
domains. For example, a model trained to match
camera models based on descriptions is unlikely to
generalize well to linking laptops (nevermind non-
electronics). But collecting annotations linking
products in all possible categories is not feasible.
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This has motivated work on transferable models
for entity matching across domains (Trabelsi et al.,
2022; Tu et al., 2022c,a; Chai et al., 2023).

One way to address the generalization prob-
lem may be to use general-purpose LLMs “zero-
shot”, via prompting and/or lightweight fine-tuning.
Given the generality of such models, it is intuitive
that they may be more robust to domain shifts when
matching entities. Moreover, an as-yet unexplored
potential benefit of LLMs for this task is their abil-
ity to provide (natural language) “reasoning” for
their outputs; this may permit fast manual verifica-
tion of linkages, and therefore instill confidence in
model outputs. Aside from this, we later show that
the richer signal in generated label “rationales” (or
explanations) allows for improved model distilla-
tion, consistent with recent findings on other tasks
(Ho et al., 2022).

A downside of LLMs is inference cost; applying
such models to very large datasets—and contin-
uously to new data as it is produced—is expen-
sive. A comparatively tiny database with just one-
thousand entities can yields a million (1k × 1k)
candidate pairs, translating to thousands of dollars
in inference costs.1 We therefore explore model dis-
tillation for entity matching. In particular, we elicit
“reasoning” alongside outputs for entity matching
tasks from massive LLMs, and use this to train
a modestly sized LM for entity matching such
that it can also provide supporting rationales.2 We
show that despite its small size, the resultant model
achieves strong performance. Moreover, our abla-
tions highlight the importance of rationalization for
robust entity matching, i.e., generalization.

Our contributions are as follows. (1) We frame
entity matching as a conditional generation task and
show that relatively small seq2seq models perform
comparably to non-generative models when tested
on in-domain instances. However, both approaches
suffer significant loss in performance when tested
on out-of-domain instances. (2) We show how
augmenting entity matching training datasets with
chain-of-thought style reasoning (explanations) ob-
tained from larger models results in significant
gains on out-of-domain instances. (3) We perform
comprehensive ablations on LLM-generated “ex-
planations” to tease out which aspects of these ex-
planations affect downstream model performance.

1openai.com/pricing
2This is a type of distillation, but differs from traditional

approaches (Hinton et al., 2015) in that we are distilling only
“reasoning” abilities, and not capabilities on the task itself.

Flan-T5
(base)

DITTO
(RoBERTa-base)

Mistral-7B LLM
(Instruct)

Training Method Supervised Supervised ICL Few-shot

Abt-Buy 89.92 89.33 31.11
Amazon-Google 76.23 75.58 25.54
Walmart-Amazon 87.40 86.76 18.53
Beer 93.33 94.37 32.91
iTunes-Amazon 93.09 97.06 41.88
WDC-Computers 92.08 91.70 43.27
WDC-Cameras 91.25 91.23 45.31
WDC-Watches 93.72 95.69 53.94
WDC-Shoes 90.20 88.07 51.64

Table 1: Comparison of performance (F-1 scores) for
prior work (Li et al., 2020) with recent generative mod-
els (Chung et al., 2022) under full supervision (except
on Mistral-7B LLM) on the task of entity matching un-
der binary labeled (BL) data.

These findings may have implications for other
tasks.

2 Entity Matching via Text Generation

We treat entity matching as a conditional text
generation task. For a dataset of N entity
pairs xi = (entity_ai, entity_bi), we model
the probability of generating classification label
(e.g., "match"/"no match") as a string yi = <
y1i , y

2
i · · · yTi >, conditioned on a context string

Ci. Formally:

pLM(yi|Ci, xi) =
T∏

t=1

p(yti |Ci, xi, y1···t−1
i )

This is the standard conditional language model-
ing objective. During training, we use “teacher-
forcing”, i.e., condition production of outputs
(“match” or “not”) on reference prefixes.

2.1 Data
We use 9 publicly available entity matching
datasets (Köpcke et al., 2010; Konda et al., 2016)
used for evaluation in similar prior work (Li et al.,
2020; Peeters and Bizer, 2023a). These datasets
span several domains, allowing us to assess out-
of-domain performance by testing a model trained
on one type of data on examples from a another.
Each dataset contains entity pairs from structured
tables. We follow the input linearization strategy
and train/validation/test splits from Li et al. (2020).
Under this linearization scheme each input can-
didate entity pair is serialized as a sequence of
tokens:

[entitya] [COL] <attr> [VAL] ...
[entityb] [COL] <attr> [VAL]...
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Massive LLM 
(Alpaca/Mistral/GPT)

Explain matching label class given the entity 
descriptions:

Label: Match

E_a: Nike Sportswear AF-1 488298-436 MN Navy.
E_b: Air Force 1 [BRAND] Nike [COLOR] Navy (488298-436)

Explanation: Both entities refer to Nike AF shoes with the 
                            same model number, therefore they’re a match.

Label: Not a Match

E_a: Air Jordan 14 Retro Varsity “Laney” Black-White for Sale.
E_b: Cheap Air Jordans 4 Retro “Motorsports” Varsity White.

Explanation:

New Xtrain Instance

Augmented (Xtrain, Ytrain)

X: E_a & E_b 

Y: [LABEL] [EXP] …….

X: E_a & E_b 

Y: [LABEL] [EXP] …….

X: E_a & E_b 

Y: [LABEL] [EXP] …….

Small LM Fine-Tuning
(Flan-T5 Base)

WDC-Shoes
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Prompt

While both entities refer to Air Jordans, Entity A is a "Laney" 
version, while Entity B is a "Motorsports" version, therefore 
they are not a match.

Entity A is Jordan 14 while Entity B is Cheap Jordan Retro 4, 
therefore the two are not a match. 

Entity A is a "Laney" version which is Maize-Black-White in 
color, while Entity B is a "Motorsports" version which is Blue-
Black in color, therefore they are not a match.

GPT-4

Alpaca

Mistral-7B-Instruct

C
os

t

{Binary Labeled 
Training Data

{Explanation Augmented
Training Data

Figure 2: We propose augmenting binary labeled (BL) training data of entity matching datasets with Chain-of-
Thought style natural language explanations from large models before fine-tuning smaller, more robust generative
models. We use the time needed to generate explanation-augmented (EA) training data on a typical Amazon EC2
P3 instance as a proxy for cost in case of Mistral (Jiang et al., 2023) and Alpaca (Taori et al., 2023) models, and the
total cost of OpenAI’s API usage in case of GPT-* models. Using this approach, we realize significant performance
gains in a variety of out-of-domain test settings.

In our generative setting, a single training instance
then becomes a pair of input text with entity at-
tributes, and a linearized output target string3:
Input [entitya] [COL] <Title> [VAL] Nike Air
Jordans 2007 ... [entityb] [COL] <Title> Air
Jordans by Nike [COL] <MANUF_YEAR> [VAL] 2007
...
Target Match

We provide additional full length examples and
dataset-specific instances in Appendix B.

2.2 Small LMs, SOTA Performance

We start by evaluating baseline generative mod-
els to standard datasets. Table 1 summarizes our
findings from these experiments. Generally, we
find that even smaller generative models (e.g.,
FlanT5-base) perform comparably to (and even oc-
casionally outperform) their non-generative coun-
terparts (e.g., DITTO). We also provide results

3DITTO (Li et al., 2020) follows a non-generative ap-
proach and therefore does not require linearized strings as
output targets.

from zero/ICL few-shot experiments using much
larger generative models (1B+ parameters) in Ap-
pendix E. However, deploying such large models at
scale would be prohibitively expensive. Therefore,
we focus on smaller models in this work.

To quantify performance on out-of-domain data,
we consider three experimental settings represen-
tative of practical conditions under which entity
matching models may be deployed.
Cross Domain Train the model on entity pairs
belonging to one domain (e.g., consumer electron-
ics products) and test its performance on another
domain (e.g., shoes). Training on the Amazon-
Google dataset and testing model performance on
WDC-Shoes is one example of this setting.
Cross Schema Entities in the test data may have
different attributes, not seen in training, even if the
data is from the same domain and derived from the
same source. Datasets used to test cross-schema ro-
bustness are not mutually exclusive from (and may
overlap with) cross-domain train-test data pairs.
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Type Training Data Tested On F-1
(BL)

F-1
(EAAlpaca)

F-1
(EAMistral)

∇(EAMistral-7B − BL) (↑)

X-Domain

Amazon-Google Beer 70.27 90.80 92.30 22.03
Abt-Buy Beer 68.86 85.11 89.66 21.01
Walmart-Amazon Beer 77.77 85.62 89.65 11.88

WDC-Computers
WDC-Shoes 69.95 76.16 79.18 9.23
WDC-Watches 80.07 87.23 87.02 6.94
WDC-Cameras 73.26 91.26 93.77 20.57

WDC-Shoes
WDC-Computers 67.90 84.01 84.13 16.23
WDC-Watches 70.34 81.49 84.89 14.55
WDC-Cameras 73.26 82.27 84.74 11.48

WDC-Watches
WDC-Computers 73.37 85.43 86.20 12.83
WDC-Shoes 67.26 80.99 81.70 14.44
WDC-Cameras 82.59 88.47 89.96 7.37

WDC-Cameras
WDC-Computers 76.33 86.92 87.71 11.38
WDC-Watches 74.21 80.20 81.77 7.55
WDC-Shoes 69.15 78.52 78.04 8.89

X-Schema
iTunes-Amazon Amazon-Google 21.29 43.45 44.61 23.32

Walmart-Amazon 20.04 41.81 43.09 23.05
Walmart-Amazon iTunes-Amazon 51.72 72.19 75.63 23.91
Amazon-Google 72.22 91.25 91.21 18.99

X-Distribution

Abt-Buy Amazon-Google 22.25 38.88 41.42 19.17
Walmart-Amazon 25.77 46.04 45.09 19.32

Amazon-Google Abt-Buy 26.72 49.73 44.64 17.92
Walmart-Amazon 33.10 47.22 51.61 18.51

Walmart-Amazon Abt-Buy 63.75 72.84 67.52 3.77
Amazon-Google 52.05 55.71 60.20 7.97

WDC-All
Abt-Buy 69.16 76.58 76.44 7.28
Amazon-Google 46.12 56.12 59.13 13.01
Walmart-Amazon 64.09 75.55 76.37 12.28

Table 2: Comparison of FlanT5-base performance when trained without (BL) and with explanation-augmented
(EA) training data. Broadly, we observe significant gain in model performance when trained with chain-of-thought
style explanations elicited from large language models.

Cross Distribution Train and test the model on the
same domain (e.g., consumer electronics products)
but on entity pairs derived from different sources.
For example: Train on Walmart-Amazon dataset,
test on the entity pairs of Abt-Buy data.

In every setting we observe, unsurprisingly,
degraded model performance (F-1(BL) in Table
2) compared to in-domain test sets (Table 1).
For instance, a model trained on a dataset of
WDC-Cameras suffers a drop of ∼15 points when
tested on a dataset of WDC-Computers. We pro-
vide additional results in Appendix D for non-
generative models under this cross testing frame-
work. Broadly, consistent with prior work (Tu et al.,
2022b), we find that non-generative models fare
poorly when tested on out-of-domain data.

We emphasize here that the aforementioned set-
tings frequently occur and are a representative of
the practical use-cases of entity matching models.
It is often cost-prohibitive to collect and annotate
data in large volumes for training domain, distribu-

tion, or schema-specific models.

2.3 Eliciting explanations from LLMs to
improve smaller LMs

To improve out-of-domain model performance un-
der our testing framework, we propose augment-
ing the binary labeled training data (BL) used to
fine-tune small generative models with Chain-of-
Thought (CoT) style reasoning explanations (Wei
et al., 2022) elicited from much larger language
models Mistral-Instruct (Jiang et al., 2023) and Al-
paca (Taori et al., 2023). We call this explanation-
augmented training data (EA).

We use ICL few-shot prompting strategy to elicit
meaningful generalizable CoT-style explanations
given a pair of input entities and their correspond-
ing matching label. Consider the following illustra-
tive example from the WDC-Shoes dataset used as
a prompt to elicit a CoT-explanation.

Input [entitya] [COL] <Title> [VAL] Nike Air
Jordans 2007 ... [entityb] [COL] <Title> Air
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Jordans by Nike [COL] <MANUF_YEAR> [VAL] 2007
...
Target Match [explanation] Both entities refer
to Nike Air Jordans from 2007, therefore they’re
a match.

Input [entitya] [COL] <Title> [VAL] New Balance
1080 Running [COL] <MANUF_YEAR> [VAL] 2016 ...
[entityb] [COL] <Title> NB Fresh Foam X 1080v13
[COL] <MANUF_YEAR> [VAL] 2016 ...
Target Match [explanation] –

The actual prompts we use consist of two ICL
examples (one for each target label type), in ad-
dition to the new instance for which we want the
model to generate an explanation. An author of
this paper wrote the explanations for the two ICL
examples used in the prompt. We reproduce these
prompts in their entirety in Appendix C. For gen-
erating CoT-style explanations we used publicly
available checkpoints for both Mistral-7B-Instruct4

and Alpaca.5 We generated explanations with a
maximum length of 128 tokens (minimum of 5 to-
kens) with topk sampling (k = 50) and nucleus
sampling (p = 0.95). For every dataset, we found
that generating explanations took approximately
2-5 seconds for Mistral-7B-Instruct, and 7-12 sec-
onds on Alpaca-based models.

We consider these model generated CoT-style
explanations analogous to summaries generated
by a model given entity text and a corresponding
matching label. We then use these explanations to
fine-tune a smaller model (FlanT5-base in our case)
and observe considerable gains in cross-domain,
cross-schema, and cross-distribution performance
(Table 2). We find on average the F-1 score un-
der cross-schema setting increases by 22.32, while
for cross-domain and cross-distribution setting the
average F-1 score increases by 14.47 and 13.67 re-
spectively. In some instances (e.g., a model trained
on WDC-Computers → tested on WDC-Cameras),
we observe that augmenting the training set with
CoT-style explanations enables OOD performance
comparable to in-domain performance6.

3 Assessing the usefulness of explanations
through ablations

We conduct several ablations, both automated (la-
beled A–E) and through manual human annotations
(H1 and H2), to assess the usefulness of generated
explanations (which appear to improve the perfor-
mance of smaller entity-matching models). Table 3

4huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1

5crfm.stanford.edu/2023/03/13/alpaca.html
6Details on reprehensibility are provided Appendix A.

summarizes findings from our automated ablations.
We will use the following instance from the Abt-
Buy dataset as a running example to demonstrate
ablations A–E:
Entity A: WD Red 3TB SATA III 3.5" Hard Drive -
IntelliPower 64MB Cache WD30EFRX
Entity B: CCL Computers WD Red 1 - 64Mo (NAS) HDD
Label: Not a Match

For this instance, the language model (Mistral-
7B-Instruct) generates the following explanation:
Generated: While both entities refer to “WD Red”
hard drive, Entity A specifically refers to 3TB
SATA III 3.5" drive, while Entity B refers to a
drive for use in a Network Attached Storage (NAS)
and therefore they are not a match.

For each of the following ablations (A–E), we make
targeted changes to the original LLM-generated
explanations and then retrain the smaller LM to
test the corresponding effects.

A. Junk Substituion We start by substituting
LLM-generated explanations by sentences com-
prising random ‘junk’ tokens, which are generated
at random7 from the English language vocabulary.
We retain the original length of the explanation,
e.g., in the example above the LLM-generated ex-
planation is substituted with the following text
Substituted: contour fix nap egregious text
nimble perhaps

The aim is to assess whether it is the presence of
meaningful text (rather than any text) that leads to
performance gains under the above settings. Aggre-
gate performance under Ablation A drops 28.17%,
and this is consistent across train-test pairs.

B. Random Token-Drop We alter the LLM-
generated explanations by reducing their length.
We start by removing all stop-words from the ex-
planation, then randomly drop tokens to further
reduce its length until we reduce the total length
by half (50%). In the running example, the LLM-
generated explanation might be replaced by the
following text
Substituted: entities Red “hard 3TB SATA 3.5” use
Attached Storage NAS match.

C. TF-IDF Here we attempt to sample tokens
from the LLM-generated explanation to assess if
the presence of certain key tokens is all that is
needed to realize the observed performance gains.
We use TF-IDF (Salton and McGill, 1986) as a
measure of word importance. Specifically, we treat
entity descriptions and their corresponding labels

7via NLTK (www.nltk.org)
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Type Training Data Tested On F-1
(EAMistral)

Ablations
A B C D E

X-Domain

Amazon-Google Beer 92.30 72.35 88.94 89.33 79.59 89.85
Abt-Buy Beer 89.66 62.99 88.81 87.93 70.01 87.50
Walmart-Amazon Beer 89.65 75.25 89.30 91.47 76.29 83.33

WDC-Computers
WDC-Shoes 79.18 71.31 78.04 72.28 75.37 76.92
WDC-Watches 87.01 80.12 87.06 82.07 82.99 86.12
WDC-Cameras 93.77 69.15 91.92 89.86 88.56 90.18

WDC-Shoes
WDC-Computers 84.13 61.75 79.45 72.07 73.29 81.64
WDC-Watches 84.89 64.76 78.07 77.63 77.62 81.11
WDC-Cameras 84.74 72.23 77.61 74.95 77.03 82.61

WDC-Watches
WDC-Computers 86.20 78.18 84.64 84.99 76.05 85.71
WDC-Shoes 81.70 64.82 83.25 77.71 73.97 78.62
WDC-Cameras 89.96 85.92 89.36 88.61 85.25 89.18

WDC-Cameras
WDC-Computers 87.71 75.58 79.50 79.14 79.83 86.99
WDC-Watches 81.77 73.36 79.67 78.20 79.16 77.21
WDC-Shoes 78.04 68.60 74.92 74.09 72.60 75.32

X-Schema
iTunes-Amazon Amazon-Google 44.61 20.89 32.44 35.57 35.58 35.05

Walmart-Amazon 43.09 17.14 40.49 39.08 41.16 25.64
Walmart-Amazon iTunes-Amazon 75.63 49.53 73.33 77.71 60.21 76.41
Amazon-Google 91.21 69.56 83.65 83.23 73.07 89.97

X-Distribution

Abt-Buy Amazon-Google 41.42 24.73 36.56 42.04 27.76 39.64
Walmart-Amazon 45.09 22.01 44.09 43.84 27.84 40.75

Amazon-Google Abt-Buy 44.64 23.31 32.05 45.08 31.29 33.61
Walmart-Amazon 51.61 29.55 35.47 42.54 36.55 45.08

Walmart-Amazon Abt-Buy 67.52 62.81 68.99 68.11 64.91 67.55
Amazon-Google 60.20 51.92 60.47 58.83 54.27 58.84

WDC-All
Abt-Buy 76.44 68.48 71.28 72.36 70.21 75.51
Amazon-Google 59.13 49.74 55.49 55.12 50.56 53.99
Walmart-Amazon 64.09 62.19 73.81 72.43 67.23 75.28

∇ Aggregate comparison against F-1 (EAMistral) −26.99 −5.57 −5.69 −14.35 −4.98

Table 3: Comparison of FlanT5-base performance when LLM-generated explanations used during model training
are ablated under various conditions – A. Junk text substitution, B. Random reduction in length, C. TF-IDF reduction
in length, D. Substitution with non-instance specific explanation, E. Random corruption of tokens in explanation.

as documents, and LLM-generated explanations
as a summary of these. We then sample tokens
from the explanation based on the TF-IDF scores
of individual tokens until we retain 50% of the
original length of the explanation. In the running
example, the LLM-generated explanation might be
replaced by the following text:
Substituted: drive to entity refers while 3tb and
are attached both entities for hard iii in match
nas network not red refer sata specifically
storage

Perhaps surprisingly, sampling tokens in this way
does not help, compared to randomly sampling
them like as in (B); the performance degradation is
about the same (5.57% vs 5.69%; Table 3).

D. Generic Explanations In this ablation we
evaluate whether a dataset-level (as opposed to
instance-level) explanation yields performance
gains. These dataset-wide explanations may or may
not be model generated. For our experiments, we

use the following manually written explanations:

WDC-Cameras Based on the description of two
cameras in Entity A and Entity B, they are (or
are not) a match.
WDC-Shoes Based on the color, brand, size and
make of the two shoes in Entity A and Entity B
respectively, they are (or are not) a match.
iTunes-Amazon Based on the artist, genre and
song titles, the two entities here are (or are
not) a match.

We find that the aggregate performance (Table 3)
declines by ∼14%, compared to ∼25% when we
do not use any explanations, and ∼27% using junk
text as a substitute (Ablation A).

E. Random Corruption Finally, we evaluate the
results when we randomly replace half of the to-
kens in LLM-generated explanation by a reserved
token (<unk>) to gauge whether the performance
gains observed with explanations owe to the effec-
tive additional compute they permit at inference
time. In our example, the LLM-generated explana-
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Figure 3: Average F1 on out-of-domain test data when
training data is ablated under varying conditions.

tion is modified to:
Substituted: While <unk> <unk> <unk> to
<unk> <unk> <unk> <unk>’ hard drive, <unk>
<unk> A specifically refers <unk> 3 <unk>
SATA III <unk> 3.5 <unk> <unk> <unk> <unk>
ity B refers <unk> <unk> drive <unk> <unk>
<unk> <unk> <unk> Network <unk> <unk> d
<unk> (NAS) <unk> therefore <unk> are not
<unk> <unk> match <unk>

While we observe a performance difference on av-
erage (Table 3), these differences are inconsistent
across settings, contrary to our other ablation re-
sults. For instance, under cross-domain setting
for WDC-Cameras → WDC-Computers, we observe
that Ablation E outperforms both Ablations B and
C and is comparable to using unaltered explana-
tions. However, under a cross-schema setting for
iTunes-Amazon → Walmart-Amazon, ablation E
performs substantially worse than using unaltered
explanations. We leave a more comprehensive anal-
ysis of this behavior for future work.

In addition to ablations A–E, we conduct two
additional experiments with human-interventions
to test (1) robustness of models trained with aug-
mented data; and (2) faithfulness of the generated
reasoning explanations themselves. Because we
generate tens of thousands of explanations (i.e., in-
stance specific explanations for the entire training
set for every dataset), collecting human annota-
tions on all instances is cost prohibitive. Instead,
we manually select 300 instances from the Abt-Buy
dataset to conduct the following two tests.

H1 Test of Robustness First, we test robust-
ness by randomly selecting 300 entity pairs with a

“match” label from the test set. We then make mini-
mal changes to the entity data (descriptions) to con-
vert a “matched” to a “non-matched” pair. These
changes are quite minimal, often involving only a
token or two (e.g., Nike→Adidas) while retaining
a majority of token overlap between the entity pair
descriptions. This intervention is motivated by the
fact that matching models may over-rely on token
overlap to classify whether or not the entity pair
is match, and whether a trained model is robust to
minor perturbations when tested on in-domain data.
Consider the following example:

Original: [entitya] Kingston 128GB DataTraveler
G3 USB 3.1 Flash drive [entityb] Kingston 128G DT
G3 USB 3.1 Flash Drive
Label Match

Edited: [entitya] Kingston 128GB DataTraveler G3
USB 3.1 Flash drive [entityb] Kingston 32G DT G3
USB 3.1 Flash Drive
Corrected Label Not a Match

Here we have minimally changed the storage ca-
pacity of two USB Flash Drives manufactured by
the same company, under the same brand/model.

We then run these substituted instances through
our models – trained both with and without LLM-
augmented explanations. Our goal here is was to
test what percentage of labels correctly flip from
“match” to “no-match” in both instances. We’re
motivated to test this aspect of robustness to deter-
mine the degree to which smaller trained models
rely on raw token overlap vs the reasoning in LLM-
generated explanations.

For the models trained without explanations, we
find that 71/300 (23%) of labels flip, while for the
models trained with LLM-augmented explanations,
we find that 164/300 (54%) labels successfully flip
to a non-match; this indicates that augmented rea-
soning in training data makes smaller models more
robust to subtle but critical input perturbations.

H2 Test of Factuality Finally, we investigate the
extent to which LLM-generated explanations relate
to the underlying entity pair descriptions. To this
end we consider generated explanations as analo-
gous to document summaries, i.e., we consider the
input entity pair descriptions and their matching
label as a document, and treat the model generated
explanation of the summary. We then annotate
these explanations for inconsistencies.

Three authors of this paper serve as human an-
notators and we use the Amazon Mechanical Turk
(MTurk) sandbox as our preferred annotation plat-
form. For every instance, we ask annotators the
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following two questions related to the types of ob-
served errors in reasoning explanations:

Instrinsic Errors Is the explanation
fully derivable from the input entities
and their corresponding matching label,
irrespective of whether it contains
excess information?

Extrinsic Errors Does the explanation
contain information in excess of the
entity descriptions and their
corresponding matching labels? These
inconsistencies are often called
“hallucinations”.

We collected three annotations per instance and
take the majority vote as reference where there
is not unanimous agreement. We find that 10.9%
of instances contain instrinsic errors, and 15.1%
of explanations contain elements unsupported by
inputs (“hallucinations”). We observe an inter-rater
agreement (Fleiss’s κ) of 0.75 for the question on
instrinsic errors and an agreement of 0.86 on the
question of extrinsic errors. We provide details on
the annotation interface in Appendix F.

4 Related Work

4.1 Deep learning in Entity Resolution

With respect to entity resolution, the core process
involves pairwise comparisons to ascertain match-
ing entities. Recent efforts have capitalized on neu-
ral methods (including LLMs), including DeepER
(Ebraheem et al., 2018), a deep learning-based
framework, and DeepMatcher (Mudgal et al.,
2018), which exemplifies the integration of deep
learning in entity matching. Additionally, active
learning strategies have been adapted for entity res-
olution as detailed in (Kasai et al., 2019).

Other significant contributions include
Seq2SeqMatcher (Nie et al., 2019; Wang and
Zhang, 2024), focusing on sequence-to-sequence
matching, and HierMatcher (Fu et al., 2021),
which adopts a hierarchical approach. The use
of pre-trained language models has also gained
traction, as evidenced by methods such as R-
SupCon, Ditto, Rotom, and Sudowoodo, discussed
in various studies (Brunner and Stockinger, 2020;
Peeters et al., 2020; Li et al., 2021; Miao et al.,
2021; Wang et al., 2023b, 2024; Zeakis et al., 2023;
Genossar et al., 2023). These methods collectively
represent the cutting-edge techniques in the realm
of entity matching.

Domain Adaptation aims to allow a model
trained in one domain to generalize to other do-
mains (Trabelsi et al., 2022; Tu et al., 2022c,a;
Sachidananda et al., 2021).

4.2 Reasoning in LLMs

Most recently, Entity Matching via LLMs has
shown promising results (Peeters and Bizer,
2023c,b; Fan et al., 2024). In these works, both
zero-shot and fine-tuning approaches have been ex-
plored. Beyond entity matching, in-context learn-
ing (ICL) with LLMs has become a dominant strat-
egy, enabling these models to perform tasks with
task conditioning and minimal task demonstrations
(Brown et al., 2020; Xie et al., 2021). This ap-
proach has demonstrated strong performance (Zhao
et al., 2021; Liu et al., 2021) and streamlined ex-
perimentation with LLMs, as it eliminates the need
for model training. However, the adoption of ICL
has highlighted the sensitivity of LLMs to prompt
selection (Lu et al., 2021; Margatina et al., 2023),
making prompt engineering for various tasks a chal-
lenging and time-consuming process. Nonetheless,
data-driven signals, such as selecting semantically
similar demonstrations using text retrievers, have
proven to be effective (Lu et al., 2021; Margatina
et al., 2023), offering a more systematic approach
to prompt engineering.

Chain-of-Thought (CoT) reasoning (Wang et al.,
2022; Hoffmann et al., 2022; Chowdhery et al.,
2022) has lately emerged as a means to allow LLMs
to better perform certain tasks. This approach—
which can be elicited via prompting few-shot ex-
amples (Kojima et al., 2022)—involves guiding
LLMs to generate a sequence of intermediate rea-
soning steps. Recent efforts have demonstrated
the benefits of distilling “reasoning” capabilities in
smaller LMs (Shridhar et al., 2023; Wadhwa et al.,
2023); our results contribute to this line of work.

5 Conclusions

We proposed a novel model distillation approach to
train a small, more-robust model for generalizable
entity matching. Eliciting target label rationales
from LLMs enables transfer of grounded “reason-
ing” to the smaller models. Our experiments show
this translates to strong performance in diverse set-
tings, outperforming existing models designed for
domain adaptation that struggle to generalize. Ab-
lation studies provide insight into the importance of
explanation generation for achieving robust match-
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ing performance.

Limitations

We have shown that augmenting training data used
to train smaller models with natural language expla-
nations elicited from much larger models can yield
substantial improvements in out-of-domain test set-
tings. We then assessed the quality and usefulness
of said explanations through automated ablations.
Finally, we conducted human annotations on a sam-
ple of these explanations to quantify error they may
contain.

There are some important limitations to these
findings. First, we have considered training a
model on one domain (or distribution/schema), and
then testing it on a set of N − 1 datasets to eval-
uate model performance in an OOD setting. This
(somewhat extreme) setting sharply exemplifies the
sort of domain shift we are interested in studying.
But we have not comprehensively considered the
more traditional OOD setting of training on N − 1
datasets, and testing on the held out domain (distri-
bution/schema), except while training on WDC-All
and testing on Abt-Buy, Amazon-Google, and
Walmart-Amazon. However, even under the lim-
ited circumstances we considered, we saw substan-
tial gains in OOD performance (↑10.86 F-1).

Second, we rely on LLM-generated reasoning
explanations to augment our training data. This
dependence on externally hosted, proprietary large
models could be problematic in certain sensitive
domains, for example when working with entity
descriptions that contain personally identifiable in-
formation (PII) since there is an extensive body
of prior research (Hossain et al., 2023; Prakash
and Lee, 2023) documenting social biases inher-
ent to LLMs. That said, this dependence is only
for training data, and one could conceivably use
open source LLMs, like we have, capable of CoT
in place of proprietary models (e.g. OpenAI).

Third, while we find that distilling CoT-style
explanations meaningfully improves small LM per-
formance, our attempts to evaluating the usefulness
of said explanations (if any) will require substantial
future work. Our ablations do not provide a clear
answer as to which aspects of these explanations
are useful for downstream performance improve-
ments. For instance, in ablation D we use a con-
stant non-instance specific explanation appended
to all target outputs (as opposed to instance spe-
cific explanation generated from a LLM). In theory,

this provides no meaningful ability to classify a
given instance over say, junk text. However, we
still observe some gains in downstream OOD test
performance.

Lastly, we only experiment with datasets curated
(and sourced) in English and therefore we do not
have any insight into the issues that may result in
other languages.

Ethical Considerations

Statement of Intended Use Our work broadly
relies on open-source datasets derived from e-
commerce platforms, where entity attributes con-
sist of heterogeneous descriptive sentences of com-
mon everyday consumer products. However, in
certain applications of entity resolution like cus-
tomer profile de-duplication, where entity descrip-
tors involve human population-level attributes, the
underlying data must be appropriately de-identified
(i.e. anonymized) in the interest of individual pri-
vacy. As stated in limitations, we make no attempt
to manually edit/oversee the LLM-generated expla-
nations before using them to train smaller LMs, and
therefore there is a downstream risk of propagating
large model biases.
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Appendix

A Experimental settings and
reproducibility

We performed all of our experiments on two AWS
EC2 P3 instances, each containing 8 NVIDIA
V100 (16GB) GPUs. We used the Huggingface
library (v4.26.1; Wolf et al. 2020) and publicly
available checkpoints of models we used in our ex-
periments. On all datasets except for WDC our best
performing models were trained with batch size
16, while for WDC datasets we used a batch size
of 8. We use default hyperparameters8 for model
fine-tuning except for learning rate (10−2 − 10−6),
which we vary through hyperparameter tuning. We
used the Adam optimizer and set the max epochs
to 100 with an early stopping patience of 10 and
a validation set F-1 score increase threshhold of
0.02. None of the trained models in any of our
experiments required more than 60 epochs.

B Datasets

We select commonly used entity matching datasets
in our work. Each dataset is split into training, val-
idation, and test sets using the ratio 3:1:1 – same
splits as Li et al. (2020) to provide direct compar-
isons in our OOD baselines (Table 4):

Abt-Buy This dataset contains product descrip-
tions from e-commerce platforms Abt.com and
Buy.com. A majority of products on either plat-
form can be categorized as consumer electronics.
There are a total of 9, 575 instances in the Abt-Buy
dataset.

Amazon-Google The Amazon-Google dataset
consists mainly of software product offerings e.g.
MS Office/Windows. The relevant entity attributes
in Amazon-Google include brand, title and price.
There are a total of 11, 460 product pairs.

Walmart-Amazon This is a structured bench-
mark entity matching dataset in the general con-
sumer products domain containing textual product
attributes like brand, title, model number, and price.
Walmart-Amazon consists of 10, 242 product pairs.

iTunes-Amazon Unlike our other datasets,
iTunes-Amazon consists of strutured descriptions
of songs in the form of textual attributes like artist,

8huggingface.co/docs/transformers/model_doc/
flan-t5

album year, and title. iTunes-Amazon is a relatively
small dataset made up of 539 instance pairs.

Beer This dataset contains structured textual at-
tributes of beers from BeerAdvocate and RateBeer.
We use the processed version9 of this dataset with
the same train-dev-test splits as Li et al. (2020).
There are only 450 pairs in the Beer dataset.

WDC Products The Web Data Commons
datasets span a variety of product categories like
electronics, apparel, and accessories. WDC pro-
vides 4400 manually annotated gold labels from
four categories: computers (68, 461), cameras
(42, 277), watches (61, 569), and shoes
(42, 989). Each category contains 800 negative
and 300 positive test pairs. Each instance in all
WDC datasets consists of four attributes - title, de-
scription, brand, and specTable.

C Prompts

We use the following prompts as few-shot exem-
plars corresponding to each dataset type to elicit
natural language explanations. Inputs and target
references are directly extracted from the original
training sets while the explanations are human-
written (by the authors) and were added for the
experiments described in section 2.3.

Consumer Electronic Products We use the fol-
lowing prompt for all of the following datasets
– Abt-Buy, Amazon-Google, Walmart-Amazon,
WDC-Computers, and WDC-Cameras.
<s>[INST] Given the following two examples,
provide an explanation for the third example for
why the two entities do or do not match. [\INST]
Entity A: [NAME] samsung dlp tv stand in black
tr72bx [DESCRIPTION] samsung dlp tv stand in
black tr72bx designed to fit samsung hlt7288
hlt7288 , hl72a650 , and hl67a650 television sets
tempered 6mm tinted glass shelves wide audio
storage shelves to accommodate 4 or more
components wire management system easy to
assemble high gloss black finish [PRICE] 369.0
Entity B: [NAME] samsung tr72b tv stand
[DESCRIPTION] glass black [PRICE] 232.14
Label: MATCH
Explanation: Both entities refer to samsung TV
stand in black and therefore have substantially
similar specifications, therefore they’re a
match. </s>
Entity A: [NAME] canon high capacity color ink
cartridge color ink cl51 [DESCRIPTION] canon high
capacity color ink cartridge cl51 compatible with
pixma ip6210d , ip6220d , mp150 , mp170 and mp450
printers [PRICE] 35.0

9pages.cs.wisc.edu/~anhai/data1/deepmatcher_
data/Structured/Beer/exp_data
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Entity B: [NAME] canon pg-40 twin pack black ink
cartridge 0615b013 [DESCRIPTION] black [PRICE]
Label: NOT A MATCH
Explanation: Entity A refers to color ink
cartridge while Entity B is a blank ink
cartridge, therefore they are not a match. </s>

Shoes We use the following prompt for WDC-
Shoes. The examples here are randomly selected
from the WDC-Shoes training data.
<s> [INST]Given the following two examples,
provide an explanation for the third example for
why the two entities do or do not match.[/INST]
Entity A: [NAME] Nike Sportswear Air Force 1 -
Midnight Navy’en Mens Shoes Nike Navy 488298-436
en
Entity B: [NAME] "Nike Air Force 1 ’07 Low
midnight navy / white (488298-436)"eu
(488298-436) | Bludshop.com" eu
Label: MATCH
Explanation: Both entities refer to Nike Air
Force shoes, navy in color with the same model
number 488298-436, therefore they’re a
match.</s>
Entity A: [NAME] "Air Jordan 14 Retro Low “Laney”
Varsity Royal/Varsity Maize-Black-White For
Sale"en-US Sale | Cheap Jordans 2017"en-US
Entity B: [NAME] "Cheap Air Jordan 4 Retro
“Motorsports” White/Varsity Blue-Black Sale"en-US
Sale | Cheap Jordans 2017"en-US
Label: NOT A MATCH
Explanation: While both entities refer to cheap
Air Jordan shoes, Entity A is a Laney version
which is Maize-Black-White in color, while Entity
B is a Motorsports version which is Blue-Black in
color, therefore they are not a match.</s>

Music We use the following prompt for iTunes-
Amazon. The examples here are randomly selected
from the iTunes-Amazon training data.
<s> [INST] Given the following two examples, provide an
explanation for the third example for why the two entities do
or do not match. [\INST]
Entity A: [SONG_NAME] Extra Extra Credit
[ARTIST_NAME] Wiz Khalifa [ALBUM_NAME] Flight
School [GENRE] Hip-Hop/Rap , Music [PRICE] 0.99
[COPYRIGHT] 2009 Rostrum Records [TIME] 4:03
[RELEASED] 17-Apr-09
Entity B: [SONG_NAME] Extra Extra Credit [
Explicit ] [ARTIST_NAME] Wiz Khalifa
[ALBUM_NAME] Flight School [ Explicit ] [GENRE]
Rap & Hip-Hop [PRICE] 0.99 [COPYRIGHT] 2013 Mad
Decent [TIME] 4:03 [RELEASED] April 17 , 2009
Label: MATCH
Explanation: Both entities are songs with the
same name, artist and album.</s>
Entity A: [SONG_NAME] Illusion ( feat . Echosmith )
[ARTIST_NAME] Zedd [ALBUM_NAME] True Colors
[GENRE] Dance , Music, Electronic [PRICE] 1.29
[COPYRIGHT] 2015 Interscope Records [TIME] 6:30
[RELEASED] 18-May-15
Entity B: [SONG_NAME] Papercut [ feat . Troye
Sivan ] [ARTIST_NAME] Zedd [ALBUM_NAME] True
Colors [GENRE] Dance & Electronic [PRICE] 1.29
[COPYRIGHT] ( C ) 2015 Interscope Records [TIME]
7:23 [RELEASED] May 18 , 2015
Label: NOT A MATCH

Explanation: While both entities refer to songs
with the same artist, they have clearly different
names and therefore, are not a match.</s>

Beer We use the following prompt for Beer
dataset.
<s> [INST] Given the following two examples, provide an
explanation for the third example for why the two entities do
or do not match.[\INST]
Entity A: [NAME] Honey Basil Amber [MANUFACTURER]
Rude Hippo Brewing Company [STYLE] American Amber
/ Red Ale [ABV] 7.40
Entity B: [NAME] Rude Hippo Honey Basil Amber
[MANUFACTURER] 18th Street Brewery [STYLE] Amber
Ale [ABV] 7.40
Label: MATCH
Explanation: Both entities refer to Honey Basil
Amber beer with the same ABV, therefore they’re a
match.</s>
Entity A: [NAME] Brew Kahuna NW Red Ale
[MANUFACTURER] Sky High Brewing [STYLE] American
Amber / Red Ale [ABV] 5.20
Entity B: [NAME] Brew Bus Detour Series : Rollin
Dirty Red Ale - Wood Aged [MANUFACTURER] Cigar
City Brewing [STYLE] Irish Ale [ABV] 5
Label: NOT A MATCH
Explanation: Entity A refers to Beer manufactured
by Sky High Brewing while Entity B refers to Beer
manufactured by Cigar City Brewing, and they have
different names, therefore they are not a
match.</s>

D OOD Performance in Neural Entity
Matching

We conduct baseline experiments using our test-
ing framework (cross-domain, cross-distribution,
and cross-schema) on both generative (FlanT5)
and non-generative (DITTO – based on RoBERTa)
methods. Table 4 summarizes our results. We ob-
serve significant decline in performance under both
methods, with RoBERTa-based DITTO (Avg F-1:
55.28) faring slightly worse than FlanT5 (Avg F-1:
59.28).

Our results on non-generative models like
DITTO are in-line with prior work in the area
where Tu et al. (2022b) first highlight the issue
of domain adaptation and the challenge of reusing
labeled source data where there might be a change
in distribution or domain at test time.

E Zero-Shot Entity Matching with LLMs

In addition to training and testing smaller seq2seq
models we also provide results from few-shot
prompting on larger language models (# param-
eters > 7B). We emphasize here again that in any
practical entity matching context, deployment of
such larger models is infeasible due the sheer num-
ber of comparisons involved. For instance, a small
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Type Training Data Tested On F-1
BLDITTO

F-1
BLFlanT5-Base

X-Domain

Amazon-Google Beer 70.27 63.10
Abt-Buy Beer 68.86 55.29
Walmart-Amazon Beer 77.77 59.12

WDC-Computers
WDC-Shoes 69.95 65.18
WDC-Watches 80.07 80.98
WDC-Cameras 73.26 70.51

WDC-Shoes
WDC-Computers 67.90 65.11
WDC-Watches 70.34 74.47
WDC-Cameras 73.26 72.90

WDC-Watches
WDC-Computers 73.37 75.34
WDC-Shoes 67.26 67.22
WDC-Cameras 82.59 81.16

WDC-Cameras
WDC-Computers 76.33 75.83
WDC-Watches 74.21 73.92
WDC-Shoes 69.15 61.73

X-Schema
iTunes-Amazon Amazon-Google 21.29 21.48

Walmart-Amazon 20.04 18.75
Walmart-Amazon iTunes-Amazon 51.72 50.82
Amazon-Google 72.22 76.17

X-Distribution

Abt-Buy Amazon-Google 22.25 19.15
Walmart-Amazon 25.77 28.99

Amazon-Google Abt-Buy 26.72 25.55
Walmart-Amazon 33.10 23.78

Walmart-Amazon Abt-Buy 63.75 58.11
Amazon-Google 52.05 39.18

WDC-All
Abt-Buy 69.16 67.22
Amazon-Google 46.12 41.37
Walmart-Amazon 64.09 64.88

Table 4: Comparison of OOD test performance under our framework for FlanT5-base (Chung et al., 2022) and
non-generative DITTO (Li et al., 2020) when trained on binary labeled (BL) training data. Broadly, we observe
significant degradation in model performance under both models.

product catalog of 1, 000 products can, in worst
case scenario, lead to 1, 000, 000 pair comparisons
– this requires efficiency and, as a practical matter,
low deployment costs. Nevertheless, we feel it is
important to contextualize our work under ICL few-
shot settings on LLMs given their current relevance.
We use the same prompts as provided in Appendix
C, with one example of each class and test five
(Taori et al., 2023; Jiang et al., 2023; Almazrouei
et al., 2023; Chung et al., 2022; Tay et al., 2023)
instruction tuned models.

Table 5 summarizes these results. Generally,
we find that all the models we test under-perform
trained smaller LMs. We also observe certain be-
haviors while prompting LLMs where in some
cases (see Alpaca tested on the Beer dataset) we get
unusually high recall while getting very low pre-
cision measurements, indicating that models may
excessively rely on token overlap as a proxy for en-
tity matches. This is in line with prior work where
Peeters and Bizer (2023d) use ChatGPT for Entity

Matching and observe similar behavior. We do not
experiment with different prompts and/or chain-
of-thought style explanations under these few-shot
settings since that is beyond the scope of this work.

F Human Evaluation (H2)

We conduct Test of Factuality evaluation on Ama-
zon Mechanical Turk (AMT) – a popular platform
for workers (both experts and non-experts) to per-
form “micro-tasks” (in our case, instance annota-
tions) on explanations generated by the Mistral-7B
model on 300 instances of the Abt-Buy dataset.
Figure 4 illustrates the interface provided to anno-
tators where they’re asked the two factuality-related
questions and are presented with binary choices.
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Alpaca (7B) Mistral-7B-Ins Falcon-Ins (7B) FlanT5-XXL Flan-UL2

P R F-1 P R F-1 P R F-1 P R F-1 P R F-1

A-B 12.33 77.61 21.28 16.49 52.6 25.11 14.77 50.81 22.89 15.23 91.30 26.11 85.74 42.41 56.75
A-G 11.91 89.29 21.02 15.50 72.64 25.54 12.67 70.41 21.48 20.75 80.27 32.98 74.66 48.3 58.65
W-A 10.31 83.81 18.37 10.74 75.40 18.53 11.52 85.36 20.30 18.14 72.09 28.99 92.21 36.88 52.69
Beer 18.91 100.00 31.81 20.01 92.85 32.91 10.58 100.00 19.14 9.65 89.30 17.42 13.5 94.12 23.61
iT-A 15.61 95.66 26.84 28.32 87.59 42.80 11.57 98.47 20.71 15.46 77.77 25.79 20.69 85.12 33.29
W-Com 29.74 84.24 43.96 32.49 64.76 43.27 29.59 91.20 44.68 23.71 82.45 36.83 92.55 60.41 73.10
W-Cam 30.57 85.40 45.02 33.08 72.24 45.31 26.99 90.16 41.54 36.05 87.77 51.11 80.51 61.97 70.03
W-Wat 35.49 85.36 50.14 34.47 75.68 47.37 11.17 83.18 19.70 34.19 85.44 48.84 84.13 68.82 75.71
W-Sh 32.79 62.24 42.95 32.51 78.35 51.64 36.43 75.19 49.08 29.22 65.09 29.22 75.48 50.17 60.28

Table 5: ICL Few Shot performance without any model training.

Figure 4: Interface to conduct Test of Factuality annotations on instances taken from the Abt-Buy dataset. Each
model-generated (Mistral-7B; Jiang et al. (2023)) explanation is tested for intrinsic and extrinsic errors.
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