@inproceedings{huang-etal-2024-reliability,
title = "On the Reliability of Psychological Scales on Large Language Models",
author = "Huang, Jen-tse and
Jiao, Wenxiang and
Lam, Man Ho and
Li, Eric John and
Wang, Wenxuan and
Lyu, Michael",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.354",
doi = "10.18653/v1/2024.emnlp-main.354",
pages = "6152--6173",
abstract = "Recent research has focused on examining Large Language Models{'} (LLMs) characteristics from a psychological standpoint, acknowledging the necessity of understanding their behavioral characteristics. The administration of personality tests to LLMs has emerged as a noteworthy area in this context. However, the suitability of employing psychological scales, initially devised for humans, on LLMs is a matter of ongoing debate. Our study aims to determine the reliability of applying personality assessments to LLMs, explicitly investigating whether LLMs demonstrate consistent personality traits. Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory, indicating a satisfactory level of reliability. Furthermore, our research explores the potential of GPT-3.5 to emulate diverse personalities and represent various groups{---}a capability increasingly sought after in social sciences for substituting human participants with LLMs to reduce costs. Our findings reveal that LLMs have the potential to represent different personalities with specific prompt instructions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2024-reliability">
<titleInfo>
<title>On the Reliability of Psychological Scales on Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jen-tse</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenxiang</namePart>
<namePart type="family">Jiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Man</namePart>
<namePart type="given">Ho</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="given">John</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenxuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent research has focused on examining Large Language Models’ (LLMs) characteristics from a psychological standpoint, acknowledging the necessity of understanding their behavioral characteristics. The administration of personality tests to LLMs has emerged as a noteworthy area in this context. However, the suitability of employing psychological scales, initially devised for humans, on LLMs is a matter of ongoing debate. Our study aims to determine the reliability of applying personality assessments to LLMs, explicitly investigating whether LLMs demonstrate consistent personality traits. Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory, indicating a satisfactory level of reliability. Furthermore, our research explores the potential of GPT-3.5 to emulate diverse personalities and represent various groups—a capability increasingly sought after in social sciences for substituting human participants with LLMs to reduce costs. Our findings reveal that LLMs have the potential to represent different personalities with specific prompt instructions.</abstract>
<identifier type="citekey">huang-etal-2024-reliability</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.354</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.354</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>6152</start>
<end>6173</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Reliability of Psychological Scales on Large Language Models
%A Huang, Jen-tse
%A Jiao, Wenxiang
%A Lam, Man Ho
%A Li, Eric John
%A Wang, Wenxuan
%A Lyu, Michael
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F huang-etal-2024-reliability
%X Recent research has focused on examining Large Language Models’ (LLMs) characteristics from a psychological standpoint, acknowledging the necessity of understanding their behavioral characteristics. The administration of personality tests to LLMs has emerged as a noteworthy area in this context. However, the suitability of employing psychological scales, initially devised for humans, on LLMs is a matter of ongoing debate. Our study aims to determine the reliability of applying personality assessments to LLMs, explicitly investigating whether LLMs demonstrate consistent personality traits. Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory, indicating a satisfactory level of reliability. Furthermore, our research explores the potential of GPT-3.5 to emulate diverse personalities and represent various groups—a capability increasingly sought after in social sciences for substituting human participants with LLMs to reduce costs. Our findings reveal that LLMs have the potential to represent different personalities with specific prompt instructions.
%R 10.18653/v1/2024.emnlp-main.354
%U https://aclanthology.org/2024.emnlp-main.354
%U https://doi.org/10.18653/v1/2024.emnlp-main.354
%P 6152-6173
Markdown (Informal)
[On the Reliability of Psychological Scales on Large Language Models](https://aclanthology.org/2024.emnlp-main.354) (Huang et al., EMNLP 2024)
ACL