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Abstract

Recent advances in instruction-tuned Large
Vision-Language Models (LVLMs) have im-
bued the models with the ability to generate
high-level, image-grounded explanations with
ease. While such capability is largely attributed
to the rich world knowledge contained within
the Large Language Models (LLMs), our work
reveals their shortcomings in fine-grained vi-
sual categorization (FGVC) across six different
benchmark settings. Most recent state-of-the-
art LVLMs such as LLaVa-1.5, InstructBLIP
and GPT-4V not only severely deteriorate in
terms of classification performance, e.g., av-
erage drop of 65.58 in EM for Stanford Dogs
for LLaVA-1.5, but also struggle to generate
descriptive visual attributes based on a concept
that appears within an input image despite their
prominent zero-shot image captioning ability.
In-depth analyses show that instruction-tuned
LVLMs suffer from modality gap, showing dis-
crepancy when given textual and visual inputs
that correspond to the same concept. In an ef-
fort to further the community’s endeavor in this
direction, we propose a multiple granularity
attribute-centric benchmark and training mix-
ture, FINER, which aims to establish a ground
to evaluate LVLMs’ fine-grained visual com-
prehension ability and provide significantly im-
proved explainability.

1 Introduction

In recent years, Large Vision-Language Models
(LVLMs) that are able to generate image-grounded
text have seen significant progress. Models such
as InstructBLIP (Dai et al., 2023) and LLaVA
(Liu et al., 2023b,a) have consistently exhibited
strong zero-shot capability in generating image
captions, visual reasoning and textual descriptions,
and even leveraging external knowledge for com-
plex question answering tasks (Marino et al., 2019;
Schwenk et al., 2022). Such results across diverse
benchmarks indicate that these models, most of
them being built on large language models (LLMs)
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Figure 1: Current state-of-the-art LVLMs exhibit strong
zero-shot downstream task solving abilities (e.g., image
captioning, VQA, reasoning). However, when prompted
to classify the fine-grained concepts, most of them fail
to distinguish them into finer categories. Fine-grained
classification prompt here is omitted for brevity.

like Vicuna (Chiang et al., 2023), Flan-T5 (Chung
et al., 2022), Llama (Touvron et al., 2023), are al-
ready equipped with the ability to simultaneously
leverage the interplay between the textual para-
metric knowledge acquired during pre-training and
the image understanding ability acquired during
instruction-tuning. Notably, all of these models
exhibit strong zero-shot task transferability to mul-
tiple downstream tasks.

Conventionally, in the computer vision domain,
many previous works on fine-grained visual clas-
sification (FGVC) (Wei et al., 2022b; Diao et al.,
2022; Zhu et al., 2022; Yang et al., 2022; Wang
et al., 2022) sought to accurately classify diverse
images ranging from different types of birds, plants,
animals (Van Horn et al., 2015, 2018) and artifi-
cial objects such as cars (Krause et al., 2013) and
aircrafts (Maji et al., 2013). In this work, we in-
vestigate whether state-of-the-art LVLMs can com-
bine their image understanding ability and rich tex-
tual knowledge acquired during pre-training to han-
dle zero-shot FGVC. To our surprise, while the
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LVLMs perform almost perfectly, e.g., 98.43 for
LLaVA-1.5 (13B) on iNaturalist, at superordinate-
level granularity (e.g., birds, jets), their classifi-
cation abilities do not extend to the coarse and
finer-grained concepts (e.g., bald eagle, F-22 Rap-
tor), exhibiting substantially deteriorated classifi-
cation performance (§3.2); 46.91 for coarse-level
and 1.56 for fine-level categories on iNaturalist.
Our empirical analyses of these models reveal that
these models suffer from modality gap. We em-
pirically demonstrate that such discrepancy stems
from LVLMs’ limited ability to exploit the rich
parametric knowledge given image input, to infer
fine-grained concepts. We also show that such con-
straints lead to diminished fine-grained understand-
ing of the image, preventing these models from
generating accurate and detailed visual attributes
of the concepts that appear within an image.

We also present an attribute-centric and multi-
ple granularity classification benchmark and train-
ing mixture, FINER. Our benchmark constructs
concept-indicative attributes for six conventional
FGVC benchmarks like iNaturalist (Van Horn et al.,
2018) and FGVC-Aircrafts (Maji et al., 2013) by
(i) generating multiple granular concept labels for
visual concept recognition, and (ii) constructing a
set of visual attributes per fine-grained concept to
measure the ability of LVLMs to accurately gen-
erate fine-grained concept descriptions given an
image. To summarize, our contributions include:

• We highlight the lack of fine-grained image
comprehension ability of instruction-tuned
LVLMs across various real-life objects. To
the best of our knowledge, we are the first to
explore FGVC as an evaluation criteria for
these models and their lack of ability thereof.

• We underscore the persistence of modality gap
in state-of-the-art LVLMs by conducting an
extensive per-modality-based probing, reveal-
ing the discrepancy in how the two modalities
are processed by these models (§4).

• We construct a novel attribute-centric bench-
mark for FGVC to open up a new direction
for future works to measure LVLMs’ modal-
ity gap and their granular image understand-
ing capability. Our FINER training mixture
and newly proposed prompting technique AT-
TRSEEK enable substantially improved zero-
shot FGVC performance for GPT-4V (§3.2)
and LLaVA-1.5 (§5.3).

2 Related Work

2.1 Instruction-tuned Large Vision-Language
Models

State-of-the-art LVLMs such as LLaVA (Liu et al.,
2023a,b), BLIP-2 (Li et al., 2023), InstructBLIP
(Dai et al., 2023), and closed-source models like
GPT-4V (OpenAI, 2023; Yang et al., 2023) have
brought to our attention their zero-shot task solv-
ing abilities, especially in downstream tasks such
as Visual Question Answering (VQA), reasoning
and image captioning, all of which require output
generation conditioned on extensive knowledge of
the real-world. Based on an intricate interplay be-
tween their parametric knowledge and image under-
standing ability, they are able to generate sensible
outputs. However, many of them focus almost ex-
clusively on image captioning and reasoning, most
often disregarding the concept recognition tasks
traditional computer vision tasks evaluate on.

2.2 Fine-grained Visual Categorization
Previous works approach FGVC with masked im-
age modeling (He et al., 2022; Ryali et al., 2023),
concept meta-information injection (Diao et al.,
2022), or LLM-generated concept descriptions
(Menon and Vondrick, 2023). However, learning
of fine-grained visual categories in LVLMs and
their ability to elaborate on the fine-grained de-
tails of the input image via text generation is yet to
be explored. Furthermore, recent works in FGVC
have also shown to disregard fine-grained details
of images (Krojer et al., 2022) and work poorly
on downstream tasks involving localization (Ranas-
inghe et al., 2023; Zhong et al., 2022) and object
attributes (Yuksekgonul et al., 2022).

2.3 Modality Gap in Vision-Language Models
Different from instruction-tuned VLMs like
LLaVA and InstructBLIP, contrastively trained
VLMs like CLIP (Radford et al., 2021) and GLIP
(Li et al., 2022) rely on directly minimizing the con-
trastive objective between visual and textual repre-
sentations. A recent analytical work (Liang et al.,
2022) on CLIP-like models reveals that there is a
modality gap between the text and visual modal-
ities, which imposes substantial implications on
downstream task performances. Our work shows
that such modality gap also exists in LVLMs like
LLaVA and InstructBLIP, despite the noticeable
architectural difference between models like CLIP
and LVLMs discussed in this work.
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Figure 2: State-of-the-art instruction-tuned LVLM zero-shot performance on fine-grained classification. All
the models exhibit strong classification capabilities when prompted to classify superordinate-level (e.g., birds,
cars) and coarse-grained categories(e.g., owls, SUVs), but exhibit significant deterioration in performance when
prompted to categorize more fine-grained categories on the same images. The gold tags for coarse- and fine-grained
classifications denote the use of gold labels from the parent category in the prompt.

3 Fine-Grained Image Understanding in
Vision-Language Models

We first evaluate the fine-grained visual categoriza-
tion performance of five different instruction-tuned
baselines on six different FGVC benchmarks. This
section elaborates on the details of the experimental
setup and models investigated in this work.

3.1 Evaluation Settings
Datasets Covering a wide range of real-world
objects over various categories, existing FGVC
benchmarks provide richly annotated set of image-
concept pairs. As shown in Figure 2, we use
iNaturalist-2021 (Van Horn et al., 2018), FGVC-
Aircrafts (Maji et al., 2013), Stanford Dogs (Khosla
et al., 2011), Stanford Cars (Krause et al., 2013),
NABirds (Van Horn et al., 2015), and CUB-200-
2011 (Wah et al., 2023). For each dataset, we di-
vide the ground-truth concept label into three levels
of granularity: superordinate, coarse and fine, as
defined in a previous work (Hajibayova, 2013). Su-
perordinate level refers to the highest taxonomic
concepts (e.g., bird, car), coarse level refers to

the lower-level granularity concepts (e.g., parrot,
SUV), and fine level refers to the lowest, finer-level
granularity (e.g., owl parrot (Strigops habroptila),
Hyundai Santa Fe 2018). We discuss each bench-
mark and the construction of superordinate and
coarse-grained labels in detail in Section 5.

Metrics We assess the accuracy of the generated
concept labels given an image and a granularity-
specific prompt asking the model to figure out the
correct category the concept in the image belongs
to. Following previous works on concept classifi-
cation using auto-regressive models, we employ F1
and Exact Match (EM) scores; note that the EM
score used in this work is a modified EM score
that parses a sequence of generated text and con-
siders the output label correct if the ground-truth
label string exists within a pre-defined maximum
number of tokens, m (we set m = 20).

Models The models used in this work are as fol-
lows: LLaVA-1.5 (Liu et al., 2023b,a), Instruct-
BLIP (Dai et al., 2023), and GPT-4V; the hyper-
parameter setting for each model is in Appendix
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What is the name of the organism?
['Arachnids', 'Mammals', 'Reptiles', 
'Animalia', 'Mollusks', 'Plants', 
'Amphibians', 'Ray-finned Fishes', 
'Birds', 'Insects', 'Fungi’].
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appears in this image? \
For example, if it's a picture of a 
Bengal tiger, give a coarse-grained 
label for the image ‘Tiger’…

Coarse-Level

What is the name of the 
{concept_placeholder} that appears 
in this image? … coarse-grained 
label for the image ‘Bengal Tiger’ or 
use its binomial nomenclature 
‘Panthera Tigris Tigris’ …

Fine-Level

(1)

(2)

(3a)

(4)

What kind of external 
descriptive attributes do you see 
from the {concept_placeholder} 
in this image? Provide the set of 
detailed physical attributes after 
"Attributes:".

AttrSeek
attributes (3b)

Figure 3: Fine-grained classification pipeline. At
each level, an output from LVLM is injected into the
next level prompt. (1) Superordinate-level prompt is
used to predict the highest-level category (e.g., bird).
(2) Coarse-level prompt is subsequently fed with the
predicted output and fed back to the LVLM to generate
the next output (e.g., parrot), and (3a) and (4) follow
the same steps. (3b) illustrates ATTRSEEK, a newly
proposed prompting scheme in this work, wherein the
model is prompted to generate the visual attributes.

A.1. The open-sourced models like LLaVA-1.5
and InstructBLIP follow a generic pipeline of trans-
forming an input image Xv with a frozen vision en-
coder such as CLIP ViT-L/14 (Radford et al., 2021)
into an encoded image representation Zv. Then,
these models either project Zv into the language
representation space through a learned projection
layer W, which becomes Hv = W · Zv as in Liu
et al. (2023b), or attend over Zv with learnable
queries Q as in Li et al. (2023); Dai et al. (2023).
Such transformed visual representations interact
with Xinstruct, a language instruction, which at-
tends over the image representations (or queries)
within the self-attention layers of the LLM compo-
nent to generate the final output sequence.

3.2 Brittleness of Vision-Language Models

Zero-shot Model Performance on FGVC To
evaluate the fine-grained image recognition ability
of LVLMs, we measure their classification perfor-
mance per granularity by prompting the models to
generate the correct label for a given concept image
as shown in Figure 2. As illustrated in Figure 3,
we assess the models’ classification ability across
three different granularity levels. In Figure 2, we
evidence significant deterioration in terms of clas-
sification performance across all the five baselines,
with some, e.g., iNaturalist-2021, even reaching
near 0% in EM score. While models do perform

Models Superordinate Coarse Fine

LLaVA-1.5 (13B) 96.872 40.625 1.562
+ CoT (0-shot) - 35.910 4.687
+ CoT (3-shot) - 34.925 2.159
+ ATTRSEEK - 35.937 1.562

InstructBLIP (13B) 98.437 50.221 3.714
+ CoT (0-shot) - 31.805 1.238
+ CoT (3-shot) - 30.591 0.919
+ ATTRSEEK - 30.177 3.020

GPT-4V 100.00 83.115 18.752
+ CoT (0-shot) - 93.750 20.312
+ CoT (3-shot) - 95.283 24.389
+ ATTRSEEK - 95.331 53.125

Table 1: Elicitive prompting results (EM;%) on iNat-
uralist. Prompting techniques like Chain-of-Thought
(CoT) on the fine-grained classification (Fine) is unable
to improve performance in open-source models.

very well for superordinate-level categories, of-
ten achieving 100% in EM, the finer granularity
leads to substantially worsened classification per-
formance. In terms of model size, larger models
like LLaVA-1.5 (13B) and GPT-4V tend to perform
better than smaller models like the 7B variants. For
InstructBLIP, the 7B version performs better than
the 13B version by a large margin, with the 13B ver-
sion exhibiting less capable instruction-following
ability than the 7B one, potentially due to 7B vari-
ant being less prone to overfitting and exhibiting
efficiency in simple tasks like classification.

Elicitive Prompting for FGVC LLMs like Vi-
cuna (Chiang et al., 2023) and LLama (Touvron
et al., 2023) used as textual reasoning compo-
nents of LVLMs are known to perform better when
presented with elicitive prompts like Chain-of-
Thought (CoT) (Wei et al., 2022a) that improve
model’s reasoning ability. A unifying thought
along this line of prompting techniques is to break
down a complex problem into a sequence of sub-
problems, i.e., divide-and-conquer. Inspired by
these prompting techniques, we propose and eval-
uate our prompting technique for FGVC, AT-
TRSEEK. In this simple prompting strategy, we
first (i) prompt the models to generate the most dis-
tinctive physical attributes visible in the concepts
in an image, and (ii) feed the generated set of at-
tributes along with the concept-asking prompt for
final prediction as shown in Figure 3. We evalu-
ate the 13B model variants and GPT-4V only on
iNaturalist-2021 dataset due to budget constraint
of evaluating on the full evaluation set. In Table 1,
we do not see much improvement in terms of fine-
grained concept classification in the open-source
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models, with neither CoT nor ATTRSEEK enhanc-
ing the classification performance. However, there
is a substantial increase in fine-level performance
for GPT-4V when prompted with our simple yet
effective ATTRSEEK scheme. This result suggests
that LLaVA-1.5 and InstructBLIP, while they ex-
hibit strong image captioning and reasoning ability,
are limited in terms of image-grounded attribute
understanding even when provided with elicitive
prompts; we further elaborate on the need to fine-
tune the model according to the newly proposed
prompting scheme in Section 5.3. This result also
suggests that open-source LVLMs may lag behind
in instruction-following abilities in comparison to
GPT-4V. For additional details on few-shot prompt-
ing, see Appendix A.3.

4 Modality Gap: Discrepancy Between
Textual and Visual Modalities

We hypothesize that the lack of zero-shot concept
classification ability of LVLMs arises mainly due to
the modality gap between textual and visual inputs,
preventing the models from leveraging the existing
concept-related parametric knowledge when an im-
age of a concept is given. Note that modality gap
studied in this work is different from the one previ-
ously identified in CLIP-like VLMs (Liang et al.,
2022). In this section, we aim to delve into the
details of how these models process visual and tex-
tual modalities by exploring how well they perform
when given only textual descriptions of a concept
(§4.1) and how they accurately elaborate what they
see in a given image (§4.2). We also perform lin-
ear probing (§4.3) against projected and original
vision encoder output embeddings to gauge the in-
fluence of projection and the subsequent loss of
visual information on the modality gap.

4.1 Probing for Concept-Related Parametric
Knowledge

With the drastic performance drop in Section 3.2,
we first need to verify whether concept-attribute
knowledge already exists within the LVLM param-
eters to make sure that the models have already
acquired the knowledge necessary for zero-shot
classification. The concept-attribute knowledge
refers to the textual parametric knowledge related
to specific concepts, e.g., a concept Bengal Tiger
has visual attributes dark brown or black stripes.

In this experiment, we measure the classifica-
tion performance of the models with two differ-

Figure 4: Model Performance on Text-only vs. Image-
only Inputs. LLaVA-1.5 (7B and 13B), when provided
only the textual information (7B-, 13B-Text) related
to the ground-truth concept, outperforms the image-only
input (7B-, 13B-Image) counterpart.

ent input types: (i) Text-only input that consists
of a concept’s external visual attributes (details
about the attribute extraction in §5), and (ii) Image-
only input that consists of the image of the concept.
The text-only input, Xtxt = [I;Attr;C], is com-
posed of Instruction (I), visual attributes (Attr),
and coarse-grained labels (C); the image-only in-
put is Xv = [I;Ximg;C]. The final output is the
concept name. Note, for fair comparison, we also
include C as input for image-only probing. Re-
fer to Appendix B.2 for prompts. In Figure 4, the
results show that even with text-only input that con-
tains the detailed physical attributes of a concept,
LVLMs are capable of solving fine-grained visual
classification, outperforming the image-only input.
The results imply two things: (i) concept-attribute
knowledge exists in model parameters, and (ii)
while the visual attributes are strongly correlated
with the concept, the image modalities are inca-
pable of leveraging the concept-attribute knowl-
edge. We also see that the larger the model size,
the better the performance, relating to the amount
of parametric knowledge that resides in the LLMs.

4.2 Measuring the Modality Gap with
Attribute Generation

Having observed the discrepancy between the
visual and textual modalities, we now analyze
whether LVLMs can observe and tell visually
grounded physical attributes of an input image.
We construct a set of Web-extracted concept at-
tributes from Wikipedia documents (further elab-
orated in detail in Figure 6; §5) to be used as the
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Base Model LLM Input Modality
Similarity Measurement Metrics

ROUGE-1 ROUGE-2 ROUGE-L BertScore AlignScore

LLaVA-1.5
(Liu et al., 2023a)

Vicuna-7B
Text 22.343 11.023 21.161 85.429 18.935
Image 17.468 10.049 17.314 84.499 15.509

Vicuna-13B
Text 20.616 10.902 19.647 85.944 15.746
Image 19.661 11.334 19.114 85.704 13.319
∆ Avg. 2.920 0.703 2.189 0.585 2.926

InstructBLIP
(Dai et al., 2023)

Vicuna-7B
Text 18.987 9.192 16.577 83.102 15.002
Image 16.018 9.788 11.258 82.681 10.186

Vicuna-13B
Text 13.731 7.541 16.446 80.549 13.884
Image 10.949 6.009 9.583 79.277 10.191
∆ Avg. 2.875 1.064 6.091 0.846 4.254

GPT-4V
(OpenAI, 2023)

Text 24.320 10.179 22.748 87.457 10.524
Image 22.675 8.812 20.477 85.495 5.067
∆ Avg. 1.644 1.367 2.271 1.961 5.456

Table 2: Measuring the modality gap via textual similarity against the Web-extracted concept attributes against the
LVLM-generated attributes for the iNaturalist subset in FINER. The discrepancy between the attributes generated
from Text-only input and Image-only input indicate that VLMs treat the two modalities of the same concept
differently. ∆ Avg. indicates the average difference between the Text and Image outputs against the reference.

reference texts. Then, we prompt the models to
generate a set of external, discriminative physi-
cal attributes of a concept when given either an
image or text input (see the detailed prompts in
Appendix 11); the text input refers to the con-
cept label along with a prompt that asks for the
concept’s visual attributes. The textual similari-
ties between the LVLM-generated attributes and
the web-extracted attributes are compared using
five different scoring metrics that span both the
token-level overlap and NLI model-based semantic
similarity measure: ROUGE-1, 2, L, BertScore
(Zhang et al., 2019), and AlignScore (Zha et al.,
2023). Both the model-generated attributes and
web-extracted attributes are linearized for textual
similarity comparison (Appendix A.2).

As shown in Table 2, text-only inputs show
greater textual similarity to reference attributes, in-
dicating that while the concept-attribute knowledge
is being used by the textual modality, the visual
modality does not leverage such knowledge to a
degree that matches the textual modality. Aside
from the modality discrepancy, these models poten-
tially fall short on accurately focusing on specific
parts of the image, diluting away the fine-grained
details such as stripes or patterns (Table 3) for a
coarse-grained understanding of the image.

4.3 Visual Information Loss After Projection

We also evaluate the impact of projection from
the visual embedding space to the textual space
through linear probing. We use CLIP-ViT-L/14 as

Figure 5: Linear Probing on Projected Image Em-
beddings. Classification accuracy (%) for before and
after image embedding projection to textual space.

the image encoder and use LLaVA-1.5’s projector.
We freeze both the image encoder and the projector
and finetune a multi-layer perceptron (MLP) layer
on top for classification for 10 epochs (for experi-
ment details refer to Appendix B.5). As shown in
Figure 5, the loss of visual information encoded by
the vision encoder leads to substantial drop in clas-
sification performance across the six FGVC tasks.
The results strongly suggest that such loss of visual
information further contributes to the modality gap
between the two modalities, especially when per-
forming tasks such as FGVC that rely heavily on
fine-grained visual attributes.

5 FINER: Fine-Grained Concept
Recognition Benchmark

To facilitate research for fine-grained image under-
standing in LVLMs, we propose a new benchmark
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Figure 6: Depiction of the FINER benchmark construction pipeline. Following the aggregation of the six benchmarks
in the FGVC domain, concept attributes and concept images are retrieved and extracted from Wikipedia documents.

and training mixture, FINER. FINER intends to
evaluate the interplay between the concept image
understanding and attribute knowledge, in addition
to the training mixture that mitigates the modality
gap and enhances fine-grained concept recognition.

5.1 Dataset Construction

We construct FINER based on six different FGVC
datasets: iNaturalist-2021 (Van Horn et al., 2018),
FGVC-Aircrafts (Maji et al., 2013), Stanford Dogs
(Khosla et al., 2011), Stanford Cars (Krause et al.,
2013), NABirds (Van Horn et al., 2015), and CUB-
200-2011 (Wah et al., 2023). These datasets span
a wide range of objects such as airplanes, insects,
plants, birds, mammals and cars, challenging the
models to cover a variety of fine-grained concepts.

We first crawl all Wikipedia documents and their
main images via a search API1. We then extract ex-
ternal, visual attributes of a concept (i.e., concept-
indicative attributes) with GPT-4V as our attribute
extractor (OpenAI, 2023) for its strong zero-shot
text span extraction ability (Huang et al., 2024).
To briefly elaborate, we divide the extracted at-
tributes into two different types: (i) required and
(ii) likely attributes. The "required" attributes are
the external, concept-indicative attributes that can
be used for concept identification, e.g., blue-tailed
hawks with black thorax with a broad apple green
stripe, while the "likely" attributes are attributes
that may co-occur with the concept but is not
directly correlated with the concept, e.g., blue-
tailed hawks inhabit trees; we provide the likely
attributes as meta-information since existing mod-
els such as MetaFormer (Diao et al., 2022) has
proven that meta-information associated with these

1https://github.com/goldsmith/Wikipedia

fine-grained concepts are beneficial for more accu-
rate FGVC performance; however, since the use of
meta-information for better FGVC is not the main
focus of this work, we leave it to future works to
leverage this information. We also populate the
dataset with superordinate and coarse-level con-
cept labels for multi-granular concept recognition
performance evaluation. For example, as shown in
Figure 6, we assign Airplane as the superordinate-
level label and Lockheed Martin as the coarse-level
label since FGVC-Aircrafts dataset provides a con-
cept granularity hierarchy, e.g., Boeing → Boeing
707 → Boeing 707 MAX. However, datasets like
Stanford Dogs do not provide such granular hierar-
chy for their fine-grained concepts. We therefore
few-shot prompt GPT-4V to generate the coarse-
level labels and manually inspect their validity. We
provide the dataset statistics in Table 9 and extrac-
tion prompts in Appendix B.3 and B.4.

5.2 Qualitative Analysis

In Table 3, we provide model-generated attributes
as a case study on lack of visually-grounded gener-
ation. The attributes are from GPT-4V, but note that
the generated attributes from other models, such as
LLaVA-1.5, all exhibit a similar trend. When pro-
vided with image-only input, the model generates
a set of attributes that pertain to the image, e.g.,
elongated body and two pairs of wings for drag-
onfly. However, the attributes from image-only in-
put are non-discriminative compared to those from
text-only input; furthermore, changing the prompt-
ing technique to elicit more fine-grained, detailed
physical attributes from the LLMs either lead to
hallucination or needlessly verbose outputs that
describe non-concept related aspects of the input
image. In other words, these attributes do not serve
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Image (Concept Names) Attributes (Text-only) Attributes (Image-only) FINER Attributes
Dragonfly | Orthetrum Triangulare

Blue tail ; Broad wings; White
throat;Dark head; Banded tail

Elongated body; Two pairs of
wings; Six legs, Compound eyes ,

Segmented abdomen

Dark face; Bluish eyes; Black
thorax with a broad apple green

stripe on both sides; Black
segments 1-2 and 8-10 on the

abdomen; Remaining segments of
the abdomen pruinosed with azure

blue

Pinscher | Affenpinscher

Black , gray, silver, or tan fur;
Rough, shaggy coat; Distinct

"monkey-like" facial expression ;
Prominent chin and jaw; Small,
round, dark eyes; Ears set high
and usually cropped to a point

Presence of fur; Four-legged
stance; Distinct muzzle with a
nose; Visible tail ; Ears that are

either erect or floppy

Harsh rough coat when not
clipped; Shaggier coat over the
head and shoulders forming a

mane; Shorter coat over the back
and hind quarters; Notable

monkey-like expression; Coat is
harsh and wiry in texture when

properly maintained

Embraer | Embraer ERJ 145 T-tail design ; Straight wing
design with no winglets;

Mounted engines on the rear
fuselage ; Small cockpit windows

compared to the body size;
Three sets of landing gear

Fixed wings on either side of the
fuselage ;

Cockpit windows at the front of
the fuselage ; Jet engines, either
under the wings or mounted on

the rear of the fuselage;
Landing gear

with wheels for taking off

T-tail configuration; Two
rear-mounted Rolls-Royce AE
3007 series turbofan engines;

Straight wing with no winglets;
Narrow, tube-like fuselage; Short,

nearly oval-shaped passenger
windows.

Table 3: Qualitative Analysis of the Text-only and Image-only generated attributes from GPT-4V against
FINER. The generated attributes based on the Text-only and Image-only dataset exhibits notable discrepancy.
Juxtaposed with our FINER Attributes, Image-only attributes are not concept-indicative and generic compared to
Text-only which are discriminative of the concept. We provide FINER attributes as a reference for comparison.
We provide the coarse-level and fine-level labels along with the images, and the bounding boxes are only drawn to
match the highlighted text and are not part of the dataset.

as useful knowledge to identify the input image as
a specific concept. This again suggests that these
models not only fail to properly observe the fine-
grained details of a concept, but fail to leverage the
knowledge contained within its own parameters as
can be seen from the outputs of text-only inputs.

5.3 Enhanced Zero-Shot Transferability from
Learning to Generate Attributes

To substantiate the effectiveness of our visual at-
tributes in FINER, we construct an instruction-
tuning mixture based on the ATTRSEEK prompting
pipeline to improve the zero-shot attribute genera-
tion and FGVC performance (see Appendix A.4).
The FINER mixture consists of six subsets, where
each split is a 5 held-in and 1 held-out FGVC
datasets for training and evaluation, respectively.
For instance, for the iNaturalist subset, the iNatural-
ist set is not included in training for zero-shot eval-
uation. Each instance of the training mixture fol-
lows the ATTRSEEK pipeline (§3.2). In Table 4, we
finetune LLaVA-1.5 (7B) on the training mixture
and see that the FINER-tuned model outperforms
the direct finetuned counterpart that was simply
trained to directly predict the concept label. This

implies that in FGVC, instruction-tuning LVLMs
to attend to visible attributes in images by explic-
itly generating the attributes and then subsequently
performing classification improves the model’s per-
formance. Our interpretation is that the generation
of the attributes of concepts in the images allow the
model to leverage its concept-attribute parametric
knowledge (identified in Figure 4), and perform
better zero-shot FGVC classification. It also under-
scores the effectiveness of the ATTRSEEK pipeline
in model training to improve the inherent, zero-
shot capability of LVLMs for fine-grained concept
recognition. We demonstrate case studies in Ta-
ble 5, where we present the zero-shot generated
outputs of the FINER mixture-trained LLaVA-1.5
(7B) and the one that was only finetuned to directly
predict the final concept label. Refer to Appendix
A for additional details on training.

6 Discussion and Conclusion

In this paper, we provide an in-depth analysis on
the substantial lack of fine-grained visual compre-
hension (FGVC) ability among instruction-tuned
LVLMs. Our work discovers the presence of modal-
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Models CUB-200-2011 Stanford Dogs NABirds iNaturalist Stanford Cars FGVC-Aircrafts

LLaVA-1.5 (7B) 5.262 16.718 3.145 6.788 25.317 29.314
Direct Prediction 21.071 22.942 12.610 7.109 24.624 28.622
FINER 20.673 36.297 13.692 7.530 29.974 32.293

Table 4: Zero-shot Performance on FGVC. Finetuning on the FINER mixture significantly enhances the zero-shot
performance on all six FGVC tasks. We choose LLaVA-1.5 (7B) for this experiment with 1 dataset held-out and 5
other datasets held-in for finetuning. Direct Prediction refers to the setting without the ATTRSEEK pipeline and the
model directly predicting the final concept label without the intermediate attribute generation

Image (Concept Names) Attributes from FINER Attributes from Direct Pred.
Warbler | Yellow-headed Warbler

It has
yellow round head, white body

with a hint of gray, black eyes and
black-colored tail.

In the image, the bird is perched
on a wire, and it has a

yellow beak . Its physical
characteristics include a white

body, a black tail, and a
yellow beak .

Albatross | Black-footed Albatross

Almost all black plumage, White
markings around the base of the
beak, White markings below the
eye, Dark beak and feet , White

undertail coverts in some adults.

The bird has
Predominantly dark color with

subtle variations between
brown and gray . The face appears

to have lighter shades of
brown or gray .

Table 5: Qualitative analysis of the zero-shot outputs generated by LLaVA-1.5 (7B) instruction-tuned on
FINER and Direct Prediction dataset. The generated attributes from the FINER trained LLaVA-1.5 (7B) generates
accurate, image-grounded outputs when compared to the Direct Prediction counterpart. The attributes are indicated
by their discriminative characteristics in contrast to more generic/hallucinated ones. We provide the coarse-level
and fine-level labels along with the images, and the bounding boxes are only drawn to match the highlighted text
and are not part of the dataset.

ity gap in LVLMs and propose a prompting scheme,
ATTRSEEK, and training mixture, FINER to miti-
gate the gap and improve the zero-shot FGVC abil-
ity of LVLMs. We also reveal that the loss of visual
information after projection hinder the effective
cross-modal interplay from manifesting. Such dis-
crepancy leads to LVLMs being unable to exploit
the rich parametric knowledge and deteriorates per-
formance in visual concept recognition. While this
is the first study of FGVC among instruction-tuned
LVLMs, we hope our work would further the re-
search endeavors in this direction.

7 Limitations

Intra-Concept Variance in Images Images of
a single concept can appear in various different
forms. Some images may have the whole view of

the concept, while other images may have certain
parts of the concept (e.g., legs, wings) partially
occluded. The attributes collected per concept in
FINER are constructed to be visually-grounded
based on the textual attributes extracted from Web
documents that pertain to these concepts; nonethe-
less, such intra-concept variance among images
may render an attribute obsolete for certain images.
Other problems such as low-quality images may
also lead to this issue. In future work, exploring the
visual "ground-ability" of each attribute through
image-text retrieval may be a plausible approach to
identifying both the most discriminative attributes
that pertains to an image and the fine-grained con-
cept label.

Selection of Baseline Models While our work
covers LVLMs that receive image and text as in-
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put, there are other VLMs such as Kosmos-2 (Peng
et al., 2023), Shikra (Chen et al., 2023) and Ferret
(You et al., 2023) out there, that receive bounding-
box annotated images as input. However, our work
only deals with un-marked image and prompt in-
puts, since the objective of this research is to see
whether LVLMs without any referring markings
(e.g., bounding boxes), can ground their generative
capabilities on the input image.
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A Experiment Details

In this section, we elaborate in detail the experimen-
tal settings of our work, including the hyperparam-
eter settings of the large vision-language models
(LVLMs), and the large language models (LLMs),
which are used as a major driving block of these
LVLMs. In addition to the experiment settings, we
also provide details on the training mixture used
in 5.3 and the fine-tuning settings of LLaVA-1.5
(7B).

A.1 Hyperparameter Settings of
Vision-Language Models

Inference Settings Our work deals with the
inference-time fine-grained image understanding
abilities of VLMs. The hyperparameter settings
provided in the table are only for inference time
(§3.2, 4, 4.1) and are not to be used for fine-tuning.

Hyperparameter LLaVA InstBLIP BLIP-2 GPT-4

max_seq_len 256 256 256 256
top_p 1.0 0.95 0.95 1.0
temperature 0.2 0.75 0.75 0.2

Table 6: Hyperparameters of the Vision-Language Mod-
els (VLMs) studied in this work. LLaVA refers to
LLaVA-1.5 and InstBLIP refers to the InstructBLIP
model. All the VLMs use the same hyperparameter set-
tings for both the 7B and 13B variants; the same applies
to Flan-T5-XL and Flan-T5-XXL models, which
consist of 3B and 11B parameter, respectively.

For LLaVA-1.5 models, we use
Vicuna-v1.5, and for InstructBLIP mod-
els, we use Vicuna-v1.1; these are the original
settings of both of these models.

Fine-Tuning Settings In Table 7, we also pro-
vide the hyperparameter settings of the instruction-
tuned LLaVA-1.5 (7B) in Section 5.3. The fine-
tuning was conducted with LoRA (Hu et al., 2021)
on 4 V100 (16G) for approximately 28 hours on
the training mixture, which is elaborated in detail
in Section A.4.

A.2 Additional Details on Modality Gap
Experiment

Using LLMs for Text-Only Setting In Section
4, we experiment on the LVLMs’ ability to gener-
ate textual attributes based on either the text-only
input or the image-only input. The caveat of us-
ing InstructBLIP and BLIP-2 models is that this
models do not simply allow text-only input like

Hyperparameter LLaVA-1.5 (7B)

max_seq_len 256
top_p 1.0
temperature 0.2
lora_r 128
lora_alpha 256
gradient_accum. 16
batch_size 1
learning_rate 2e-4
lr_schedule cosine decay
optimizer AdamW
weight_decay 0.0
warmup_ratio 0.03
bf16 False
fp16 True

Table 7: Hyperparameters of LLaVA-1.5 (7B) for
Instruction-tuning on the FINER training mixture.

LLaVA-1.5 or GPT-4V. We therefore opt to use
their LLM components, Vicuna-7B and -13B, Flan-
T5-XL and -XXL to generate the attributes for the
text-only input. The validity of this setting holds
since our goal is to compare the modality gap via
how much the model stores the concept-related
knowledge within its parameters.

Metrics For ROUGE, we used the Python’s
ROUGE API2 for calculation, and we only use the
F1 score in this work. As for the model-based met-
rics, for BertScore (Zhang et al., 2019) we use the
bert-base-uncased and for AlignScore (Zha
et al., 2023) we use roberta-large. These
model-based metrics are state-of-the-art models for
textual faithfulness evaluation, making them fit to
evaluate both the faithfulness and textual consis-
tency of the generated text.

Linearization of the Web-Extracted Attributes
In this section, we elaborate on the linearization
process of the Web-extracted attributes, which are
used as ground-truth reference texts in Section
4. The linearization of the attributes is a simple
process of concatenating the fine-grained concept
name and the generated attributes of the concept.
For example, for a dragonfly named Orthetrum
Triangulare, we construct a linearized string that
says, Orthetrum Triangulare exhibits blue eyes,
black thorax with a broad apple green stripe.
The format is as follows: [<concept-name>;
exhibits; attribute-1; attribute-2;
...; attribute-j]; the list is converted into a
single sentence for evaluation;. The same process
applies to both the LVLM-generated attributes and

2https://pypi.org/project/rouge/
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Web-extracted attributes to compare their textual
similarity in Section 4.

A.3 Enabling Multiple Image Inputs in
LVLMs for Few-Shot Prompting

The three open-sourced LVLMs investigated in our
work, LLaVA-1.5 (Liu et al., 2023b,a), Instruct-
BLIP (Dai et al., 2023) and BLIP-2 (Li et al.,
2023) were all pre-trained and instruction-tuned
based on a single image input and a consecutive
sequence of pertinent textual instructions. Nonethe-
less, these models are capable of receiving multiple
images given its input format. For LLaVA-1.5,
we simply provide the few-shot (k) examples sam-
pled from iNaturalist dataset in by interleaving k
<image> tokens along with the input prompt and
their ground-truth concept labels. For InstructBLIP
and BLIP-2, since they require attending over the
input image via cross-attention with a pre-defined
set of query embeddings, we first embed each of the
k few-shot sample images with the vision encoder.
Then, the image embeddings are passed through
the Q-Former (Dai et al., 2023; Li et al., 2023)
to generate an instruction-attended query embed-
dings that contains the image information, and we
concatenate them together to use them as few-shot
samples.

A.4 Construction of the Instruction-Tuning
Mixture

To evaluate the validity of our proposed benchmark,
FINER, we construct six different instruction-
tuning mixtures on top of LLaVA-1.5’s instruction-
tuning mixture. For example, to build a training
mixture to train the model for iNaturalist evalua-
tion, i.e., the FINER’s iNaturalist subset, we hold
out the iNaturalist dataset for evaluation and in-
clude the rest of the five other FGVC datasetes
into the instruction-tuning mixture. We use all the
six FGVC datasets to construct the mixture, sam-
pling 2.5K instances from each of the datasets and
their attributes into the training data; note, the 2.5k
instances are sampled to follow a uniform distribu-
tion for the number of classes for each dataset. We
structure each instruction-tuning instance into the
ATTRSEEK pipeline format, with each instruction
consisting of three turns: (i) Asking the model for
the coarse-level concept category given the super-
ordinate concept, “Can you identify the bird shown
in this image?"; (ii) asking the model to generate
a set of external, descriptive visual attributes of
the coarse-level concept, “What kind of external

descriptive attributes do you see from the penguin",
and finally (iii) predicting the fine-grained concept
category given the coarse-level concept and the
self-generated attributes set. For each of the three
steps, we use GPT-4V to generate 15 possible para-
phrases of the instruction in order to avoid biasing
the model to specific textual instructions and to
retain the model’s instruction-following ability. We
trained the models for 1 epoch each; the check-
point for 1 epoch is the one we used to evaluate the
FGVC performance in Table 4.

B Prompts

In this section, we provide the input prompts
used in each of the experiments, including the
fine-grained visual classification and the elicitive
prompting of LVLMs in Section 3.2, probing for
concept-related parametric knowledge 4.1, attribute
generation 4.2

B.1 Fine-Grained Visual Classification
Prompts

We structure our prompts as shown in Table 8. For
datasets with less than 100 class categories, we
provide them along with the instruction, allow-
ing the models to choose from the provided list
of classes. Therefore, for superordinate-levels and
certain coarse-levels, we provide the categories as
lists so that the models solve the class generation
problem by choosing from the input prompt; this
is analogous to a multiple choice setting. How-
ever, for fine-grained classes, it is difficult to feed
in all the concept categories in the input prompt,
since some of the datasets like the iNaturalist-2021
has 10,000 categories to choose from. In order to
confine the generation scope for the fine-grained
labels, we decided to input the coarse-level label as
denoted in Table 8, to condition the generation of
the fine-grained output within a specified category
space.

B.2 Knowledge Probing Prompts

The knowledge probing prompts are shown in Ta-
ble 10. We structure the prompt as explained in
Section 4.1, where we input the Web-extracted tex-
tual attributes along with the coarse-level label for
the text-only setting. Since LVLMs are good at
identifying the superordinate and coarse-level con-
cepts, we also provide the coarse-level labels as a
prior for the text-only setting for a fair comparison
in the analysis for fine-grained concept knowledge
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Dataset:iNaturalist-2021

Superordinate-level
What is the name of the organism that appears in this image? Provide your answer after
"Answer:" from one of the following categories: [’Arachnids’, ’Mammals’, ’Reptiles’,
’Animalia’, ’Mollusks’, ’Plants’, ’Amphibians’, ’Ray-finned Fishes’, ’Birds’, ’Insects’,
’Fungi’].

Coarse-level
What is the name of the {concept_placeholder} that appears in this image? For example, if
it’s a picture of a bengal tiger, give a coarse-grained label for the image ’Tiger’. Provide
your answer after "Answer:".

Fine-level
What is the name of the {concept_placeholder} that appears in this image? For example, if
it’s a picture of a bengal tiger, give a fine-grained label for the image ’Bengal Tiger’ or
use its binomial nomenclature ’Panthera tigris tigris’. Provide your answer after "Answer:".

Dataset:FGVC-Aircraft

Superordinate-level
What is the name of the object that appears in this image? Provide your answer after
"Answer:" from one of the following categories: [’Airplane’, ’Car’, ’Train’, ’Bicycle’,
’Cell Phone’, ’Plants’, ’Dogs’, ’Birds’, ’Trucks’].

Coarse-level
What is the manufacturer of the {concept_placeholder} that appears in this image? Provide
your answer after "Answer:" from one of the following categories: [’Embraer’, ’Lockheed
Corporation’, ’Douglas Aircraft Company’, ’Cirrus Aircraft’, ’Airbus’, ’Antonov’, ’de
Havilland’, ’Eurofighter’, ’Cessna’, ’Tupolev’, ’Dornier’, ’Yakovlev’, ’Panavia’, ’Robin’,
’ATR’, ’Beechcraft’, ’Dassault Aviation’, ’Fairchild’, ’McDonnell Douglas’, ’Fokker’,
’Gulfstream Aerospace’, ’Boeing’, ’Saab’, ’Canadair’, ’Lockheed Martin’, ’Supermarine’,
’Ilyushin’, ’British Aerospace’, ’Piper’, ’Bombardier Aerospace’].

Fine-level
What is the name of the airplane model made by {concept_placeholder} that appears in this
image? For example, if it’s a picture of a Boeing 787 Dreamliner, give a fine-grained label
for the image ’Boeing 787 Dreamliner’. Provide your answer after "Answer:".

Dataset:Stanford Dogs

Superordinate-level
What is the name of the organism that appears in this image? Provide your answer after
"Answer:" from one of the following categories: [’Arachnids’, ’Dogs’, ’Reptiles’, ’Mollusks’,
’Plants’, ’Amphibians’, ’Ray-finned Fishes’, ’Birds’, ’Insects’, ’Fungi’].

Coarse-level
What is the name of the {concept_placeholder} that appears in this image? For example, if
it’s a picture of a Golden Retriever, give a coarse-grained label for the image ’Retriever’.
Provide your answer after "Answer:".

Fine-level
What is the name of the {concept_placeholder} that appears in this image? For example, if
it’s a picture of a Golden Retriever, give a coarse-grained label for the image ’Golden
Retriever’. Provide your answer after "Answer:".

Table 8: Prompts for fine-grained image classification. The {concept_placeholder} is replaced with upper-level
concept labels as illustrated in Figure 3.

in the parametric knowledge space.s

B.3 Attribute Generation Prompts

The attribute generation prompts are shown in Ta-
ble 11. We divide the attribute generation prompts
to three different types: (i) Prompt that generates
the Web-extracted attributes given the Wikipedia
API retrieved concept documents, (ii) prompt that

generates the attributes straight from the model
given a text-only input, (iii) prompt that generates
the attributes from the model given an image-only
input. Note that the prompt variance between the
text-only input and image-only input is intention-
ally minimized, i.e., minimal change in the input
prompts, to more accurately isolate the effect of
change in the input modalities. The prompts shown
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Dataset:NABirds

Superordinate-level
What is the name of the organism that appears in this image? Provide your answer after
"Answer:" from one of the following categories: [’Arachnids’, ’Mammals’, ’Reptiles’,
’Animalia’, ’Mollusks’, ’Plants’, ’Amphibians’, ’Ray-finned Fishes’, ’Birds’, ’Insects’,
’Fungi’].

Coarse-level
What is the name of the {concept_placeholder} that appears in this image? For example, if
it’s a picture of a Owl Parrot, give a coarse-grained label for the image ’Parrot’. Provide
your answer after "Answer:".

Fine-level
What is the name of the {concept_placeholder} that appears in this image? For example,
if it’s a picture of a Owl Parrot, give a coarse-grained label for the image ’Owl Parrot’.
Provide your answer after "Answer:".

Dataset:CUB-200-2011

Superordinate-level
What is the name of the organism that appears in this image? Provide your answer after
"Answer:" from one of the following categories: [’Arachnids’, ’Mammals’, ’Reptiles’,
’Animalia’, ’Mollusks’, ’Plants’, ’Amphibians’, ’Ray-finned Fishes’, ’Birds’, ’Insects’,
’Fungi’].

Coarse-level
What is the name of the {concept_placeholder} that appears in this image? For example, if
it’s a picture of a Owl Parrot, give a coarse-grained label for the image ’Parrot’. Provide
your answer after "Answer:".

Fine-level
What is the name of the {concept_placeholder} that appears in this image? For example,
if it’s a picture of a Owl Parrot, give a coarse-grained label for the image ’Owl Parrot’.
Provide your answer after "Answer:".

Dataset:Stanford Cars

Superordinate-level
What is the name of the object that appears in this image? Provide your answer after
"Answer:" from one of the following categories: [’Airplane’, ’Car’, ’Train’, ’Bicycle’, ’Cell
Phone’, ’Plants’, ’Dogs’, ’Birds’, ’Trucks’].

Coarse-level
What is the name of the {concept_placeholder} that appears in this image? Provide your answer
after "Answer:" from one of the following categories: [’Sedan’, ’SUV’, ’Coupe’, ’Convertible’,
’Pickup’, ’Hatchback’, ’Van’]

Fine-level
What is the name of the {concept_placeholder} that appears in this image? For example, if
it’s a picture of a 2006 Honda Civic LX Coupe, give a fine-grained label for the image ’2006
Honda Civic LX Coupe’. Provide your answer after "Answer:".

Table 8: Prompts for fine-grained image classification. The {concept_placeholder} is replaced with upper-level
concept labels as illustrated in Figure 3.

in Table 11 are used for the measuring of the modal-
ity gap experiments in Section 4.2.

B.4 Coarse-Grained Label Generation
Prompts

The coarse-grained label generation prompts are
shown in Table 12. We only generate the coarse-
level labels for the following three datasets: (i)
Stanford Dogs, (ii) Stanford Cars, (iii) CUB-200-
2011, (iv) iNaturalist-2021 because they do not

provide concept hierarchy like the rest of the other
three datasets. For iNaturalist-2021, although the
benchmark does provide the granularity hierarchy,
it does so in a taxonomic manner, e.g., order, fam-
ily, genus, species, which makes it challenging for
the model to classify the coarse-grained categories;
therefore, we generate coarse-grained labels for the
dataset as well. By randomly selecting few-shot
examples to guide the coarse-grained label gener-
ation, we ensure that the generative model, in this
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Dataset
Name

Total # of Instances
(Test / Training)

# of Superordinate
Categories

# of Coarse
Categories

# of Fine
Categories

# of Images
Annotation

Granularity
Hierarchy

Partial Attribute
Annotation

iNaturalist-2021 100K / 2.6M 11 1,103 10K 3,286,843 ✓ ×
CUB-200-2011 5,794 / 5,994 1 59 200 11,788 × ✓
FGVC-Aircraft 3,333 / 6,667 1 30 100 10,000 ✓ ×
Stanford Dogs 8,580 / 12,000 1 - 120 20,580 × ×
NABirds 24,633 / 2,929 1 146 404 48,562 ✓ ×
Stanford Cars 8,144 / 8,041 1 7 196 16,185 × ×

FINER 372K/2.63M 16 1,416 11,171 3,393,958 ✓ ✓

Table 9: Overview of the FGVC benchmarks. Our FINER dataset demonstrates richer set of attributes per
concept that enables the evaluation of fine-grained image comprehension. We also augment the benchmarks without
Granularity Hierarchy with Superordinate Categories and Coarse Categories.

case GPT-4V, sticks to the generation of a coarse-
grained label. For the faithfulness of the gener-
ated coarse-grained labels, we manually evaluate
them for datasets other than iNaturalist-2021. For
iNaturalist-2021, there are 1,103 coarse-grained
categories, which makes it challenging to evalu-
ate each generated coarse-grained label. We there-
fore group them together with their corresponding
family-level category, which serves as a group-
ing category for the coarse-grained labels. For
instance, for Euphaea fraseri, we place its coarse-
grained labels, Damselfly and Dragonfly under Eu-
phaeidae. By doing so, we not only provide room
for more encompassing coarse-grained prediction,
e.g., Damselflies are also classified as Dragonflies,
but also distinguish the granularity setting from the
fine-grained level, which requires a more specific
categorization of a given species.

B.5 Linear Probing Experiment
To evaluate the quality of output representations be-
fore and after the multimodal projection in LLaVA-
1.5 (7B), we perform linear probing over the output
representations of the vision encoder (CLIP-ViT-
L/14 (Radford et al., 2021)) and the projected rep-
resentations in the textual space. The experimental
settings are 10 epochs for finetuning and we use
accuracy as the evaluation metric. We train on 4x
V100 16GB for 57 GPU hours.
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Dataset:iNaturalist-2021

Knowledge Probe Prompt
Can you guess the specific name (specific epithet) of an organism in the following taxonomic
category given its physical attributes? Provide your answer after "Specific Epithet:".
Physical Attributes: {attribute_placeholder}

Supercategory: {supercategory_placeholder}
Kingdom: {kingdom_placeholder}
Phylum: {phylum_placeholder}
Class: {class_placeholder}
Order: {order_placeholder}
Family: {family_placeholder}
Genus: {genus_placeholder}
Specific Epithet:

Dataset:FGVC-Aircraft

Knowledge Probe Prompt
Can you guess the specific name (specific type) of an Airplane in the following taxonomic
category given its physical attributes? Provide your answer after "Specific Airplane:".
Physical Attributes: {attribute_placeholder}

Supercategory: {supercategory_placeholder}
Coarse-grained Category: {coarse_placeholder}
Specific Airplane:

Dataset:Stanford Dogs

Knowledge Probe Prompt
Can you guess the specific name (specific type) of a Dog in the following taxonomic category
given its physical attributes? Provide your answer after "Specific Dog:".
Physical Attributes: {attribute_placeholder}

Supercategory: {supercategory_placeholder}
Coarse-grained Category: {coarse_placeholder}
Specific Dog:

Table 10: Prompts for concept-related knowledge probing. The {concept_placeholder} is replaced with upper-level
concept labels as illustrated in Figure 3.
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Attribute Gen. (Text-Only)
What are useful visual features for distinguishing {concept_placeholder} in a photo? Provide
the answer as lists of required and likely attributes. For example, for a bengal tiger (Felis
Tigris) you might say:

Required:
- yellow to light orange coat
- dark brown to black stripes
- black rings on the tail
- inner legs and belly are white
- 21 to 29 stripes
Likely:
- lives in mangrove, wooded habitat
- amber, yellow eyes
- large, padded paws
- long tail
- stout teeth

’Required’ attributes are a set of external, physical attributes that allows a human to
distinguish it from other similar looking concepts.
’Likely’ attributes are a set of attributes that may or may not be visible or are not one of
the most discriminative features of the concept.
In the required (Required:) set, do not include relative, non-visual attributes like size or
weight, only the external, visually distinguishable attributes.
Provide your response in the above format, saying nothing else. If there are no useful visual
features, simply write "none".

Attribute Gen. (Wikipedia Doc; Web-Extracted)
What are useful visual, external features for distinguishing {concept_placeholder} in a photo?
Given an input document (Document:) that may talk about {concept_placeholder}, provide the
answer as lists of required and likely attributes. For example, for a bengal tiger (Felis
Tigris) you might say:

Required:
- yellow to light orange coat
- dark brown to black stripes
- black rings on the tail
- inner legs and belly are white
- 21 to 29 stripes

Likely:
- lives in mangrove, wooded habitat
- amber, yellow eyes
- large, padded paws
- long tail
- stout teeth

’Required’ attributes are a set of external, physical attributes that allows a human to
distinguish it from other similar looking concepts.
’Likely’ attributes are a set of attributes that may or may not be visible or are not one of
the most discriminative features of the concept.
In the required (Required:) set, do not include relative, non-visual attributes like size or
weight, only the external, visually distinguishable attributes.
If no document is given, generate from what you already know about {concept_placeholder}.
Provide your response in the above format, saying nothing else. If there are no useful visual
features, simply write "none".

Table 11: Prompts for Attribute Generation. The {concept_placeholder} is replaced with coarse-grained concept
labels for Image-only case and Web-Extracted cases; for Text-only case, use the fine-grained concept label since we
want to extract the attributes stored in the parametric knowledge by using the fine-grained concept label as a query.
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Attribute Gen. (Image-Only)
What are useful visual features for distinguishing the {concept_placeholder} in the photo?
Provide the answer as lists of required and likely attributes. For example, for a bengal
tiger (Felis Tigris) you might say:

Required:
- yellow to light orange coat
- dark brown to black stripes
- black rings on the tail
- inner legs and belly are white
- 21 to 29 stripes

Likely:
- lives in mangrove, wooded habitat
- amber, yellow eyes
- large, padded paws
- long tail
- stout teeth

’Required’ attributes are a set of external, physical attributes that allows a human to
distinguish it from other similar looking concepts.
’Likely’ attributes are a set of attributes that may or may not be visible or are not one of
the most discriminative features of the concept.
In the required (Required:) set, do not include relative, non-visual attributes like size or
weight, only the external, visually distinguishable attributes.
Provide your response in the above format, saying nothing else. If there are no useful visual
features, simply write "none".

Table 11: Prompts for Attribute Generation. The {concept_placeholder} is replaced with coarse-grained concept
labels for Image-only case and Web-Extracted cases; for Text-only case, use the fine-grained concept label since we
want to extract the attributes stored in the parametric knowledge by using the fine-grained concept label as a query.
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Dataset:Stanford Cars
Generate a coarse-grained label for the following fine-grained car types.
The coarse-grained car types are as follows: ["sedan", "SUV", "coupe", "convertible",
"pickup", "hatchback", "van"].

For example, if the car is a "Ford F-150 Regular Cab 2012" generate "pickup", and if the
car is "Chrysler 300 SRT-8 2010", generate "sedan".
Output format is as follows:

Fine-grained Car Name: Ford F-150 Regular Cab 2012
Car Name: pickup

Fine-grained Car Name: Chrysler 300 SRT-8 2010
Car Name: sedan

Fine-grained Car Name: Hyundai Santa Fe 2008
Car Name: SUV

Dataset:CUB-200-2011
Generate a coarse-grained label for the following fine-grained bird types.
For example, if the bird is a "bald eagle (Haliaeetus leucocephalus)" generate "Eagle", and if
the bird is "Pine grosbeak", generate "Finch".
Output format is as follows:

Fine-grained Bird Name: Bald eagle
Bird Name: Eagle

Fine-grained Bird Name: Pine grosbeak
Bird Name: Finch

Fine-grained Bird Name: The black backed woodpecker
Bird Name: Woodpecker

Dataset:Stanford Dogs
Generate a coarse-grained label for the following fine-grained dog types.
For example, if the dog is a "Cavalier King Charles Spaniel" generate "Spaniel", and if the
dog is "The Dear-Headed Chihuahua", generate "Chihuahua".
Output format is as follows:

Fine-grained Dog Name: Cavalier King Charles Spaniel
Dog Name: Spaniel

Fine-grained Dog Name: Curly-coated retriever
Dog Name: Retriever

Fine-grained Dog Name: Newfoundland
Dog Name: Newfoundland

Table 12: Prompts for Coarse-grained Label Generation. We generate the coarse-grained labels for each of the
dataset, in case the dataset does not provide the concept hierarchy. The few-shot sampled are randomly sampled
from the training instances.
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