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Abstract

Perceiving and understanding non-speech
sounds and non-verbal speech is essential to
making decisions that help us interact with
our surroundings. In this paper, we propose
GAMA, a novel General-purpose Large Audio-
Language Model (LALM) with Advanced
Audio Understanding and Complex Reason-
ing Abilities. We build GAMA by integrating
an LLM with multiple types of audio repre-
sentations, including features from a custom
Audio Q-Former, a multi-layer aggregator that
aggregates features from multiple layers of an
audio encoder. We fine-tune GAMA on a large-
scale audio-language dataset, which augments
it with audio understanding capabilities. Next,
we propose CompA-R (Instruction-Tuning for
Complex Audio Reasoning), a synthetically
generated instruction-tuning (IT) dataset with
instructions that require the model to perform
complex reasoning on the input audio. We
instruction-tune GAMA with CompA-R to en-
dow it with complex reasoning abilities, where
we further add a soft prompt as input with
high-level semantic evidence by leveraging
event tags of the input audio. Finally, we
also propose CompA-R-test, a human-labeled
evaluation dataset for evaluating the capabili-
ties of LALMs on open-ended audio question-
answering that requires complex reasoning.
Through automated and expert human evalu-
ations, we show that GAMA outperforms all
other LALMs in literature on diverse audio un-
derstanding tasks by margins of 1%-84% and
demonstrates state-of-the-art performance on
deductive reasoning and hallucination evalu-
ation benchmarks. Further, GAMA IT-ed on
CompA-R proves to be superior in its complex
reasoning capabilities.

1 Introduction

Large Language Models (LLMs) possess impres-
sive abilities to understand and reason about the
world through language (Zhao et al., 2023). While
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Figure 1: Comparison of existing LALMs (LTU by Gong
et al. (2024) here) and GAMA. With improved audio under-
standing abilities (via diverse audio feature integration) and
training on our proposed CompA-R, GAMA can provide more
detailed captions of input audio and is also able to answer
questions regarding it that demand complex reasoning.

spoken language understanding tasks, like auto-
matic speech recognition, have had a long history
of benefiting from language comprehension with
(L)LMs (Watanabe et al., 2018; Hu et al., 2024), the
ability to improve the perception and understand-
ing of non-speech sounds and non-verbal speech
through language has been less explored (from
hereon we refer to these kinds of audios or sound as
“audio” in the paper). Beyond visual and language
perception, the ability to understand audio is unar-
guably important and necessary for autonomous
agents to interact with the world.

Contrastive Language Audio Pre-training
(CLAP) (Elizalde et al., 2023a) was one of the
first Audio-Language Models (ALM) to improve
audio understanding through a language interface.
Following this, several attempts have been made to
improve CLAP and its reasoning abilities (Ghosh
et al., 2024b). On the other hand, Deshmukh
et al. propose Pengi, a pre-trained decoder-only
LLM coupled with an audio-encoder, that can
solve all kinds of audio tasks by framing them
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as open-ended text-generation tasks. Similarly,
Large Audio Language Models (LALMs) like
LTU (Gong et al., 2024) and SALMONN (Tang
et al., 2024) follow a similar architecture and
attempt to solve audio tasks by empowering the
model with instruction following capabilities (Wei
et al., 2022). Specifically, all audio tasks are first
framed in instruction-response pairs. The model
is then fine-tuned on these pairs to learn audio
reasoning and, thereby, instruction following.
As an emergent ability, these models also show
remarkable capabilities in open-ended question
answering by reasoning over the input audio.
However, two significant problems still persist: (1)
All these models employ simple connection mod-
ules between the audio encoder and the language
decoder to enable the latter with audio under-
standing capabilities. This hinders comprehensive
multimodal connection and alignment, thereby
increasing the risk of hallucinations and leading
to suboptimal performance (Liu et al., 2023a).
(2) Complex reasoning with LALMs is still
under-explored. While these models excel at audio
event detection (in various forms like captioning,
event classification, etc.) and information-seeking
questions (e.g., close-ended audio questions like

“How many birds are squawking?”), they fail to
provide a faithful response for questions involving
complex reasoning like “Identifying the context of
laughter and its relationship with the automotive
sounds in the recording. Draw a conclusion on the
possible scenario occurring.”. We define complex
reasoning for LALMs in Section 3.2 and show
examples in Fig. 1 and Fig. 4.
Main Contributions. Our primary contributions
are as follows:

• A Novel LALM. We introduce GAMA, an
LALM with advanced audio understanding
and complex reasoning abilities. To improve
audio perception and understanding abilities,
we propose integrating an LLM with multi-
ple types of audio features that encode di-
verse aspects of information about the input
audio. Specifically, we couple the output fea-
tures from an Audio Q-Former and an Audio
Spectrogram Transformer (AST) (Gong et al.,
2021), where the AST is further equipped with
an aggregation module. While the Audio Q-
Former possesses impressive semantic gener-
alization capabilities (Li et al., 2023), the AST
possesses strong knowledge of surface-level

audio properties. Additionally, inspired by the
fact that different layers in audio models learn
audio information at different scales (Singla
et al., 2022), the aggregation module aggre-
gates the features from multiple layers of
AST, which helps encode diverse knowledge.
Both representations are passed through MLP
layers that connect these features into the
word embedding space before adding them
as the prefix. As a result, GAMA possesses
improved audio understanding capabilities by
moving away from the simple coupling of au-
dio encoders and linear layers commonly em-
ployed as connection modules to align the
audio and textual modalities, which generally
suffer from comprehensive multimodal align-
ment (Liu et al., 2023a). GAMA is first fine-
tuned on a large-scale audio-language corpus,
and the resulting model outperforms all other
models on standard audio and music under-
standing benchmarks.

• A Novel Instruction Tuning Dataset. To en-
dow an LALM with complex reasoning abili-
ties, we propose CompA-R, a dataset synthet-
ically generated with multi-aspect informa-
tion and human-written in-context examples.
Specifically, we prompt GPT to synthesize an
instruction-response pair by guiding it with
various metadata related to the audio.

• A Novel Evaluation Dataset. To evaluate an
LALM’s complex reasoning abilities, we de-
velop CompA-R-test, a human-labeled bench-
mark. Specifically, CompA-R-test evaluates
an LALM on open-ended AQA that demands
complex reasoning over the audio. GAMA-IT
(GAMA fine-tuned on CompA-R) shows sig-
nificant improvements on CompA-R-test over
all other baselines from literature.

2 Related Work

Large Multi-Modal and Audio-Language Mod-
els. Prior to the exploration of LLMs as effi-
cient reasoners, encoder-based multi-modal lan-
guage models, trained to learn a shared space be-
tween language and other modalities, have shown
great promise. For example, CLAP, inspired by
CLIP (Radford et al., 2021) in vision, showed state-
of-the-art performance on audio-language tasks
like retrieval, zero-shot classification, etc.
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Figure 2: Illustration of GAMA. The GAMA architecture involves integrating various audio features with a text-only (pre-trained)
LLM. The audio features are added as a prefix to the text instruction (by the user), and the LLM responds using a text output.
We feed GAMA with 3 different types of audio features: 1⃝ The Multi-Layer Aggregator that takes as input features from the
last and multiple other layers of the AST and calculates cross-attention to output a feature that encodes diverse surface features
from audio. 2⃝ The pre-trained Audio Q-Former takes as input the last layer features of AST and outputs a feature that encodes
the audio into a semantically rich and generalized space. 3⃝ After fine-tuning, we instruction-tune this model on our proposed
CompA-R and further feed the model with a soft prompt with audio tags from AST (with an added classification head). This
additional information serves as high-level semantic knowledge to improve complex reasoning abilities.

LLMs pre-trained at an incredible scale with
the next token prediction objective implicitly com-
press world knowledge in their parameters (Zhao
et al., 2023). These models learn general-purpose
representations, which can then be aligned with
the desired response characteristics (Zhang et al.,
2023). Instruction Tuning (IT), the process of fine-
tuning an LLM with instruction-response pairs, has
proved to be one of the most popular forms of
alignment. Recent work shows that LLMs can also
be instruction-tuned for multi-modal alignment.
LLaVa (Liu et al., 2024), a pioneering work on
multi-modal vision-language alignment, showed
that fine-tuning an LLM on visual instruction-
response pairs with additional vision features as
prefix can endow the model with visual reasoning
and understanding abilities. Several works follow-
ing LLaVa improve aspects of LVLMs and have
achieved impressive performance on several vision-
language tasks (Zhang et al., 2024). On the other
hand, LALMs like LTU and SALMONN showed
impressive performance on several audio-language
tasks by reasoning over the audio. Though these
models extensively evaluate several closed- and
open-ended tasks, their ability to perform complex
reasoning is largely under-explored.

Instruction Tuning and Complex Reasoning. IT-
based alignment has also shown significant im-
provements for LLMs on Natural Language Un-
derstanding tasks, unlocking impressive capabil-
ities (Bubeck et al., 2023), suggesting that fine-
tuning is key to building and improving LLM-
based agents. Very recently, (Xu et al., 2024)
and (Cui and Wang, 2024) show that well-curated
IT data can improve various reasoning capabilities
in LLMs, like logical, mathematical, complex rea-
soning, etc. More specifically, IT teaches LLMs
better and more effective methods to reason about
a problem, presented in the input instruction (like
step-by-step reasoning (Kojima et al., 2022)).

3 Methodology

In the next sub-sections, we first describe the
GAMA architecture and its components in detail,
followed by fine-tuning GAMA on audio-language
pairs, CompA-R creation, and instruction-tuning
GAMA on CompA-R.

3.1 GAMA Architecture

Fig. 2 illustrates the architecture of GAMA. GAMA
builds on the same base architecture proposed in

6290



prior works (Gong et al., 2024) but introduces sev-
eral novel components for improving audio percep-
tion. More specifically, we feed the pre-trained
LLM with features from multiple audio encoders,
including a pre-trained Audio-Q-Former and a pre-
trained AST that encode diverse audio knowledge.
Additionally, unlike prior work, we do not just use
the last layers of the AST but couple it with a multi-
layer aggregator that takes features from multiple
layers as input and outputs a feature that is aware of
various low-level and high-level properties of the
input audio. Finally, to endow the model with effec-
tive complex reasoning abilities, we employ AST
again to extract high-level semantic knowledge, i.e.,
audio event tags, as supplementary information.

3.1.1 Audio Spectrogram Transformer (AST)
Audio Spectrogram Transformer (AST), was one
of the first attempts to model audio signals with
a pure Transformer network. We employ an AST
model fine-tuned on the AudioSet dataset. AST
has been employed as an audio encoder and a fea-
ture extractor in a wealth of prior works due to its
high informativeness (Gong et al., 2023, 2024). To
extract the last-layer features, we drop the audio
classification head and employ it only for event
classification for soft prompts.

3.1.2 Audio Q-Former
Motivation. Our primary goal is to integrate GAMA
with an audio encoder that possesses strong se-
mantic generalization capabilities for any input au-
dio. Prior work has extensively explored CLAP-
style training for learning audio-language encoders.
However, other methods and architectures have
rarely been explored. As a more powerful alter-
native, we explore the Q-Former architecture pro-
posed by (Li et al., 2023).
Architecture. The architecture of our Audio Q-
Former is based on the Querying Transformer pro-
posed in Li et al. (2023), which is initialized from
BERT (Devlin et al., 2018) and has Q querying
tokens. We employ AST as the audio encoder (in
place of the ViT-based vision encoder) and keep
the rest of the architecture the same. Similar to
the original implementation, we train the model in
two stages. For the first stage, we solve three tasks,
namely the Audio-Text Matching loss, the Audio-
Grounded Text Generation loss, and the Audio-
Text Contrastive Learning loss. For the second
stage, we employ LLaMa-2 7B as the language de-
coder and solve the language-modeling loss. For

training, we use 2.5M+ audio-caption pairs (de-
tailed in Section E.2). For architectural details, we
refer our readers to Li et al. (2023).
Training with Caption Augmentation. Addition-
ally, due to the lack of large-scale audio caption
pairs, we adopt a caption-augmentation method-
ology to augment the existing audios with diverse
additional captions. More specifically, we instruct
an LLM to generate k rewrites of the original cap-
tion. We employ two different prompts that rewrite
the input caption with two different objectives:
Prompts. For Prompt 1, our primary aim is that
the resultant rewrite should describe each acous-
tic event in the caption similarly but more vividly.
These augmentations help the model learn various
distinctive characteristics of the audio concepts cor-
responding to the acoustic events. For Prompt 2,
our primary aim is such that the resultant rewrite
should describe each acoustic event in the cap-
tion differently from the original caption. These
augmentations aid the model in understanding the
diverse linguistic expressions that can describe a
single audio concept. We show examples below:
(more examples in Table 12):

(1) Original Caption: Someone made a cool
vocal for a dubstep track.
(1) Rewritten Caption by Prompt 1: A capti-
vating vocal performance ignites the dubstep
track, delivering a hypnotic and enthralling
sound that reverberates through the air.
(1) Rewritten Caption by Prompt 2: The dub-
step track features a slick, stylish vocal per-
formance that adds a layer of sophistication
to its heavy beats and basslines.
(2) Original Caption: Someone eating crisps
and talking.
(2) Rewritten Caption by Prompt 1: Crunchy
crisps mingle with the sound of a lively con-
versation, creating a cozy and intimate atmo-
sphere.
(2) Rewritten Caption by Prompt 2: The
crunch of crisps and the rustle of papers cre-
ate a cozy, intimate atmosphere, accompanied
by the gentle hum of a conversation.

During training, for each audio sample, we
choose the original caption with a probability p =
0.4 or one of the rewritten versions (with a proba-
bility 1− p), where each rewritten caption has an
equal probability of selection. Both instrcutions
are provided in Appendix B. We employ LLaMa-
2-13B (Touvron et al., 2023) with human-written
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in-context examples. We randomly sample 5 in-
context examples from a collection of 50.

3.1.3 Multi-Layer Aggregator
Motivation. To extract additional details about
the input audio, we devise a multi-layer aggrega-
tor that integrates multi-level hidden features of
the pre-trained AST. Although AST has a global
reception field in all layers, different layers learn au-
ditory information at different scales (Singla et al.,
2022), i.e., the middle layers encode more generic
features (e.g., basic sounds, textures), while deeper
layers capture high-level concepts (e.g., speech
intonations, complex sound patterns). By aggre-
gating these features, the multi-layer aggregator
outputs features that encode a more holistic and
fine-grained understanding of the audio. Thus, our
multi-layer aggregator makes fine-grained auditory
knowledge more likely to be learned while training.
Architecture. Our multi-layer aggregator is a
transformer-style network consisting of two trans-
former layers for aggregating the hidden features
of the audio encoder. Given the hidden features
Aj and Ak from the middle layers in the audio en-
coder, the aggregation module uses two blocks to
sequentially integrate the former two features with
the last layer feature Ai. Each block B is composed
of self-attention, cross-attention, and Feed-forward
network (FFN) arranged in a sequential manner. Fi-
nally, the output features Ā is generated as follows,

Ā = B2 (B1 (Ai;Aj) ;Ak) (1)

B(X;Y ) = FFN(Cross-Attn(Attn(X), Y )). (2)

In practice, we employ j = 4 and k = 8 from AST
as our input to the multi-layer aggregator.

3.1.4 Soft Prompt
Motivation. Though models like AST and Audio
Q-Former have shown much promise in audio tasks,
a major problem still exists: real-world audio gen-
erally has multiple and overlapping acoustic events,
and understanding all such events from model fea-
tures proves to be inherently complex (Ghosh et al.,
2024b). This eventually leads to sub-optimal per-
formance for complex reasoning, where the explicit
knowledge of plausible acoustic events in the au-
dio can improve model responses. Thus, to im-
prove fine-grained audio perception capabilities,
we augment GAMA with high-level semantic under-
standing of the input audio. To do this, we employ
an off-the-shelf audio model to extract high-level

semantic knowledge, i.e., audio event tags, as sup-
plementary information. However, as audio event
classification is not a solved problem, errors in tag
predictions are inevitable. Thus, to mitigate the
potential adverse effects of inaccurate predictions,
we are inspired by prompt tuning to introduce a
soft prompting technique that enables the model to
utilize the embedded tags within the instructions
adaptively.
Architecture. Fig. 2 shows an example of how
we design our soft prompt together with an instruc-
tion. Specifically, we construct a fixed instruction
template where we add the audio event tags along
with the soft prompt, where the soft prompt is a
trainable vector. In contrast to standard prompt
tuning, where the model activations are generally
steered towards completing the task for which the
prompt is optimized, in our version the direction is
specified by a tailored input sentence, “According
to <hint>, you are allowed to use or partially use
the following tags:”, and “<hint>” will be replaced
by the soft prompt. This design allows us to select
valuable information from tags adaptively rather
than serving a specific task, as seen in standard
prompt tuning methods. We only employ the soft
prompt in the instruction tuning for complex rea-
soning step and not in the fine-tuning step. We
provide a rationale in Appendix C.1.

3.1.5 Connection Module
We employ a multi-layer perceptron (MLP) to con-
nect audio features into the word embedding space.
All features are passed through separate MLP lay-
ers before being added as prefixes to word embed-
dings of the text instruction prompt.

3.2 CompA-R

Motivation. We define complex reasoning as the
capability of an LALM to understand the input
audio, every individual acoustic event in the au-
dio, and reason the corresponding scene in which
the audio might have occurred, such that it can
infer nuanced relationships between them and its
underlying contexts, thereby enabling it to draw
sophisticated conclusions. We design CompA-R
with the primary goal of endowing LALMs with
complex reasoning abilities. We are motivated by
the primary finding that current SOTA LALMs
can only perform well in prompts that require de-
scribing the audio (e.g., Describe the audio) or
reasoning-based prompts where identifying the
acoustic events present in the audio would suffice
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for a faithful response (e.g., What type of video can
this audio be used for dubbing?). However, when
posed with complex reasoning questions, these
models often hallucinate or fail to provide a faithful
response (see Fig. 4). Inspired by a wealth of prior
work that shows how IT on well-curated datasets
can align model behaviors for the execution of
novel skills like reasoning and complex problem
solving (Xu et al., 2024), we propose a system-
atic multi-stage pipeline to synthesize instruction-
response pairs for CompA-R. CompA-R trains a
model to engage in complex reasoning by querying
it with instructions that cannot be directly inferred
by identifying individual audio events and would
require analyzing each event and its context in rela-
tion to other scene elements and world knowledge.

Synthesis Pipeline. We employ the AudioSet-
strong subset to synthesize CompA-R. Our data
synthesis pipeline consists of 3 stages: i) Caption
Generation. To generate a caption that is aware
of both the audio and the visual scene, we feed
GPT-4 with multiple types of information about the
audio and its corresponding video, similar to Auto-
ACD (Sun et al., 2023). These include a caption
of the middle frame of the video generated using
BLIP-2 (Li et al., 2023), objects in the frame identi-
fied using Grounding DINO (Liu et al., 2023c), im-
age labels for the frame using the ImageNet (Deng
et al., 2009) ontology obtained from CLIP, environ-
ment context using PlaceCNN (Zhou et al., 2017),
caption of the audio obtained using RECAP (Ghosh
et al., 2024a) and audio event tags using the Au-
dioSet ontology obtained from AST. Finally, we
prompt GPT-4 to aggregate these descriptions into
a comprehensive caption. ii) Dataset Synthesis.
We pass the generated caption together with the
ground-truth acoustic event information and their
corresponding time slices to GPT-4. We prompt
GPT-4 with 3 human-written exemplars (which are
randomly sampled from a pool of 50 exemplars)
to synthesize an instruction-response pair. The ex-
emplars and prompt are designed such that the syn-
thesized instructions demand complex reasoning.
We synthesize a total of 25000 instruction-response
pairs. iii) Human Verification. We discard instruc-
tions due to untended noise and hallucinations. We,
the authors of this paper, manually verify a subset
of CompA-R corresponding to 500 unique audios
for creating the test set, i.e., CompA-R-test. The
remainder of the synthesized dataset is used as the
training set. We describe the process and annota-

Instruction: Analyze the temporal
pattern of the impact sounds in the audio.
How does their frequency, duration, and
intensity contribute to understanding the

intensity or pace of the work in this
workshop setting?

Response: The repeated and consistent
presence of impact sounds of similar

intensity suggests a systematic, ongoing
process, indicating a steady and active

work pace in the workshop.

Instruction: Analyze the temporal
pattern of the impact sounds in the audio.
How does their frequency, duration, and
intensity contribute to understanding the

intensity or pace of the work in this
workshop setting?

Response: The repeated and consistent
presence of impact sounds of similar

intensity suggests a systematic, ongoing
process, indicating a steady and active

work pace in the workshop.

Caption: Metal clanks as a man
speaks in the background, suggesting

a workshop environment with ongoing
hammering and train passing by.

Audio Events: [(Mechanisms-0.0-10.0),
(Male speech, Man speaking-0.02-0.53),
(Generic impact sounds-0.228-0.709),

(Thump, thud-6.307-6.48), ...]

Training Set
Instruction: Analyze the temporal

pattern of the impact sounds in the audio.
How does their frequency, duration, and
intensity contribute to understanding the

intensity or pace of the work in this
workshop setting?

Response: The repeated and consistent
presence of impact sounds of similar

intensity suggests a systematic, ongoing
process, indicating a steady and active

work pace in the workshop.

Instruction Generation
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Caption
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+
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Human
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+

Video
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Figure 3: Pipeline for synthesizing CompA-R. For an audio
in the AudioSet-strong dataset, we first use the audio and
its corresponding video to generate a caption (described in
Section 3.2). This caption is then fed into GPT-4 together
with the ground-truth time slices for each event in the audio
(available for AudioSet-strong). We then instruct GPT-4 to
generate instruction-response pairs where the instruction is
accompanied by human-written exemplars (prompt in Fig. 5).
To generate the test set, we perform expert human verification
for a subset of the generated dataset.

tion details further in Appendix G.1. This finally
led to 198,648 unique pairs in training and 1,561
in testing.

3.3 Training

Fine-tuning. We fine-tune GAMA on the OpenAQA
training set released by Gong et al. (2024). We use
a faction of all the instances due to the unavailabil-
ity of the entire AudioSet and resource constraints.
Dataset details are provided in Appendix H.1. Ad-
ditionally, we augmented OpenAQA with 4 more
datasets, including MusicCaps, MusicQA, NSynth,
and Magna, to improve its music understanding
capabilities. For fine-tuning, we follow the ex-
act same 4-stage method proposed by Gong et al.
(2024) where all parameters of all encoders are
trainable, and we train only the LoRA modules of
the LLM. We request our readers to refer to Gong
et al. (2024) for more details.
Instruction Tuning on CompA-R. Post fine-
tuning, we instruction-tune GAMA on CompA-R
to endow it with complex reasoning abilities. Fol-
lowing common conventions (Liu et al., 2023b),
we fine-tuned only the LoRA modules. We call
the Instruction Tuned GAMA as GAMA-IT. Al-
though fine-tuning on AQA also endows GAMA
with instruction-following capabilities, CompA-R
differs in the nature of training instances (thereby
the capabilities it endows), and thus, we differen-
tiate with such a naming convention for ease of
reading.
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Model ESC50#
(Acc)

DCASE#

(Mi-F1)
VS†

(Acc)
TUT†

(Acc)
BJO†

(Acc)
VGG
(Acc)

FSD
(mAP)

NSins.
(ACC)

NSsrc.
(ACC)

GTZAN†

(ACC)
MSD†

(ACC)
AudioSet

(mAP)
Classif.

Avg.
AudioCaps

(SPICE)
Clotho

(SPICE)
Cap.
Avg.

ClothoAQA
(ACC)

Audio-Language encoder-based models. They are generalizable to unseen labels, but a pre-defined label set is required for inference.
AudioCLIP 69.4 - - - - - - - - - - - - - - - -
CLAP (Elizalde et al., 2023a) 82.6 30.0 48.4 29.6 47.5 24.0 30.2 22.7 16.4 25.0 44.0 5.8 29.4 - - - -
CLAP (Wu* et al., 2023a) 89.1 31.3 47.1 35.6 48.0 26.3 30.8 25.2 18.9 26.3 46.9 6.2 36.0 - - - -
CompA-CLAP 90.1 30.6 49.5 35.8 48.2 29.5 31.5 24.9 17.0 26.1 46.2 6.2 36.3 - - - -

Audio-Language generation-based models. They directly output label names and do not need a pre-defined label set is needed at inference.
Qwen-Audio-Chat 71.7 32.4 74.2 16.9 50.8 17.5 39.8 30.2 41.3 41.6 69.1 13.4 41.1 14.7 9.8 12.3 32.3
LTU 81.7 37.5 53.3 19.9 67.8 50.3 43.9 28.0 41.8 9.9 74.2 18.3 42.4 16.9 11.7 15.8 25.1
SALMONN 16.4† 18.0† 16.9† 7.8† 25.0† 23.3† 22.1† 16.2† 33.7† 10.1† 28.8† 13.4† 17.9 8.3 7.6 8.0 23.1†

Pengi 80.8† 29.6† 46.4† 18.4† 47.3† 16.6† 35.8 39.2 46.0 11.9 93.0 11.5 39.7 12.7 7.0 9.9 63.6
AudioGPT 41.3 20.9 35.8 14.9 21.6 5.6 18.8 40.9 15.6 11.9 28.5 12.7 22.4 6.9 6.2 6.6 33.4
GAMA (ours) 82.6 38.4 52.4 21.5 69.5 52.2 47.8 63.9 99.5 13.8 85.6 19.2 53.9 18.5 13.5 16.0 71.6

w/o AST & Aggregator 80.5 36.9 51.6 19.2 66.2 50.8 45.3 62.4 89.6 11.6 83.2 17.3 51.2 17.2 12.4 14.8 68.3
w/ Last Layer Features 81.3 37.6 50.2 20.4 68.2 51.7 45.8 62.6 92.3 11.2 81.5 18.1 51.7 17.7 12.8 15.3 69.5

+ Transformers 80.8 37.2 51.7 19.5 66.7 50.2 45.6 61.8 90.1 11.9 83.4 16.5 51.3 17.4 12.0 14.4 14.6
w/o Audio Q-Former 79.7 37.4 51.3 20.2 68.0 51.6 46.4 60.1 90.4 11.6 79.8 18.4 51.2 16.9 11.9 14.4 61.2
w/ CLAP 81.8 38.4 52.2 21.6 69.1 52.0 47.5 58.8 99.5 12.4 77.9 19.0 52.5 17.2 13.1 15.1 66.4

Table 1: Comparison of GAMA with baselines on evaluation datasets described on close-ended general audio and music
understanding benchmarks. GAMA outperforms most ALMs on most settings. † and # indicate zero-shot and weak zero-shot,
respectively. Note: Qwen-Audio-Chat does not provide training details. We also mark baseline values which are zero-shot.

Dataset Model Acc↑ P↑ R↑ F1↑

ACE

Pengi-noenc 26.3 17.0 26.3 20.5
Pengi-enc 38.7 25.6 38.7 30.4
LTU-AS 36.3 37.7 36.3 33.3
Qwen-A 35.6 35.6 35.6 32.2
Qwen-AC 52.2 56.7 52.2 49.9
SALMONN 56.2 55.5 56.2 48.3
GAMA 52.5 65.3 52.5 49.3

POPE Model Acc↑ P↑ R↑ F1↑

Random

Qwen-Audio-Chat-7B 65.3 79.2 32.8 46.1
LTU-AS-7B 50.1 49.2 46.5 47.8
SALMONN-7B 56.3 90.0 14.1 24.4
SALMONN-13B 63.7 95.7 28.6 44.1
Specialized-LLaMA 65.5 60.9 82.7 70.1
Specialized-ChatGPT 77.1 69.3 96.6 80.7
GAMA 82.6 85.6 78.3 81.8

Table 2: (Left) Comparison of GAMA with other LALMs on deductive reasoning benchmark (Deshmukh et al., 2024). (Right)
Comparison of GAMA with other LALMs on objet hallucination benchmark (Kuan et al., 2024). We present scores for POPE-style
evaluation w/ random sampling. For both benchmarks, we compare Acc (Accuracy), P (Precision), R (Recall) and F1 scores.

3.4 Experimental Setup

Hyper-parameters. For the fine-tuning stage, we
follow the exact same hyper-parameter setup pro-
posed by Gong et al. (2024). However, we scale
down our batch sizes to 4, 2, 2, and 2 (due to com-
putational constraints) with an effective batch size
of 256 in all stages. For Instruction Tuning, we
employ a batch size of 2, an effective batch size of
256, and a learning rate of 1e-4. For both training
and evaluation, we sampled audio at 16kHz.

Ablations. To demonstrate the efficacy of indi-
vidual components of GAMA, we evaluate the fol-
lowing ablations: (i) w/ CLAP: We replace the
Audio Q-Former with a CLAP model, fine-tuned
with a similar experimental setup as the Audio Q-
Former. Since CLAP does not require AST features
and works stand-alone, the AST features were no
longer fed to CLAP in this ablation. All other com-
ponents are kept identical. (ii) w/ Last Layer Feats:
We replace the Multi-Layer Aggregator with the
last-layer features of the AST. Thus, the LLM only
receives the last layer features of AST as input,
and the AST features were not passed through the
Multi-Layer Aggregator. All other components
were kept identical. (iii) w/ Last Layers Feats +
Transformer: Identical to the previous ablation,

but now the last layer features of AST are passed
through an additional 4-layer transformer network
before it is fed to the LLM. (iv) w/o AST & Ag-
gregator: We remove AST and Multi-Layer Aggre-
gator features, i.e., the model does not receive the
direct AST features in any form. Thus, the LLM
is now only fed with features from Q-Former and
the Soft Prompt. Note that the Q-Former and the
Soft Prompt still use the AST to obtain audio fea-
tures and labels. All other components were kept
identical. (v) w/o Soft Prompt: We remove the soft
prompt features as input. All other components
were kept identical.

Baselines. We compare GAMA with i) generation-
based LALMs: LTU, Qwen-Audio, SALMONN,
Pengi and AudioGPT. We only employ the original
checkpoints open-sourced by the authors and do
not re-train the models due to compute constraints
(except LTU, which we retrain on our version of
OpenAQA, the same batch size as GAMA, and
with LLaMa-2 as the LLM). We do not compare
with Audio Flamingo (Kong et al., 2024) as the
checkpoint was not available at the time of writ-
ing the paper, and we are constrained by compute
for training it from scratch. ii) audio-language en-
coders: CLAP by Wu* et al. (2023b) and Elizalde
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CompA-R-test (GPT-4/Human) OpenAQA Dense Captioning
Models Clarity Correctness Engagement Avg. Clarity Correctness Engagement Avg. AudioCaps Clotho Avg.
Qwen-Audio-Chat 3.5 / 3.4 3.3 / 3.4 3.6 / 3.7 3.5 / 3.5 3.6 3.6 3.5 3.6 3.8 3.6 3.7
LTU 3.5 / 4.0 3.2 / 3.3 3.4 / 3.5 3.4 / 3.6 3.5 3.7 3.5 3.6 3.5 3.6 3.5
SALMONN 2.6 / 2.8 2.4 / 2.3 2.0 / 2.2 2.3 / 2.4 2.4 2.5 2.7 2.5 2.8 3.1 2.9
Pengi 1.8 / 1.6 1.5 / 1.4 1.3 / 1.2 1.5 / 1.4 1.7 1.5 1.4 1.5 2.6 2.8 2.7
AudioGPT 1.3 / 1.4 1.6 / 1.5 1.4 / 1.7 1.4 / 1.5 1.6 1.5 1.5 1.5 2.7 2.9 2.8
LTU w/ CompA-R 3.5 / 4.0 3.2 / 3.3 3.4 / 3.5 3.6 /3.6 3.5 3.7 3.5 3.6 3.7 3.8 3.8
GAMA (ours) 3.6 / 3.9 3.8 / 4.0 3.3 / 3.6 3.6 / 3.8 3.7 3.6 3.5 3.6 3.6 3.8 3.7
GAMA-IT (ours) 4.3 / 4.5 3.9 / 4.1 3.9 / 4.3 4.0 / 4.3 4.0 4.2 3.8 4.0 4.3 4.1 4.2

w/o Soft Prompt 4.1 / 4.2 3.7 / 3.8 3.6 / 3.4 3.8 / 3.8 3.9 3.8 3.7 3.8 4.1 3.9 4.0
w/o Aggregator 4.0 / 4.2 3.5 / 3.5 3.6 / 3.5 3.7 / 3.7 3.7 3.7 3.5 3.6 3.7 3.8 3.8
w/o Audio Q-Former 3.8 / 3.7 3.4 / 3.6 3.5 / 3.3 3.6 / 3.5 3.4 3.9 3.5 3.6 3.7 3.5 3.6
w/ CLAP 4.0 / 4.0 3.9 / 4.0 3.7 / 3.9 3.9 / 4.0 3.8 3.7 3.6 3.7 3.8 4.0 3.9

Table 3: Comparison of GAMAwith other baselines on open-ended AQA on OpenAQA, complex open-ended AQA on CompA-R-
test and Dense Captioning on 500 instances from AudioCaps and Clotho.

et al. (2023b), CompA-CLAP (Ghosh et al., 2024b),
AudioCLIP (Guzhov et al., 2021) and Audio Q-
Former. For dense captioning and close- and open-
ended AQA, we evaluate using GAMA-IT. For all
other tasks, we evaluate using the only fine-tuned
version of GAMA (rationale in Appendix C).

Evaluation Datasets and Metrics. Evaluation
metrics used for all evaluation datasets are men-
tioned in Table 3 and detailed statistics about each
dataset is mentioned in Section H.2. For clas-
sification, zero-shot evaluation refers to datasets
GAMA that have never been seen during training;
weak zero-shot evaluation refers to datasets GAMA
that have not been seen in training but are sourced
from the same project as part of the training data,
and seen datasets refer to datasets GAMA has been
trained on. Similar to Deshmukh et al. (2023);
Gong et al. (2024), we first caption the audio and
retrieve the most similar label using SentenceBERT.
We employ either accuracy (Acc), Micro-F1 (Mi-
F1), or Mean Average Precision (mAP) for classifi-
cation evaluation. For captioning, we also propose
dense captioning, which evaluates a model for its
capability to identify every event in the audio and
the context of its occurrence with respect to other
events in the audio (more in Section 4). For evalua-
tion, we randomly select a subset of 500 samples
from AudioCaps and Clotho. We also employ hu-
man evaluation for OpenAQA, CompA-R-test, and
dense captioning. For human evaluation, we ask
human annotators to score the caption on a scale
of 1-5 and report the score averaged across the 3.
More details on recruitment and background of an-
notators can be found in Appendix D. Finally, due
to human evaluation being prohibitively expensive,
we also propose an automated evaluation methodol-
ogy for complex open-ended AQA on CompA-R-
test. We evaluate model responses using text-only

GPT-4, where we provide it with the audio caption
generated in Section 3.2 and the gold-standard au-
dio event with timestamps (prompt in Appendix B).

4 Results and Analysis

Quantitative Results. Table 1 compares GAMA
with other baselines on the foundational au-
dio processing tasks of classification and cap-
tioning. For zero-shot classification evalua-
tion on VocalSound (VS) (Gong et al., 2022),
TUT 2017 (TUT) (Mesaros et al., 2018), Bei-
jing Opera (BJO) (Tian et al., 2014), GTZAN
(GTZ) (Park et al., 2022) and Medley-solos-DB
(MDB) (Lostanlen et al., 2018), GAMA outperforms
our baselines by 2%-67%. For weak zero-shot eval-
uation on ESC-50 (Piczak, 2015) and DCASE2017
Task 4 (DCASE) (Mesaros et al., 2017), GAMA out-
performs our baselines by 1%-66%. Finally, for
in-domain evaluation on VGGSound (VGG) (Chen
et al., 2020), FSD50K (FSD) (Fonseca et al., 2021),
AudioSet (AS) (Gemmeke et al., 2017) and NSynth
(NS) (Engel et al., 2017) GAMA outperforms our
baselines by 1%-84%. GAMA sees the steepest drop
in performance when the AST and Aggregator are
removed (i.e., only Auio Q-Former is employed).

Table 2 presents a comparison between GAMA
and other LALMs on the audio entailment task
introduced by Deshmukh et al. (2024), which eval-
uates the deductive reasoning abilities of LALMs.
GAMA achieves the highest overall F1 score, outper-
forming all other models, with SALMONN being
its closest competitor. On the right side of Table 2,
GAMA is compared to other LALMs in terms of ob-
ject hallucination performance. Using POPE-style
evaluation with random sampling, GAMA demon-
strates the best results, achieving the highest accu-
racy and F1 score among all models.

Table 3 compares GAMA-IT with other base-
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It is gasoline.

Question: Based on the given audio, infer the type of environment or
setting. Consider the presence and duration of car sounds.

The audio clip suggests an urban or suburban environment with a mix of
residential and commercial areas. The presence of car sounds suggests that
the environment is a busy one.

The given audio suggests that the environment or setting is a busy city
street with a lot of car traffic. The audio also indicates that the car sounds
are continuous and long-lasting. Therefore, it can be inferred that the audio
is from a busy city street with a lot of car traffic.

It is music.

Question: Considering the correlation of the man's speech and the music, infer his possible connection to the
music playing in the scene.

The male speaker's speech adds a sense of authority and control to the event's atmosphere, as well as a sense
of urgency or importance to the crowd's reactions. The speech also provides a contrast to the music and crowd
reactions, creating a dynamic and engaging soundscape that draws the listener's attention and emotions.

The male speaker is interspersed with the music and crowd reactions to create a dynamic and engaging
atmosphere at the event. His speech adds energy and excitement to the event, keeps the audience engaged and
involved, and helps create a memorable and enjoyable experience for all attendees.
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The environment is likely a race track. The man is likely a guitarist or an instructor who is explaining the process of tuning a guitar
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Figure 4: Qualitative comparison of GAMA with other baselines on instances from CompA-R-test. Both instances challenge
an LALM with a question about the input audio that requires advanced understanding and complex reasoning regarding the
audio and its individual events. GAMA is able to provide faithful and accurate responses through improved audio perception and
reasoning capabilities. HE refers to scores assigned by human evaluators. Note that the video is only provided for illustration
purposes and not provided as input to the LALM.

lines on AQA (open-ended and complex open-
ended) and dense captioning. GAMA outperforms
all our baselines on all settings. GAMA shows abso-
lute improvement of 4% - 50% on OpenAQA, 8%
- 58% on CompA-R-test and 8% - 30% on Dense
Captioning. Similar to the tasks in Table 1, per-
formance on benchmarks suffers the most when
without the Audio Q-Former (when only the AST
and Aggregator are employed). Audio Q-Former
proves to be especially effective (over employing
CLAP) in AQA.
Qualitative Results. Fig. 4 compares GAMA-IT
against other LALMs from literature with instances
from CompA-R-test. All models compared by de-
fault possess audio chat or open-ended AQA capa-
bilities. GAMA-IT is able to provide more faithful
responses that are both correct and preferred more
by humans. We provide additional comparisons in
Figs. 8, 9, 10, 11, 12, and our demo page: (where
we also show comparisons of dense captioning).

5 Conclusion

In this paper, we propose GAMA, an LALM with
improved audio perception abilities. We integrate
an LLM with multiple types of audio representa-
tions, which are responsible for providing diverse
knowledge about the input audio. GAMA fine-tuned
on a mixture of open-source datasets outperforms
prior audio-language models by significant margins
on 16 datasets spanning 4 tasks. Next, we propose
CompA-R, an instruction-tuning dataset that we
synthesize using a robust pipeline for endowing an
LALM with complex reasoning abilities. GAMA IT-

ed on CompA-R outperforms baselines on complex
open-ended AQA and dense captioning.
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Limitations and Future Work

GAMA and our experimental setup have several lim-
itations, including:

• For the scope of our experiments, we do not
evaluate and compare music understanding
extensively. We do not do this as we do not
train GAMA on diverse and large-scale music
datasets. We also acknowledge that it is possi-
ble to employ the GAMA architecture for com-
prehensive music understanding if trained on
large-scale music understanding datasets. As
part of future work, we plan to release a music-
only version of GAMA, similar to Gardner et al.
(2024).

• We do not employ larger LLMs, for exam-
ple, the 13B versions of the LLaMA family,
similar to Tang et al. (2024) and Gong et al.
(2024), due to compute constraints.

• The audio-encoder(s) in GAMA have more pa-
rameters than in our baselines. However, we
also acknowledge that this adds to only a frac-
tion of the total parameter count of the LALM.
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A Additional Results

B Prompts employed for LLMs

Fig. 5 illustrates the prompt employed for syn-
thesizing CompA-R. Fig. 6 illustrates the prompt
employed for evaluating model responses on
CompA-R. For dense captioning, we just prompt
the model: Write an audio caption describing the
sound in detail.
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C GAMA-IT vs GAMA and Evaluation
Choices.

GAMA is first fine-tuned on OpenAQA and then
instruction-tuned on CompA-R for complex rea-
soning. We call the instruction-tuned version
GAMA-IT. We do not evaluate GAMA-IT on gen-
eral tasks like classification and vanilla caption-
ing 1. GAMA-IT is aligned to generate detailed
descriptions as part of the complex reasoning stage,
and we found a lack of metrics and methods that
can faithfully evaluate such descriptions for classi-
fication or captioning. For example, the retrieval-
based classification evaluation method, employed
extensively in prior work, including ours, uses a
Sentence-BERT to retrieve the label closest to the
description for classification evaluation. During
our preliminary analysis, we found that Sentence-
BERT, which just performs retrieval using semantic
matching, is unable to faithfully retrieve the correct
label despite the caption mentioning the label as
an audio event. We further investigated CLAP as
our retrieval model for evaluation and found that
it suffers from the same limitations. We attribute
this to the detailed and dense nature of the descrip-
tions and the fact that these models only focus on
high-level semantic meaning for retrieval. Our ini-
tial experiments show that LLM prompting serves
as a feasible alternative for automatic evaluation
(beyond human evaluation) using such dense de-
scriptions, but due to the lack of resources and a
formal framework, we leave this as part of future
research.

C.1 Soft Prompts

We employ the soft prompt only in the instruction
tuning stage for learning complex reasoning and
not in the fine-tuning step. We do this for 2 rea-
sons: (i) Fine-tuned GAMA is only expected to solve
generic audio tasks like classification, captioning,
etc. Thus, we hypothesize that such high-level
semantic cues are not necessary for effective and
optimal performance. (ii) Since fine-tuning is done
on a large-scale dataset and acoustic event classifi-
cation is far from accurate, our soft prompt method
might add unwanted noise to the training process,
thereby leading to sub-optimal performance. On
the contrary, our instruction-tuning stage, which is
done on relatively low-resource data and is only
responsible for aligning a model for complex rea-

1Note: Both depend on the description of the input audio
generated by the model

soning, is robust to inaccurate audio tags due to our
soft-prompting methodology.

D Additional Details: Human Study

Background and Recruitment for Dense Cap-
tioning and CompA-R-test Evaluation. We re-
cruit 3 professionals for human evaluation of dense
captioning and CompA-R-test evaluation. All
these 3 professionals come with at least a Ph.D.
in Engineering or Sciences and were asked to use
headphones to first analyze the audio and then
judge the response quality. The authors of this pa-
per gave these annotators 5 examples of responses
and the corresponding judgments. The work was
done voluntarily and not paid. We refrain from re-
cruiting crowd raters as prior research has noticed
discrepancies in evaluation by them (Gudibande
et al., 2023). More precisely, they have been shown
to possess a tendency to rate an answer with a high
score only by visualizing the style of answering
and not the exact factual information making up
the response.

All 3 human annotators score the response be-
tween 1-5, and we report scores averaged across
the 3. Prior to evaluation, all annotators were given
at least 10 examples from the authors of the paper
of generations and their corresponding scores. For
evaluation, only the audio was provided to them
with software that could play the audio and has
fields to input the scores.
Background and Recruitment for OpenAQA.
Since the size of OpenAQA is relatively larger than
CompA-R-test, we perform evaluation on Amazon
Mechanical Turk similar to Gong et al. (2024).
Evaluation was done with a total of 267 unique
human evaluators and each generation was scored
by 2 evaluators. The same software was used for
evaluation as CompA-R-test.

E Additional Details: Audio Q-Former

E.1 Audio Q-Former Training Details

Pre-training Hyper-parameter. For Stage 1 of
training, we employ a training batch size of 192,
an initial learning rate of 1e-4, a minimum learning
rate of 1e-5, and a warm-up learning rate of 1e-6.
We do cosine decay as the learning rate scheduling
technique. We do warmup for 5000 steps. Stage 1
was pre-trained on 8 A6000 GPUs for 100 epochs.
For Stage 2 of training, we keep the exact same
settings as Stage 1 but change the batch size to 128.
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Fine-tuning. For zero-shot audio classification
evaluation, we fine-tune the Audio Q-Former after
Stage 1 pre-training on the same corpus presented
in Table 4 and using the same Stage 1 objective.
The only difference in the fine-tuning step is that
we train the AST model, which is otherwise kept
frozen in the pre-training stage.
Fine-tuning Hyper-parameter. For fine-tuning,
we again use the same hyper-parameter setting as
Stage 1 pre-training but use a batch size of 64.

E.2 Training Dataset Details

Table 4 provides dataset statistics of all individual
datasets used for training Audio Q-Former. We em-
ploy ≈2.2M audio-caption pairs for training with
no speech-transcription pairs.

Dataset #Audio-Caption Pairs

Audio Set (Gemmeke et al., 2017) 2 1591364
Free Sound (Fonseca et al., 2022) 3 259020
VGGSound (Chen et al., 2020) 4 185161
AudioSet Strong (CompA Version) (Ghosh et al., 2024b) 5 108311
MACS (Morato and Mesaros, 2021) 6 14400
BBC (BBC, 2018) 7 31201
AudioCaps (Kim et al., 2019) 8 48649
Clotho (Drossos et al., 2020) 9 18735
SONISS (Sonniss Limited, 2022) 10 1602
Musical Instrument (Agostinelli et al., 2023) 11 7990
SoundBible (sou, 2023) 12 1232
WavText5K (Deshmukh et al., 2022) 13 4347
MusicCaps (Agostinelli et al., 2023) 14 2645
GTZAN (Tzanetakis et al., 2001) 15 6014
Medley-solos (Lostanlen et al., 2019) 16 732

Table 4: List of open-source datasets used for collating our
final dataset for training ReCLAP with ≈2.2M audio-caption
pairs. All datasets are free to use for research purposes.

E.3 Augmentation Examples

Table 10 illustrates prompt augmentations for two
categories from each dataset. Table 11 illus-
trates caption augmentations for training Audio
Q-Former.

1https://research.google.com/audioset/download.html
2https://huggingface.co/datasets/cvssp/WavCaps
3https://www.robots.ox.ac.uk/ vgg/data/vggsound/
4https://research.google.com/audioset/download.html
5https://zenodo.org/records/5114771
6https://sound-effects.bbcrewind.co.uk/
7https://research.google.com/audioset/download.html
8https://zenodo.org/records/4783391
9https://labs.freesound.org/datasets/

10https://www.kaggle.com/datasets/soumendraprasad/musical-
instruments-sound-dataset

11https://soundbible.com/
12https://github.com/microsoft/WavText5K
13https://github.com/seungheondoh/music_caps_dl
14https://www.kaggle.com/datasets/andradaolteanu/gtzan-

dataset-music-genre-classification
15https://zenodo.org/records/1344103
16https://zenodo.org/records/1344103

F Baseline Details

AudioCLIP. (Guzhov et al., 2022) AudioCLIP is
an extension of the CLIP model that can handle au-
dio in addition to text and images by incorporating
the ESResNeXt audio model in the CLIP frame-
work. It was trained on the AudioSet dataset, which
contains millions of audio clips with corresponding
labels.
CLAP. (Elizalde et al., 2023a) CLAP (Contrastive
Language-Audio Pre-training), similar to CLIP, is
an audio-language model trained with contrastive
learning between audio data and their correspond-
ing natural language descriptions. Representations
are obtained from audio encoders and text encoders.
Wu* et al. (2023b) further extend this using a fea-
ture fusion mechanism and keyword-to-caption
augmentation into the model design to further en-
able the model to process audio inputs of variable
lengths and enhance performance.
CompA-CLAP. (Elizalde et al., 2023a) CompA-
CLAP, an extension to CLAP, is trained on com-
pletely open-sourced datasets and further fine-
tuned using specific algorithms and datasets to im-
prove compositional reasoning.
Pengi. (Deshmukh et al., 2023) Pengi was one of
the first efforts to achieve general-purpose audio un-
derstanding through free-form language generation
with transfer learning. Precisely, Pengi integrates
an audio encoder with a decoder-only pre-trained
language model (LM) where the audio features
serve as a prefixes for the LM during response gen-
eration. Following this, similar to our evaluation
strategy, they prompt the model to caption the input
audio and calculate the similarity between the cap-
tion and the ground-truth audio label for zero-shot
classification.
LTU. (Gong et al., 2024) As a concurrent work to
Pengi, took a step forward and showed that substi-
tuting the pre-trained language model with an LLM
can induce an LALM with reasoning capabilities.
Precisely, they achieved this by integrating an audio
encoder to LLaMA (Touvron et al., 2023) and fine-
tuning the model on close-ended and open-ended
instruction-tuning datasets. Finally, beyond just
close-ended tasks, they also evaluate their models
on open-ended reasoning tasks and show superior
performance compared to baselines.
AudioGPT. (Huang et al., 2024) Different from
Pengi and LTU, AudioGPT differs in how the au-
dio models and LLMs are integrated for complet-
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ing audio tasks. More specifically, different from
end-to-end training and alignment, they integrate a
closed-source model (ChatGPT) with a pre-trained
audio model, already capable of completing the re-
quired task, using a modality-transfer transformer
τ . The integration or interaction between the two
models is accomplished using the prompts. Ad-
ditionally, AudioGPT is capable of solving more
tasks, which include human verbal speech, beyond
just non-verbal speech like Pengi and LTU.
SALMONN. (Tang et al., 2024) SALMONN fol-
lows a similar architecture to LTU and Pengi and
does prefix conditioning with an LLM. However,
in addition to an audio encoder, they also integrate
a speech encoder for speech or verbal audio under-
standing. Precisely, the audio and speech features
are concatenated before feeding them as prefixes
to the LLM. SALMONN shows unique reasoning
capabilities over speech inputs overlayed with non-
verbal audio.
Qwen-Audio. (Chu et al., 2023) Qwen fol-
lows a similar architecture to LTU, Pengi, and
SALMONN, i.e., adding audio features as prefix
to the model, and additionally employs a novel
multi-task learning formulation for pre-training.
More specifically, they append specific tags to spe-
cific parts of the instruction-response text pairs and
train the model on diverse speech, non-speech, and
music tasks. Post-pre-training, similar to GAMA,
employs an instruction-tuning stage for alignment.
The resultant model, Qwen-Audio-Chat, is able
to respond to respond to diverse queries about the
input speech and audio.

G Additional Details: CompA-R

G.1 Annotation and Annotator Details
As mentioned earlier, CompA-R was cleaned and
CompA-R-test was verified by the paper authors
themselves. To preserve anonymity, we briefly pro-
vide some details about the authors. All authors
of the paper are either enrolled in or have gradu-
ated from a graduate degree (MS and/or Ph.D.).
All authors have at least 2 years of professional
research experience at a academic or industry lab.
Their research experience spans across speech, au-
dio and language processing. This provides them
with adequate knowledge to faithfully complete the
process.

For CompA-R-test verification, after at least 3
authors verified the test set, with proper rationales
(which they were also asked to provide) the lead

author cross-verified all instances. The verification
was done manually on local laptops and no kind of
application was used which was made specifically
for this. More details will be provided on camera-
ready.

H Additional Details: General

H.1 GAMA Training Dataset Details

Table 5 shows statistics of all datasets used for fine-
tuning and instruction-tuning GAMA. Table 6 shows
statistics of CompA-R, which is sourced entirely
from the AudioSet-Strong dataset.

Dataset # Audio Samples # QA Pairs

AudioSet-Strong 102K 636K
AudioSet 500K 441K
VGGSound 184K 336K
FSD50K 41K 82K
AudioCaps 46K 90K
FreeSound 91K 91K
Clotho 5K 32K
Sound Bible 1.2K 12K
NSynth(Instrument+Source) 301K 602K
Clotho AQA 1.5K 4.2K
MusicCaps 5.5K 2.8K
MusicQA 13.1K 118k
Magna 51.7K 51.7K
Sum (Closed-Ended) 1,217K 2,555K

AudioSet-Strong (Open-Ended) 91K 901K
AudioSet-20K 19K 184K
VGGSound (Open-Ended) 184K 907K
FSD50K (Open-Ended) 41K 403K
AudioCaps (Open-Ended) 46K 478K
Freesound (Open-Ended) 91K 791K
Clotho (Open-Ended) 5K 89K
Sound Bible (Open-Ended) 1.2K 10K
Sum (Open-Ended) 453K 3,764K

Total 1,670K 6,319K

Table 5: The statistics of the OpenAQA dataset.

Dataset # Audio Samples # QA Pairs

AudioSet-Strong 62119 198648

Total 62119 198648

Table 6: The statistics of the CompA-R dataset.

H.2 GAMA Evaluation Dataset Details

Table 7 shows statistics of all datasets used for
evaluating GAMA. Table 9 shows statistics of
CompA-R-test, which is sourced entirely from the
AudioSet-Strong dataset.

1https://www.kaggle.com/datasets/modaresimr/sound-
event-detection-audioset-strong

2https://zenodo.org/records/4060432
3https://www.tensorflow.org/datasets/catalog/nsynth
4https://zenodo.org/records/6473207
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Dataset # Instances

AudioSet-Strong 17 102K
AudioSet 500K
VGGSound 184K
FSD50K 18 41K
AudioCaps 46K
FreeSound 91K
Clotho 5K
Sound Bible 1.2K
NSynthinstrument

19 4K
NSynthsource

20 4K
Clotho AQA 21 1.3K
GTZAN 3K
Medley-solos-DB 12.2K

Table 7: The statistics of the datasets used for evaluation
of GAMA.

Dataset Evaluation Metric

Classification (zero-shot)
VocalSound (VS) (Gong et al., 2022) Acc.
TUT 2017 (TUT) (Mesaros et al., 2018) Acc.
Beijing Opera (BJO) (Tian et al., 2014) Acc.
GTZAN (GTZ) (Park et al., 2022) Acc.
Medley-solos-DB (MDB) (Lostanlen et al., 2018) Acc.
Classification (weak zero-shot)
DCASE2017 Task 4 (DCASE) (Mesaros et al., 2017) Mi-F1
ESC-50 (Piczak, 2015) Acc.
Classification (seen)
VGGSound (VGG) (Chen et al., 2020) Acc.
FSD50K (FSD) (Fonseca et al., 2021) mAP
AudioSet (AS) (Gemmeke et al., 2017) mAP
NSynth (NS) (Engel et al., 2017) Acc.
Captioning (vanilla & dense)
AudioCaps (Kim et al., 2019) SPICE & Human
Clotho (Drossos et al., 2020) SPICE & Human
AQA (close-ended)
Clotho AQA (Lipping et al., 2022) Acc.
AQA (open-ended)
OpenAQA (Gong et al., 2024) Human
AQA (complex open-ended)
CompA-R-test (ours) GPT-4 & Human

Table 8: List of evaluation datasets and their corresponding
evaluation metrics for GAMA.

H.3 Other Details

Model Parameters: GAMA has a total of ≈7B
parameters. Out of this, LLaMA-2-7B has 32
transformer-encoder layers and ≈6.7B parameters,
the Audio Q-Former has ≈280M parameters, and
our LoRA modules introduce 4.2 M learnable pa-
rameters for fine-tuning. The AST used in our
experiments (audio-encoder of CAV-MAE (Gong
et al., 2023)) has ≈ 85M parameters with 12
transformer-encoder layers, 768-hidden-state, and
12 attention-heads.

Compute Infrastructure: All our experiments are
conducted on four NVIDIA A6000 GPUs. Training
GAMA required four days of continuous training.
Training GAMA-IT requires 4 hours of training.
Pre-training Audio Q-Former requires 7 days each
for stages 1 and 2.

Dataset # Audio Samples # QA Pairs

CompA-R-test 500 1561

Total 500 1561

Table 9: The statistics of the CompA-R-test dataset.

Implementation Software and Packages: We im-
plement all our models in PyTorch 22 and use the
HuggingFace 23 implementations of T5large and the
original implementation of HTSATtiny

24.
For our baselines, we use the original

GitHub repository provided by the authors:
LAION-CLAP 25, CompA-CLAP 26, CLAP 27,
Wav2CLIP 28, AudioCLIP 29, MMT 30, ML-
ACT 31, Pengi 32, LTU 33, AudioGPT 34,
SALMONN 35, Qwen-Audio 36.
Potential Risks. GAMA might encode biases from
the pre-trained LLM or during its fine-tuning stage.
Additionally, Audio Q-Former used as a backbone
for audio-to-text/music generation, might generate
synthetic audio that is misused.

22https://pytorch.org/
23https://huggingface.co/
24https://github.com/RetroCirce/HTS-Audio-Transformer
25https://github.com/LAION-AI/CLAP/tree/main
26https://github.com/Sreyan88/CompA
27https://github.com/microsoft/CLAP
28https://github.com/descriptinc/lyrebird-wav2clip
29https://github.com/AndreyGuzhov/AudioCLIP
30https://github.com/akoepke/audio-retrieval-benchmark
31https://github.com/akoepke/audio-retrieval-benchmark
32https://github.com/microsoft/pengi
33https://github.com/YuanGongND/ltu
34https://github.com/aigc-audio/audiogpt
35https://github.com/bytedance/salmonn
36https://github.com/QwenLM/Qwen-Audio
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# Prompt 1

I will provide you with 2 different types of information about a 10-second audio clip:

1. A list where each comma-separated element indicates the individual events occurring in the audio at various time segments. For example, '(Speech-
0.0-0.64)' would mean human speech between 0.0 second to 0.64 second.
2. A caption of the audio describing in a brief and abstract manner the scene in which the audio takes place.

I want you to act as a Prompt Generator. According to the event information and the caption, design some instructions and corresponding responses. The
instruction should be designed in a way such that it can be answered only from the audio without the caption and any other detail provided. The
instruction should involve one or more hops of complex knowledge and complex reasoning based on the scene created by the audio and the correspnding
caption. Ensure that the knowledge and reasoning chains in the instructions are precise and sufficiently challenging, to the extent that only well-
educated people and experts in the respective field can provide adequate responses.

The instructions must meet the following conditions:
1. Do NOT use phrases like 'according to the caption' in both the questions and answers; you should ask and answer as if you were observing the image
by yourself.
2. The questions and answers should be as diverse as possible.
3. Please don't ask some simple questions about the intensity of the audio or the gender speaking the utterance; your questions must involve some
knowledge.
4. Your instructions should not be answered directly based on the image and your instructions. Instead, it requires the test-taker to carefully observe
the image and have a deep knowledge of the content within the image in order to answer correctly.
5. If a question cannot be answered, please do not ask.

Come up with 3 diverse instructions for the knowledge topics above with different language styles and accurate answers. The instructions should contain
interrogative sentences and declarative sentences. The answers should be less than 30 words.

Output format, which is a list of jsons:

[{'Instruction': instruction example, 'Answer': answer example, 'Knowledge topic': The specific knowledge topic}, {'Instruction': instruction example,
'Answer': answer example, 'Knowledge topic': The specific knowledge topic}, …]
Here are some examples of inputs and outputs:

Input list of audio events: ['(Speech-0.0-0.64)', '(Mechanisms-0.0-10.0)', '(Dog-0.221-0.547)', '(Dog-0.803-0.966)', '(Generic impact sounds-0.885-
1.129)', '(Tick-0.99-1.083)', '(Dog-1.432-1.665)', '(Speech-1.537-4.901)', '(Dog-1.921-2.119)', '(Dog-2.456-3.202)', '(Dog-3.434-3.597)', '(Dog-4.016-
4.121)', '(Dog-4.936-5.39)', '(Generic impact sounds-5.204-5.611)', '(Dog-5.774-5.972)', '(Speech-5.984-6.787)', '(Tick-6.508-6.636)', '(Dog-6.717-
8.266)', '(Generic impact sounds-7.649-8.277)', '(Laughter-8.347-9.488)', '(Dog-9.767-10.0)']
Caption: A baby cries while a woman laughs, creating a joyful and lively atmosphere in a domestic setting.

Output list of jsons: [{'Instruction': 'Analyze the sounds in the audio and determine the most likely cause of the laughter heard towards the end of
the recording. Consider the potential interactions between the different sound sources and their temporal overlaps.' , 'Answer': 'The laughter likely
results from the playful interaction between the dogs and the baby, as indicated by the overlapping sounds of dogs and the baby's presence.',
'Knowledge topic': 'Human and Animal Behavior Interpretation'}, {'Instruction': 'From the given audio, infer the type of domestic setting depicted in
the scene. Base your inference on the variety and sequence of sounds, particularly focusing on the interaction between the human speaking, the dog
barking, and other background noises that may be there.', 'Answer': 'The setting is likely a home with an active family environment, evidenced by the
continuous presence of dogs, speech, and everyday household sounds.', 'Knowledge topic': 'Environmental Acoustics and Domestic Soundscapes'},
{'Instruction': 'Considering the duration and placement of speech and laughter in the audio, infer the possible emotional dynamics between the
speakers. How do these elements interact to shape the scene's atmosphere?', 'Answer': 'The scene likely transitions from a more chaotic or lively mood
and finally to a more joyful and relaxed atmosphere.'}]

Input list of audio events: ['(Insect-0.0-0.724)', '(Mechanisms-0.0-9.777)', '(Female speech, woman speaking-0.737-1.434)', '(Bird vocalization, bird
call, bird song-1.243-1.775)', '(Insect-2.376-3.182)', '(Female speech, woman speaking-3.386-3.509)', '(Insect-4.397-5.23)', '(Dog-7.906-8.78)',
'(Surface contact-8.603-9.654)']
Caption: 'Birds chirp in the distance as a dog barks, creating a lively atmosphere in a peaceful outdoor setting.'
Output list of jsons: [{'Instruction': 'What time of day this scene is likely set in?.' , 'Answer': 'The concurrent presence of insect and bird sounds
suggests a natural, outdoor environment, possibly during early morning or evening when such wildlife is typically active.', 'Knowledge topic':
'Environmental Sound Analysis and Wildlife Behavior'}, {'Instruction': 'Analyze the presence and timing of the dog's barking in the latter part of the
audio. Considering the preceding sounds and infer the dog's possible reaction or behavior in this context.', 'Answer': 'The dog's barking following the
peaceful nature sounds and speech could indicate a response to a new stimulus, possibly a visitor or an animal in the area.', 'Knowledge topic':
'Animal Behavior Analysis in Diverse Sound Environments'}, {'Instruction': 'Deduce the woman's likely activity or purpose in this setting.', 'Answer':
'The woman might be engaging in an outdoor activity like gardening or bird-watching.','Knowledge topic': 'Human activity recognition through scene
analysis' }]

Input list of audio events: ['(Music-0.0-10.0)', '(Male singing-0.0-10.0)', '(Male speech, man speaking-0.354-1.364)', '(Male speech, man speaking-
7.674-10.0)', '(Crowd-7.681-10.0)']
Caption: 'A basketball bounces while music plays, and a man speaks in an indoor stage environment.'
Output list of jsons:  [{'Instruction': 'Considering the presence of crowd sounds towards the end of the audio, deduce the nature of the event taking
place. How do the elements of music, singing, and speech suggest the type of event and audience involvement?', 'Answer': 'The event seems to be a live
performance or concert, with the crowd's reaction indicating an engaged and responsive audience, typical in such settings.', 'Knowledge topic': 'Event
Atmosphere Analysis'}, {'Instruction': 'Given the continuous presence of music and male singing throughout the audio, analyze the role of the man's
speech in shaping the atmosphere of the scene. How does his speech, interspersed with music and singing, contribute to the overall environment?',
'Answer': 'The man's speech likely serves as commentary or narration, adding a personal or interactive element to the musical performance, enhancing
the audience's engagement.', 'Knowledge topic': 'Music and Speech Dynamics'}, {'Instruction': 'Identify the genre of music being played and explain how
it complements the atmosphere of the indoor stage environment.', 'Answer': 'The genre is likely upbeat or energetic, enhancing the lively ambiance of a
sports or performance event in an indoor setting.','Knowledge topic': 'Music Genre Detection and Scene Analysis'}]

Input list of audio events: {timestamp events}
Caption: {caption}
Output list of jsons:

Figure 5: Prompts/Instructions used for caption augmentation with LLaMa-7B. Prompts are indexed according to the description
in Section 3.2.
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Complex AQA Evaluation Prompt

Please act as an impartial judge and evaluate the quality of the response provided with respect
to the details provided. You will rate the quality of the response on multiple aspects, such as
Helpfulness, Clarity, Factuality, Depth and Engagement. The response has been provided by an AI
agent for a query related to an input audio, which the agent can perceive. You will be provided
with 4 kinds of information for evaluating the response:
1. A list where each comma-separated element indicates the individual events occurring in the
audio at various time segments. For example, '(Speech-0.0-0.64)' would mean human speech
between 0.0 second to 0.64 second.
2. A caption of the audio describing in a brief and abstract manner the scene in which the
audio takes place.
3. The question asked to the AI agent related to the audio.
4.An answer provided by an expert judge which you can consider as a reference.
5. An answer by the AI agent. 

##Query: {query}

## Evaluate
### Aspects  
- Helpfulness: Rate the response based on how well it addresses the users query about the audio
and provides a relevant answer. A score of 5 indicates the answer fully aids the user, while a
1 suggests it offers little to no help. 
- Clarity: Rate the response based on how well-structured it is, with ideas presented in a
clear and coherent manner. A high score of 5 means the answer is clear and logically
structured, while a 1 suggests a disjointed or confusing reply.
 - Correctness: Evaluate the correctness or accuracy of the response provided with respect to
the information provided to you. A perfect 5 indicates the response is entirely correct and
accurate, while a 1 suggests it has significant errors or has not provided an answer to the
question asked at all.
 - Depth: Determine the level of detail and thoroughness in the response. A score of 5 means
the answer delves deeply into the aspects of the input image for answering the question, while
a 1 indicates it barely scratches the surface. 

### Format
### Given the query and the extra information about the audio provided (the caption and comma-
separated list of individual individual events), please rate the quality of the output by
scoring it from 1 to 5, individually on **each aspect**. You are allowed to use all 3
information provided to you about the audio, in any way you want, to judge the response. 

Now, please output your scores in the following json format by filling in the placeholders in
[]. 
  { 'helpfulness': { 'reason': '[your rationale]', 'score': '[score from 1 to 5]' }, 'clarity':
{ 'reason': '[your rationale]', 'score': '[score from 1 to 5]' }, 'correctness': { 'reason':
'[your rationale]', 'score': '[score from 1 to 5]' }, 'depth': { 'reason': '[your rationale]',
'score': '[score from 1 to 5]' }, 'engagement': { 'reason': '[your rationale]', 'score':
'[score from 1 to 5]' } } 

Only return the json and nothing else."

Figure 6: Prompts/Instructions used for evaluating the answers of models on CompA-R benchmark with GPT-4 as a judge.

Caption Evaluation Prompt

I want you to act as a Caption Evaluator. I will provide you with an audio caption generated by
an AI agent. The agent was asked to generate a dense and detailed caption of the audio. To
evaluate the caption, I will provide you with 2 different types of information about the 10-
second audio clip:

1. A list where each comma-separated element indicates the individual events occurring in the
audio at various time segments. For example, '(Speech-0.0-0.64)' would mean human speech
between 0.0 second to 0.64 second.
2. A scene caption of the audio describing in a brief and abstract manner the scene in which
the audio takes place. Using these two pieces of information, assign a score of 1-10 to the
caption, where 1 is the lowest score and 10 is the highest score. Your evaluation should be
based on the detailedness, correctness, and bluntness of the caption. Return a JSON with a
single key 'score', where the value of the key is the score. Here are the details: {query}

Figure 7: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.
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The man is likely giving instructions to passengers or announcing a station stop. He may also be explaining the
train's route or destination.

Question: Based on the combination of subway sounds and male speech, suggest the actions the man might
be performing at this time.

The man may be giving a lecture or presentation in the subway car while people are moving around him,
possibly taking notes.

It is difficult to determine the exact actions the man might be performing based solely on the combination of
subway sounds and male speech. However, it is possible that the man is giving a public announcement or
warning to the passengers on the subway.
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Figure 8: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.

The woman is likely bathing her child, as indicated by the sound of a bathtub filling up with water.

Question: Given the variety of sounds including mechanisms, generic impact sounds, and water splashes,
determine the most probable activity occurring during the audio clip. Consider the presence of baby laughter
in your analysis.

The most probable activity occurring during the audio clip is a family or group of people having fun together,
possibly playing with babies or toddlers. The mechanical sounds could be from a playground or other outdoor
equipment.

Based on the variety of sounds including mechanisms, generic impact sounds, and water splashes, as well as
the presence of baby laughter, the most probable activity occurring during the audio clip is likely a bath or a
water-related activity.
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Figure 9: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.

6306



The tap dancing is likely performed by a professional or an expert. The rhythm and tempo are consistent
throughout the entire duration of the clip.

Question: Inferring from the nature and arrangement of sounds, what can be said about the skill level of the
tap dancer?

The skill level of the tap dancer cannot be inferred from the audio clip.

The skill level of the tap dancer can be inferred from the nature and arrangement of sounds. If the sounds are
complex and intricate, it suggests that the dancer is highly skilled. On the other hand, if the sounds are simple
and repetitive, it suggests that the dancer may not be as skilled.
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Figure 10: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.

The sound is a drill, which is usually used for woodwork.

Question: Determine the type of power tool being used in this woodworking process based on the available
sounds. Consider the mechanisms sounds.

Based on the available sounds, it is difficult to determine the exact type of power tool being used. However,
the sharp and metallic sound suggests that a circular saw or a hand drill might be present in the scene.

Based on the available sounds, it is likely that a circular saw is being used in this woodworking process. The
circular saw is a power tool that uses a spinning circular blade to cut wood, and the sound of the blade cutting
through the wood can be heard in the audio. Additionally, the sound of the motor and other mechanisms of
the circular saw can also be heard in the audio.
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Figure 11: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.
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The truck is probably a diesel, as indicated by the heavy engine sounds and the absence of a typical gasoline
engine's characteristic high-pitched whine at idle.

Question: Analyze the audio and infer the likely engine type based on the sound of acceleration and revving.

Based on the sound of acceleration and revving, it is likely that the engine type is a high-performance or
sports car engine.

The audio contains the sound of an engine revving and accelerating. Based on this, it is likely that the engine
type is a high-performance gasoline engine, such as a V8 or a turbocharged four-cylinder. The sound of the
engine revving and accelerating is a common characteristic of high-performance engines, which are designed
to produce a lot of power and torque. The sound of the engine can vary depending on the specific make and
model of the vehicle, but the general characteristics of a high-performance engine can be identified by the
sound of the engine revving and accelerating.
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Figure 12: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.
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Dataset Category Acoustic Property Captions

AudioSet Baby cry,
infant cry

1: "a high-pitched, piercing wail"
2: "a persistent, rhythmic sobbing"

1. A tiny voice pierced the stillness of the night, demanding attention with its high-pitched piercing wail.
1. In the midst of the bustling market, a high-pitched wail rose above the chatter, signaling a tiny dissenter among
us.
2. The persistent, rhythmic sobbing of a newborn punctuates the night’s silence.
2. Amidst the rustling leaves, a baby’s rhythmic sobs weave an unexpected lullaby.

Stomach
rumble

1: "a low, gurgling growl"
2: "a grumbling undercurrent"

1. As she leaned in for the kiss, a low, gurgling growl betrayed her pre-date fasting.
1. In the midst of the exam, a low, gurgling growl echoed from her stomach, punctuating the tension.
2. As the classroom fell into a hushed anticipation of the next lecture, a grumbling undercurrent betrayed the
student’s skipped breakfast.
2. Amidst the solemnity of the library, a grumbling undercurrent served as a comical reminder of lunchtime’s
approach.

ESCC50 siren 1: "Continuous, shrill alarm"
2: "Ear-splitting, cyclic blare"

1. The night was pierced by the continuous, shrill alarm of the siren, signaling an urgency that couldn’t be ignored.
1. The relentless, shrill alarm of the siren wove through the corridors of the hospital, prompting swift movements
from the staff.
2. The ear-splitting, cyclic blare cut through the night as the ambulance raced down the street.
2. The ear-splitting, cyclic blare of the air raid siren cast a shadow of dread over the city.

sheep 1: "bleating",
2: "baaing"

1. In the tranquil meadow, a chorus of woolly creatures serenaded the dawn with their gentle bleating.
1. The shepherd smiled as the flock’s bleating echoed through the valley, signaling a return to the fold.
2. A chorus of baaing accompanied the farmer as he made his morning rounds in the misty fields.
2. Under the starry sky, the gentle baaing of the flock blended with the whispers of the night.

NSynth flute

1: "Melodious and silvery, carrying a
light, airy tune that seems to float on
the breeze.",
2: "Clear and resonant, with a pure
tone that sings above the orchestra like
a bird in the morning sky.

1. The flute’s melody weaved through the garden, mingling with the rustle of leaves.
1. Amidst the hustle of the market, the silvery flute tune danced above the clamor, a ribbon of tranquility.
2. The flute’s crystalline melody soared above the orchestra, a lark greeting the dawn.
2. Amidst the rustle of the forest, the flute’s song danced through the leaves, pure and high.

bass

1: "Thumping, providing a rhythmic
pulse that can drive the beat of mu-
sic.",
2: "Booming, with a powerful, per-
vasive quality that can reverberate
through a space."

1. The bass pulsated through the dance floor, a heartbeat synchronizing every dancer’s move.
1. Amidst the serene silence of the night, the bass from the distant festival throbbed like a gentle earthquake.
2. The bass pulsated like a second heartbeat, filling the room with its unyielding presence.
2. As the bassline dropped, it seemed to command the very air, a force unseen yet unforgotten.

FSD50K Slam

1: "an abrupt, resonant boom that star-
tles anyone nearby"
2: "a sharp, impactful smack as two
hard surfaces collide with force"

1. The mailbox lid clapped shut, a resonant signal marking the departure of the day’s correspondence.
1. The oven door’s heavy thud resonated in the kitchen, a prelude to the aroma of freshly baked bread.
2. The kitchen was filled with the aroma of spices and the sharp smack of dough being forcefully thrown onto the
countertop.
2. In the crisp morning air, the sharp smack of the newspaper hitting the doorstep announced the arrival of daily
news.

Dishes,
pots, and
pans

1: "Clanging and clattering"
2: "Metallic clinking and clunking"

1. A symphony of clanging and clattering announces the busy bustle of a restaurant kitchen in full swing.
1. The rhythmic clanging and clattering of pots and pans punctuate the air as grandma orchestrates her holiday feast.
2. The metallic clinking and clunking heralded the start of the dinner rush in the bustling restaurant kitchen.
2. A symphony of metallic clinking and clunking rose from the sink as grandma washed up after the family feast.

TUT Ur-
ban

bus 1: "a deep, rumbling engine", "2": "the
low, steady hum of the diesel motor"

1.The city pulse beats with a deep, rumbling engine, heralding the arrival of the morning commute.
1. A gentle giant purrs in the stillness of dawn, its deep, rumbling engine announcing the start of a journey.
2. Market stalls buzz with life, their vibrant colors and smells underscored by the bus’s diesel hum rolling down the
avenue.
2. Leaves rustle in the autumn breeze, a natural chorus to the bus’s diesel motor humming along the cobblestone
path.

residential
area

1: "The symphony of children’s laugh-
ter and chatter fills the air, punctuated
by the occasional bark of a dog and the
hum of lawn mowers in the distance."
2: "A serene hush blankets the neigh-
borhood, broken occasionally by the
soft whoosh of passing cars and the
rustle of leaves stirred by a gentle
breeze.",

1. The neighborhood comes alive with the melody of playful banter and the sporadic chorus of canines.
1. Amidst the gentle drone of distant lawn mowers, the air vibrates with juvenile mirth and convivial exchanges.
2. The neighborhood rests under a tranquil silence, punctuated now and then by the whisper of tires on asphalt and
the soft dance of leaves in the wind.
2. Calmness envelops the streets, save for the faint hum of vehicles gliding by and the tender shuffling of foliage in
the zephyr’s caress.

Urban-
Sound
8K

air condi-
tioner

1: "a steady humming"
2: "a low, monotonous droning"

1. The room filled with the steady humming of the air conditioner as they focused intently on their chess match.
1. A steady humming enveloped the library, where pages turned almost in rhythm with the air conditioning’s
constant song.
2. The air conditioner’s low, monotonous droning became the unlikely lullaby for a midsummer’s nap.
2. Amid the quiet study hall, the air conditioner’s low, monotonous droning was a steady companion to the students’
focused brows.

gun shot

1: "A loud, sharp crack that echoes
through the air.
2: "A thunderous boom that startles
and reverberates."

1. The night’s silence shattered with a loud, sharp crack echoing through the air.
1. A burst of sudden, sharp noise split the tranquil afternoon, reverberating off the canyon walls.
2. A thunderous boom startles a flock of birds into the sky, their wings flapping frantically against the silence that
had just been.
2. The night’s silence was shattered by a boom, reverberating through the alleyways and causing stray cats to scurry.

VGG
Sound

mouse
squeak-
ing

1: "a high-pitched, sharp chirp"
2: "a soft, repetitive squeal"

1. In the moonlit barn, a tiny silhouette pauses to release its high-pitched, sharp chirp, disturbing the stillness of the
hay-strewn loft.
2. Amidst the rustling leaves, a diminutive creature contributes its sharp chirp to the dusk chorus, a minuscule
soloist in nature’s vast orchestra.
3. A soft, repetitive squeal punctuated the silence of the old attic.
4. The cheese plate on the kitchen counter became the stage for a soft, repetitive squeal.

typing
on type-
writer

1: "a rhythmic series of sharp clicks"
2: "a steady clatter of keys striking
paper"

1. Fingers dance across keys, a rhythmic series of sharp clicks punctuating the silence of the library.
1. In the attic, a story unfolds to the staccato beat of a rhythmic series of sharp clicks.
2. Each steady clatter of keys striking paper weaves a tapestry of words, painting stories on the blank canvas.
2. In the dimly lit corner of the library, the rhythmic dance of metallic hammers against the page composes a silent
symphony.

Table 10: Examples of prompt augmentations.
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Original Caption Augmented caption

A man speaks followed by the sound of shuffling cards in a
small room.

1. A deep, resonant voice fills the small room, accompanied by the soft shuffle of cards as they change hands,
creating an intimate and deliberate atmosphere.
2. The sound of a man’s voice echoes through the small space, punctuated by the subtle rustle of cards as they are
shuffled and arranged, invoking a sense of purposeful deliberation.
3. A deep voice speaks, followed by the subtle shuffle of cards, creating an intimate and anticipatory atmosphere in
the small room.
4. The gentle rustle of cards breaks the silence, punctuated by a man’s voice, evoking a sense of anticipation and
private reflection in the cozy space.

A person strums an acoustic guitar, creating melodic music with
the sound of a bell ringing in the background.

1. Soothing melodies flow from the acoustic guitar, harmonizing with the soft chime of a distant bell, crafting a
peaceful ambiance.
2. The acoustic guitar’s strings vibrate with grace, weaving a melodic tapestry that intertwines with the gentle ring
of a bell, transporting the listener to a serene realm.
3. The gentle strumming of an acoustic guitar weaves a melodic tapestry, intertwined with the soft chime of a
background bell, creating a soothing and harmonious atmosphere.
4. The rhythmic plucking of an acoustic guitar crafts a lively and uplifting melody, complemented by the delicate
ringing of a background bell, transporting the listener to a serene and joyful realm.

Dogs bark while people talk in the background, creating a lively
atmosphere in a field.

1. Lively chatter and joyful barks fill the air, capturing the playful spirit of a sunny day in a field.
2. The rhythmic sounds of dogs barking and people talking blend together, creating a vibrant and lively ambiance in
the open field.
3. The chatter of people and the joyful barks of dogs fill the air, creating a vibrant and lively atmosphere in the field.
4. The sound of playful dogs and lively conversation fills the field, evoking a sense of happiness and energy.

A man’s voice is heard speaking over a radio as a vehicle passes
by in the background.

1. A clear, crisp voice pierces the airwaves, intertwining with the distant hum of a vehicle, creating an engaging
audio experience.
2. The man’s voice on the radio blends seamlessly with the subtle rumble of a passing vehicle, forming a captivating
auditory tapestry.
3. A voiceover speaks over a radio, complemented by the distant hum of a vehicle passing by, creating a dynamic
and engaging audio experience.
4. A man’s voice broadcasts over the radio, intertwining with the subtle rumble of a vehicle in the background,
forming a captivating audio landscape.

A woman speaks while a bird chirps in the background, creating
a tranquil atmosphere in a natural setting.

1. A gentle voice echoes through the forest, harmonizing with the chirping of birds, creating a soothing ambiance.
2. The sound of a gentle voice blends seamlessly with the melodic chirping of birds, transporting the listener to a
serene natural setting.
3. The woman’s gentle voice blends with the soothing chirps of a bird, creating a serene ambiance reminiscent of a
peaceful afternoon in nature.
4. The woman’s words are accompanied by the melodic chirping of a bird, transporting the listener to a calming and
picturesque outdoor setting.

Water rushes as people talk in the background near a hot spring,
creating a serene ambiance.

1. Soothing waters create a peaceful ambiance, punctuated by the gentle chatter of people nearby, as if they are
harmonizing with the soothing sounds of the hot spring.
2. The calm trickle of water creates an intimate atmosphere, with the soft murmur of voices in the background
adding a sense of connection and tranquility to the space.
3. A soothing, babbling sound fills the air as people converse near a steaming hot spring, creating a tranquil
atmosphere.
4. The gentle gurgling of water intertwines with the chatter of people in the background, crafting a peaceful and
relaxing ambiance.

Soft music plays in the background as a speech is heard faintly,
creating a calm and peaceful atmosphere.

1. A soothing melody floats in the background, complementing the faint speech, creating a tranquil ambiance.
2. The soft strains of music blend with the subtle speech, fostering a sense of serenity and calmness in the
atmosphere.
3. Soothing tunes fill the air, complemented by a gentle speech, creating an atmosphere of tranquility and serenity.
4. Mellow music and soft speech blend together, crafting a calming environment that soothes the senses.’

A car engine revs up and then slows down, creating a vroom
sound, as the vehicle accelerates in the audio.

1. The car’s engine purrs and then decelerates, emitting a smooth and powerful vroom sound as it shifts gears,
creating a dynamic and energizing atmosphere.
2. The vehicle’s engine roars to life, producing a bold and intense vroom sound as it speeds up, then gradually slows
down, immersing the listener in a thrilling and exhilarating experience.
3. The car’s engine purrs powerfully, then decelerates, creating a smooth and steady vroom sound as the vehicle
gains speed.
4. The car’s engine roars to life, building momentum with a series of sharp vroom sounds before shifting gears and
slowing down.

Background music plays softly as the theme music gradually
fades in, creating a melodic ambiance in an arena/performance
setting.

1. The arena comes alive with a subtle, soothing melody that gradually builds in intensity, creating an electrifying
ambiance.
2. The soft strains of background music fill the air, setting the tone for an exhilarating performance in a vibrant
arena setting.
3. Soft, melodic strains fill the air as the theme music subtly builds, establishing a harmonious ambiance in the
arena.
4. The arena comes alive with a gentle, orchestral tune that gradually gains momentum, creating an uplifting and
energetic atmosphere.

Table 11: Examples of caption augmentations.
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Instruction-Response Pairs AudioSet ID Caption Timestamp Events
Instruction:Analyze the audio to
understand the potential emotional
state or mood of the man. How
does the progression from typing to
speech to chewing reflect his tran-
sition through different phases of
work or activity? Output:The man
initially seems engaged and fo-
cused during the typing and speak-
ing portion, which might then tran-
sition into relaxation during the
break, suggested by the chewing
sound.

YCecEf0abd4Y A man speaks
while typing on
a keyboard in
a small room,
followed by the
sound of chew-
ing.

’(Generic impact sounds-0.0-1.037)’,
’(Background noise-0.0-10.0)’,
’(Generic impact sounds-1.191-
1.421)’, ’(Generic impact sounds-
2.01-2.202)’, ’(Generic impact
sounds-2.343-2.574)’, ’(Male
speech, man speaking-2.727-3.393)’,
’(Generic impact sounds-3.163-
3.406)’, ’(Generic impact sounds-
3.585-3.905)’, ’(Generic impact
sounds-4.136-4.379)’, ’(Breathing-
4.405-4.917)’, ’(Generic impact
sounds-4.93-5.288)’, ’(Generic im-
pact sounds-5.442-5.608)’, ’(Generic
impact sounds-5.736-6.12)’,
’(Generic impact sounds-6.274-
6.569)’, ’(Breathing-6.825-7.26)’,
’(Generic impact sounds-6.863-
7.042)’, ’(Male speech, man
speaking-7.81-8.873)’, ’(Generic
impact sounds-8.041-8.348)’,
’(Breathing-9.001-9.36)’, ’(Human
sounds-9.014-9.181)’, ’(Generic
impact sounds-9.309-9.565)’,
’(Scrape-9.449-10.0)’

Instruction:Considering the di-
verse array of sounds present in the
audio, from insects to birds to a
dog, infer the type of ecosystem
this outdoor setting might repre-
sent. What does the combination
of these sounds tell us about the
biodiversity and potential human
impact in this area? Output:The
ecosystem is likely a suburban or
rural area with a mix of wildlife
and human habitation, indicated by
the variety of animal sounds and
intermittent female speech.

YcQiEI7HLGJg Birds chirp in
the distance as
a dog barks, cre-
ating a lively
atmosphere in
a peaceful out-
door setting.

’(Insect-0.0-0.724)’, ’(Mechanisms-
0.0-9.777)’, ’(Female speech,
woman speaking-0.737-1.434)’,
’(Bird vocalization, bird call, bird
song-1.243-1.775)’, ’(Insect-2.376-
3.182)’, ’(Female speech, woman
speaking-3.386-3.509)’, ’(Insect-
4.397-5.23)’, ’(Dog-7.906-8.78)’,
’(Surface contact-8.603-9.654)’

Instruction:Given the presence of
mechanisms throughout the audio
and the interspersed generic impact
sounds, infer the type of machinery
that is likely operating in the back-
ground and its commonality in an
office environment. Output:The
continuous mechanism sound sug-
gests a printer or copier, which are
common in office settings.

YXQ2XAXx7mKs A printer hums
while people
converse in the
background,
creating a
typical office
ambiance.

’(Generic impact sounds-0.0-0.622)’,
’(Mechanisms-0.0-10.0)’, ’(Generic
impact sounds-0.815-1.227)’,
’(Generic impact sounds-1.632-
2.134)’, ’(Child speech, kid
speaking-3.591-6.684)’, ’(Squeal-
7.385-7.612)’, ’(Child speech, kid
speaking-8.437-10.0)’

Table 12: Examples of CompA-R
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Instruction:From the sequencing
and overlapping of different sound
events, infer the likely cause and
process of the dripping sounds
heard intermittently throughout
the audio. Output:The dripping
sounds may be a result of wa-
ter overflowing from a filled sink
or bath, supported by the earlier
sounds of splashing and liquid gur-
gling.

YCU9A5xL3TVc Water splashes
and gurgles as
it drips inside a
small room, cre-
ating a soothing
ambiance
reminiscent
of a tranquil
bathroom.

’(Background noise-0.0-10.0)’,
’(Generic impact sounds-0.083-
0.331)’, ’(Splash, splatter-0.67-
1.174)’, ’(Liquid-1.385-1.956)’,
’(Splash, splatter-2.325-3.138)’,
’(Liquid-3.085-4.131)’, ’(Liquid-
4.372-5.5)’, ’(Drip-4.949-5.047)’,
’(Drip-5.279-5.458)’, ’(Generic
impact sounds-8.819-9.142)’, ’(Drip-
9.511-9.649)’

Instruction:Assess the style and
elements of the rapping and mu-
sic in this audio clip. Based on
this, what genre of music might
the DJ be playing on stage? Out-
put: Given the presence of rap-
ping and electronic music, the DJ
is likely playing Hip Hop or Elec-
tronic Dance Music (EDM).

YRjUZjMPP-nA Electronic
music plays
as a whoosh
sound follows,
creating a lively
atmosphere
for the DJ
performing on
stage.

’(Rapping-0.0-0.376)’, ’(Music-0.0-
10.0)’, ’(Rapping-0.685-1.663)’,
’(Rapping-2.295-2.837)’, ’(Sound
effect-2.423-5.222)’, ’(Sound effect-
7.427-10.0)’

Table 13: Examples of CompA-R

Instruction-Response Pairs AudioSet ID Caption Timestamp Events
Instruction:Identify the role of
the crowd’s continuous conversa-
tion during the woman’s speech.
How does it contribute to the at-
mosphere of the scene? Output:
The crowd’s constant chatter indi-
cates an informal or relaxed envi-
ronment, suggesting that while the
woman’s speech is central, other
conversations are also ongoing in
the background.

Y6fRYeClf5U4 A woman de-
livers a speech
while a crowd
of people en-
gage in conver-
sation in an ur-
ban setting.

’(Crowd-0.0-10.0)’, ’(Wind-0.008-
10.0)’, ’(Female speech, woman
speaking-0.074-1.65)’, ’(Female
speech, woman speaking-2.879-
5.427)’, ’(Female speech, woman
speaking-5.604-6.083)’, ’(Female
speech, woman speaking-6.9-10.0)’

Instruction:Considering the pres-
ence of bird sounds and chainsaw
noise, identify the probable loca-
tion where this sound sequence is
occurring. Output:The location
is likely an outdoor area, possibly
in a woodland or suburban setting
where birds can be heard alongside
human activity and power tools.

YbkG4M4TiXZg A man speaks
while a power
tool revs up,
indicating a
speech event
followed by
the sound of a
chainsaw.

’(Male speech, man speaking-0.0-
0.268)’, ’(Chainsaw-0.0-10.0)’,
’(Male speech, man speaking-
1.772-4.425)’, ’(Male speech, man
speaking-5.008-8.118)’, ’(Bird
vocalization, bird call, bird song-
5.362-7.512)’, ’(Bird vocalization,
bird call, bird song-8.244-8.709)’,
’(Bird vocalization, bird call, bird
song-8.937-9.283)’, ’(Male speech,
man speaking-9.661-10.0)’

Table 14: Examples of CompA-R-test
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Instruction:Analyze the fre-
quency and consistency of the
ticking sound. What is the likely
source of this sound, and what
implication might it have on the
depicted setting? Output:The
steady ticking likely comes from a
clock, which coupled with the soft
music, suggests a relaxed, cozy
domestic setting, perhaps aimed at
unwinding or relaxation.

YCoBAR5Mbjys The clock ticks
steadily as soft
music plays in
the background,
creating a calm-
ing atmosphere
in a cozy living
room.

’(Mechanisms-0.0-10.0)’, ’(Alarm
clock-0.008-10.0)’, ’(Tick-0.386-
0.583)’, ’(Tick-1.071-1.22)’,
’(Tick-1.764-1.906)’, ’(Tick-2.465-
2.638)’, ’(Tick-3.197-3.331)’,
’(Tick-3.772-3.976)’, ’(Tick-4.346-
4.48)’, ’(Tick-4.646-4.787)’, ’(Tick-
5.087-5.22)’, ’(Tick-5.669-5.795)’,
’(Tick-6.031-6.15)’, ’(Tick-6.37-
6.528)’, ’(Tick-6.724-6.795)’,
’(Tick-6.969-7.118)’, ’(Tick-7.386-
7.614)’, ’(Tick-8.134-8.354)’,
’(Tick-8.882-9.094)’, ’(Tick-9.315-
9.425)’, ’(Tick-9.575-9.685)’

Instruction:Identify the type of vo-
cal music that is being depicted
in the audio based on the pres-
ence of singing and beatboxing.
Output:This audio resembles A
Capella, where voices imperson-
ate the sounds of instruments, in-
cluding rhythms often mimicked
through beatboxing.

Y6SvDRiIG2NY A group of peo-
ple sing and har-
monize, creat-
ing vocal music
with occasional
beatboxing, in a
room with a pi-
ano.

’(Male singing-0.0-6.594)’, ’(Music-
0.0-10.0)’, ’(Mechanisms-0.0-
10.0)’, ’(Breathing-7.064-8.314)’,
’(Breathing-8.911-10.0)’, ’(Male
singing-9.713-10.0)’

Instruction:Based on the audio,
ascertain the possible relationship
between the gunfire sounds, ar-
tillery fire, and music. How does
the sequencing and manner of
these sounds contribute to the at-
mosphere of the scene? Output:
The gunfire and artillery sounds
likely serve as a ceremonial dis-
play, with the music adding to the
grandeur and solemnity of a mili-
tary parade.

YbJvOp4gmHBg Gunshots and
artillery fire
echo through
the air as music
plays during a
military parade
at a raceway.

’(Music-0.0-10.0)’, ’(Generic
impact sounds-0.166-0.307)’, ’(Ar-
tillery fire-0.32-0.704)’, ’(Generic
impact sounds-0.781-0.948)’,
’(Generic impact sounds-1.063-
1.165)’, ’(Generic impact sounds-
1.524-1.677)’, ’(Generic impact
sounds-2.625-2.881)’, ’(Artillery
fire-3.035-3.521)’, ’(Generic impact
sounds-3.611-3.777)’, ’(Generic im-
pact sounds-4.213-4.43)’, ’(Generic
impact sounds-5.096-5.262)’,
’(Artillery fire-5.288-5.762)’,
’(Generic impact sounds-5.89-
6.095)’, ’(Generic impact sounds-
6.479-6.812)’, ’(Generic impact
sounds-6.94-7.106)’, ’(Artillery
fire-7.222-7.606)’, ’(Generic impact
sounds-8.207-8.425)’, ’(Artillery
fire-8.476-8.988)’, ’(Generic impact
sounds-9.206-9.385)’, ’(Generic
impact sounds-9.654-9.795)’

Table 15: Examples of CompA-R-test
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