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Abstract
Smaller-scale Vision-Language Models
(VLMs) often claim to perform on par
with larger models in general-domain visual
grounding and question-answering benchmarks
while offering advantages in computational
efficiency and storage. However, their ability
to handle rare objects, which fall into the long
tail of data distributions, is less understood. To
rigorously evaluate this aspect, we introduce
the "Uncontextualized Uncommon Objects"
(UOUO) benchmark. This benchmark focuses
on systematically testing VLMs with both
large and small parameter counts on rare
and specialized objects. Our comprehensive
analysis reveals that while smaller VLMs
maintain competitive performance on common
datasets, they significantly underperform on
tasks involving uncommon objects. We also
propose an advanced, scalable pipeline for
data collection and cleaning, ensuring the
UOUO benchmark provides high-quality,
challenging instances. These findings highlight
the need to consider long-tail distributions
when assessing the true capabilities of VLMs.
Code and project details for UOUO can be
found at https://zoezheng126.github.io/UOUO-
Website/.

1 Introduction

The advent of Vision-Language Models (VLMs)
has marked a revolutionary leap in the integration
of natural language processing and computer vi-
sion, largely due to the capabilities of the self-
attention mechanism and the Transformer archi-
tecture (Vaswani et al., 2023). These technolo-
gies allow VLMs to effectively process and fuse
information from both text and images, leading
to significant advancements in tasks that require
multimodal understanding, such as visual question
answering and image captioning (Radford et al.,
2021; Li et al., 2023; Alayrac et al., 2022; Xu et al.,
2023; Young et al., 2014).

VLMs, trained on large-scale datasets, typically
boast high performance on general tasks involving
everyday objects and common scenarios (Li et al.,
2024; Du et al., 2022; Wang et al., 2023). However,
models of smaller scale, defined here as having
fewer than 70 billion parameters, often claim to
match the capabilities of their larger counterparts
on general domain tasks (Lin et al., 2015; Agrawal
et al., 2016; Yu et al., 2016; Liu et al., 2024; Goyal
et al., 2017; Yu et al., 2023b) while offering ad-
vantages in computational efficiency and storage.
Despite these claims, the No-Free-Lunch Theorem
(Wolpert and Macready, 1997) suggests that these
smaller models may compromise on their ability
to handle less common or more complex scenarios
that lie in the long tail of data distributions.

One natural and intuitive hypothesis is that they
are sacrificing their fitness to the elements on the
long tail of the distribution. Empirical observations
of real-world data frequently align with Zipf’s and
Power Law (Piantadosi, 2014; Clauset et al., 2009),
which indicates that while some objects and con-
cepts are exceedingly common, a vast number of
them are rare and fall into the long tail of the dis-
tribution . Understanding how well VLMs handle
these rare and uncommon instances is crucial for
assessing their true robustness and applicability
across diverse and nuanced contexts.

Despite the importance of this evaluation, there
is currently a lack of dedicated benchmarks that
systematically test VLMs on objects and concepts
that are significantly outside the everyday norm.
To address this gap, we introduce the "Uncontextu-
alized Uncommon Objects" (UOUO) benchmark.
The object class distribution of UOUO is system-
atically out of common image sources such as Im-
ageNet (Russakovsky et al., 2015), COCO (Lin
et al., 2015), and Open Image Dataset (Kuznetsova
et al., 2020). Our goal is to rigorously test and
quantify the performance of both large-scale and
small-scale VLMs on elements from the long tail of
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Figure 1: UOUO Data Curation Pipeline. Snowflake means frozen weights, and fire means tune-able weights.

the distribution to showcase their knowledge gap.
The contribution of our work is three-fold. (1)

We compile a million-scale dataset specifically de-
signed to include uncommon and uncontextualized
objects, which are rarely encountered in everyday
contexts but are significant in specialized domains.
(2) We evaluate the performance gap between large-
scale and small-scale VLMs when dealing with
these rare elements, showcasing the significant
knowledge and performance gap between large-
and small-scale model on the long-tail distributions.
(3) We propose a systematic pipeline for automatic
and scalable data collection and cleaning, ensuring
high-quality and representative testing instances.

2 Related Work

Real-world VQA Benchmarks Based on our
survey, the typical real-world visual question an-
swering datasets (excluding mathematics, celebrity,
landmark, place, OCR and chart-reading) used in
popular open-source VLMs such as LLaVa (Li
et al., 2024), CogVLM (Wang et al., 2023) BLIP2
(Li et al., 2023), Qwen VL (Bai et al., 2023) and
MiniCPM-V (Yu et al., 2023a) includes the follow-
ing: COCO (Lin et al., 2015), RefCOCO (Yu et al.,
2016), NoCAPs (Agrawal et al., 2019), MMBench
(Liu et al., 2024), VQA-v2 (Goyal et al., 2017),
OK-VQA (Marino et al., 2019), MME (Fu et al.,
2024), GQA (Hudson and Manning, 2019).

Much to our surprise, it turns out that the im-
age sources of GQA, RefCoCo, OK-VQA, MME
Coarse-Grained Recognition, VQA-v2, and a sig-
nificant proportion of MMBench are all direct
random samples from COCO. Only NoCAPs fea-
tures novel object classes (sourced from the 600-
categories Open Image Dataset (Kuznetsova et al.,
2020) outside COCO’s less-than-100 common

classes. This showcases the significant limitation
of categorical diversity of extant VQA datasets.
The knowledge and performance gap between the
small- and large- scale VLMs might be concealed
in such low coverage and diversity.

Existing Datasets with Uncommon Object La-
bels In extant datasets, Stanford Cars (Krause
et al., 2013), CUB-bird (Wah et al., 2011), Deepfish
(Saleh et al., 2020), ROCOv2 (Rückert et al., 2024),
FGVC-Aircraft (Maji et al., 2013) also features rare
object labels. Some non-academic mine & stone
datasets, and chemical objects datasets can also be
found on internet. However, the typical emphasis
of these datasets is either fine-grained subtype or
subspecies of common objects, or domain-specific
expert knowledge. In realistic use cases such as
autonomous car or embodied robotics, such knowl-
edge might have limited generalizability.

3 Data Curation and Filtering

3.1 Domain Selection and Scraping

To construct the UOUO (Uncontextualized Uncom-
mon Objects) benchmark, we began by selecting
specific domains that are rich in specialized knowl-
edge yet contain objects and tools that are rarely
encountered by the general public. Our focus was
on the industry sector, given its diversity and the
presence of numerous specialized tools and equip-
ment. These artificial tools are significantly out
of the distribution of ImageNet, COCO, and Open
Image Dataset.

We used Wikipedia as a starting point, tar-
geting the page dedicated to manufacturing
(https://en.wikipedia.org/wiki/Manufacturing). For
each sub-sector identified within this domain, we
employed GPT-4-Turbo (OpenAI, 2024) to gener-
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ate a list of the top 50 objects or tools pertinent to
experts in the field but obscure to the general popu-
lace. This list was generated through prompt-based
querying, asking the model to identify objects that
are crucial within the industry but not commonly
known.

Once we had our list of uncommon objects, we
performed a Google Image Search for each object
name. For each query, we collected the top 50 im-
age results. This approach allowed us to gather
a diverse set of images representing each object
under different conditions and contexts. For de-
tailed dataset statistics of UOUO, we refer readers
to Appendix C.

Mannual Annotation The image instances col-
lected from Google Image Search can be noisy,
with perhaps one fifth irrelevant instances for each
queried uncommon category. To ensure the quality
and relevance of the dataset, we implemented a
rigorous annotation and cleaning process, combin-
ing manual and automated techniques. Our team
manually reviewed and annotated on a subset of
the collected categories of images to identify and
remove outliers and noisy data. Categories with
consistent visual representation across examples
were retained, while those filled with ambiguous or
irrelevant images were discarded. This initial cura-
tion aimed to maintain high fidelity to the object’s
intended representation. The instruction for man-
ual annotation of UOUO can be found in Appendix
B.

Automatic Data Cleaning We utilized the CLIP
model to further enhance the dataset. CLIP (Con-
trastive Language–Image Pre-training) provides
embeddings for both images and text, enabling
us to compute similarities within and across cat-
egories. For each image, we extracted its CLIP
image embedding Ec

i and the text embedding Tc

of its corresponding category name (Radford et al.,
2021; Sun et al., 2023). We calculated the cosine
similarity between all pairs of image embeddings
within each category to construct a GRAM matrix
G, where Gi,j = Cosine(Ec

i , E
c
j ). Additionally,

we computed the image-text similarity for each im-
age as Cosine(Ec

i , Tc), alongside statistical metrics
such as the percentile, mean, and variance of the
average similarity within each category.

The complete feature set includes image embed-
dings, GRAM percentiles (25th, 50th, and 75th),
GRAM mean and variance, the instance’s mean
similarity with other images, and the percentiles of
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Please provide the bounding box coordinate 
(x1,y1,x2,y2) of the road roller  in the image.

User

Figure 2: With MMD, we can retrieve harder negative
examples and construct higher-quality test instances.

its pairwise similarities. Additionally, it incorpo-
rates image-text similarity metrics, corresponding
percentiles, z-scores, and the instance label.

Using these computed features, we applied an
XGBoost classifier to label each image instance.
This classifier was trained on manually cleaned
data from 500 categories to distinguish between
high-quality and low-quality instances based on
their similarity scores.

We optimized our XGBoost classifier (Chen and
Guestrin, 2016) through 5-fold cross-validation and
grid search to identify the best hyperparameters.
The optimal configuration consisted of a maximum
tree depth of 6, 200 estimators, a learning rate of
0.15, a subsample ratio of 1.0, gamma value of 0.1,
and a colsample-bytree of 1.0. Additionally, the
regularization parameters included reg-lambda of
1.5 and reg-alpha of 0.0, with a minimum child
weight of 1.0.

The classifier achieved an accuracy of 0.8754 on
cross-validation, closely aligning with human judg-
ment, and exhibited Macro-Average Precision, Re-
call, and F1-Score of 0.8631, 0.8353, and 0.8460,
respectively.

4 Test Instances Generation

Background Removal and Decontextualization
Connectionist neural networks (including VLMs)
are notoriously known for their tendency of overfit-
ting to spurious correlations present in the training
data. For instance, in our collected data, bulldozers
are often seen in construction scenes laden with ma-
terials such as sand, concrete, and bricks. This high
co-occurrence can lead models to rely on these con-
textual cues rather than truly understanding and rec-
ognizing the bulldozer itself. To mitigate this issue
and ensure that models focus on the objects rather
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than their typical environments, we implement a
robust background removal process to decontextu-
alize all candidate objects in our dataset. To achieve
effective background removal, we utilize a state-
of-the-art, off-the-shelf background removal model
(BRIA-AI, 2024).

Testing Instances Generation To assess the
performance of Vision-Language Models on our
UOUO benchmark, we generated challenging test
instances designed to probe the models’ capabili-
ties beyond common knowledge. Specifically, we
employ the CLIP embeddings combined with the
Maximum Mean Discrepancy (MMD) with a Gaus-
sian RBF kernel (Dziugaite et al., 2015) to identify
and retrieve hard negative examples.

Let x and y be the sets of CLIP embeddings
for two different object categories, each of shape
(n, d), where n is the number of embeddings and d
is the embedding dimension.

The Maximum Mean Discrepancy (MMD) be-
tween sets of embeddings x and y is calculated as
follows:

MMD(x,y) = k(x,x) + k(y,y)− 2 · k(x,y)
where the Gaussian Radial Basis Function (RBF)

kernel value k(a,b) is defined as:

k(a,b) =
1

n2

n∑

i=1

n∑

j=1

exp

(
− 1

2σ2
∥ai − bj∥2

)

For our calculations, we set σ = 10.
We use the Mosaic Image Augmentation Tech-

nique (Ge et al., 2021) to generate testing data
in a scalable way. Each testing data point is cre-
ated from four images, each background-removed.
The four images contain objects of different cat-
egories but share some similar visual properties
such as structures, colors, or textures. The selec-
tion of these images is determined by the Maximum
Mean Discrepancy (MMD) distance between the
categories they belong to. The closer the MMD
distance, the more similar in features they might
appear. We create an 800x800 canvas large enough
to accommodate all four images. Then, each of the
four images is augmented and positioned on the
canvas’s top-left, top-right, bottom-left, or bottom-
right. The ground-truth bounding box for the ob-
ject grounding is generated from the segmentation
mask of background removal and normalized to
be dimension-insensitive, accounting for potential
differences in the VLM’s rescaling process. Figure
2 showcases an exemplar test instance.

Model mIoU-mmd mIoU-rand acc-mmd acc-rand
llava-v1.5-7b 0.18 0.41 0.42 0.70

llava-v1.5-13b 0.23 0.47 0.44 0.73
llava-v1.6-vicuna-7b 0.28 0.48 0.49 0.75
llava-v1.6-vicuna-13b 0.28 0.49 0.52 0.78

llava-v1.6-34b 0.38 0.55 0.57 0.83
cogvlm-llama3-chat-19b 0.49 0.69 0.43 0.60

gemini-1.5-pro 0.27 0.27 0.63 0.80
gpt-4-turbo 0.34 0.38 0.67 0.90

gpt-4o 0.33 0.35 0.68 0.88

Table 1: Mosaic Grounding Performance Metrics

5 Experiment

Procedures Following the aforementioned test
instance generation, we test both open source
VLMs that are trained to perform grounding, in-
cluding: llava-v1.5-7b, llava-v1.5-13b (Liu et al.,
2023), llava-v1.6-vicuna-7b, llava-v1.6-vicuna-
13b, llava-v1.6-34b (Li et al., 2024), cogvlm-v1.5-
vicuna-7b (Wang et al., 2023), and propriety VLMs
including: gemini-1.5-pro (Team, 2024), gpt-4-
turbo, gpt-4o (OpenAI, 2024).

We test VLMs’ performance on both randomly
generated test instances and the MMD-augmented
hard instances. We employ two metrics to quantitfy
the performance: mIoU - Mean IoU (Intersection
over Union), a standard metric for object segmen-
tation; and Accuracy , which we prompt the VLM
to output one positions from "top-left, top-right,
bottom-left, bottom-right", and directly evaluate
whether the answer matches the ground truth. The
prompts used in this experiment can be found in
Appendix A.

Observations and Analysis We present all ex-
perimental results in Table 1. (a) Comparing hor-
izontally across columns, we observe significant
performance drops of smaller-scale models in both
mIoU and Accuracy with the application of MMD-
based hard instance generation. Notably, the per-
formance drops of many of them are around 30%.
This provides solid support for our initial hypothe-
sis that smaller-scale models have some, but insuf-
ficient fitness to the long-tail distribution objects.
Furthermore, the drastic performance change show-
cases MMD’s effectiveness in generating hard in-
stances and non-robustness of existing grounding
models. (b) Comparing vertically within columns,
the central tendency is that larger scale models (ex-
cept Genimi which might not be trained to perform
grounding) perform much better than small-scale
models in accuracy. This reveals the concealed gap
of knowledge horizon of small- and large- scale
models, which is usually unobservable in bench-
marks consist of common objects. (c) The obser-
vation that GPT-4 series can still handle the task
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Figure 3: A glimpse into COCO and UOUO, with demo images of COCO cited from official website.

remarkably well (near 90% and 70% on random
and MMD settings, respectively) showcases the
task’s solvability, revealing the soundness of our
automatically constructed test instances.

6 Conclusion

In our work, we introduced the UOUO benchmark
to assess VLMs on objects out of everyday dis-
tributions. Our findings show that while smaller
VLMs perform well on tasks of common objects,
they struggle significantly with uncommon objects,
unlike larger models which handle these challenges
much better. This highlights the need to consider
long-tail distributions in evaluations. The system-
atic data curation, filtering, and hard test instance
generation pipeline for UOUO construction has
high extensibility, paving the road of future re-
search of long-tail distribution objects. UOUO
itself could also be expanded in this way, extending
beyond the domain of manufacturing and to other
broad category of objects.

7 Limitations

One limitation of our work is the reliance on au-
tomated data collection and cleaning processes,
though efficient, may introduce biases or fail to
capture nuanced representations compared to fully
manual curation. We also note that the Mosaic

Image Augmentation was applied with the assump-
tion that the model takes single-image inputs. Our
preliminary experiment showed most VLMs have
limited to none multi-image inference support,
thus multi-image inputs results are not included
in UOUO benchmark. The UOUO benchmark cur-
rently emphasizes static images, potentially over-
looking the dynamic and context-dependent nature
of object recognition in real-world scenarios. Fu-
ture extensions should explore a wider range of
uncommon objects across various fields and con-
sider the inclusion of video or sequential data to
better reflect real-world applications. Addressing
these limitations will enhance the comprehensive-
ness and applicability of the UOUO benchmark.
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Appendix

A Prompt Details

mIoU Prompt Please provide the bounding box
coordinate (x1,y1,x2,y2) of {object name} in the
image with the format \n item1:(x1,y1,x2,y2).

Accuracy Prompt Identify the location of the
given object in this 2x2 mosaic image. The possible
answers are: ’top left’, ’top right’, ’bottom left’,
’bottom right’, or ’none’. Only give a deterministic
response as one of the possible answers. If the
object is not present, the response should be ’none’.
Please do not give more than one response. \n
object name: {object name}\n Location:

Prefix setting All other settings follow the
model’s defaults. For instance, in the case of
llava, the prompt prefix is: A chat between a cu-
rious human and an artificial intelligence assis-
tant. The assistant gives helpful, detailed, and
polite answers to the human’s questions. USER:
<image>\n{question} ASSISTANT:

B Instructions for manual annotation

Consider removing individual images, or removing
the entire category completely. Any category or
image meeting the following criterion should be
removed.

• Category Exclusion Principles

1. Lack of Sufficiently Uniform Images
Categories should be excluded if the col-
lected images do not show enough con-
sistency in appearance.
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2. Ambiguous Collections of Objects
Categories representing a collection of
multiple objects (e.g. Wax Working
Tools, Tools, Kits, etc.) should be ex-
cluded.

3. Insufficient Number of Images Col-
lected
Categories should be removed if there
are not enough images available.

4. Not a Tool
Items that are not standalone tools (e.g.
pastes or liquids that always need to
be stored in a container) should be ex-
cluded.

• Image Sample Exclusion Principles

1. Distinctive Image
Images that are significantly different
from other images within the same cate-
gory should be excluded.

2. Cluttered Composition
Images with cluttered backgrounds that
make it difficult or impossible to isolate
the tool.

3. Partial Display
Images that only show part of the object
should be excluded.

4. Not a Real Object
Images that depict diagrams, 3D ren-
ders, or other non-realistic representa-
tions should be excluded.

5. Excessive Text
Images that contain excessive text, which
obscures the main object, should be ex-
cluded.

C Important statistics of UOUO

• Number of categories:

– Number of categories originally: 27,926
– Number of categories kept: 25,864
– Percentage of categories kept: 92.6%

• Total number of images:

– Number of images originally: 956,167
– Number of images kept: 678,535
– Percentage of images kept: 71.0%

• Images per category stats:

– Original dataset:

* Average: 34.382

* Minimum: 11

* Maximum: 48
– Filtered dataset:

* Average: 26.235

* Minimum: 5

* Maximum: 48

• Average percentage of images kept in each
category: 76.0%

D Wikipedia Industry List

See figure 4.

E Randomly sampled 100 categories

See table 2.
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2D pantograph AC Recharge Kit Adhesive scale Aluminum dross pro-
cessing machine

Artificial insemination
gun

Ballistic clipboard Ballot Box (for collect-
ing anonymous feed-
back)

Banjo rim lathe

Bingo balls Broodstock tanks Broom Burnishing Stone
Cable Retention Sleeve Carding Machine Cattle Curtain Cell Model
Climbing rope Coal centrifuge Coffee roaster Cold Storage Back-

pack
Compressor (hard-
ware)

Cooling Incubator Copy Stand Culture trays

Dehooking tool Deposit Slip Printer Disc golf basket
welder

Disc repair kit

Display Turntables Distillation column Electronic rate board Evaporating Dish
Extrusion laminator Fiber disc Fishing rod holders Flange spreader
Flower press Foundation crack ruler Fume Extraction Hood Goniophotometer
Graduated cylinders Granule Filler Inductively Coupled

Plasma (ICP) Spec-
trometer

Irrigation pipelayer

Lacquer polishing
brush

Leachate Collection
Pipe

Live Feed Incubator Longlines and ropes

Martingale Metal scribe Mobile manufacturing
unit (MMU)

Mushroom grow tent

Music on hold player Network Firewall
Hardware

Offshore aquaculture
cage

Ore skip

Oscillating shaker Oxygen concentrators Packing Gauge Pellets coating system
Pellicle Formation
Tool

Pillory Pin beater Pointer stick

Portable battery
booster

Pressure vessels Print Quality Inspec-
tion Scope

Pulling post

Purging compound dis-
penser

Queue stanchion Quick release hook Roll Coating Paint
Line

Rope pump Rotary drum bauxite
washer

Rotary impeller feeder Sand filter

Scale Breaker Schlenk flask Security drone Security token device
Shear Line Shock Absorber Sign language inter-

preter gloves
Slab Tongs

Slush ice machines Soap scum remover Spin Welder Spoke cutting machine
Spot meter Springform pan Tabbing shears for

composite test speci-
mens

Texture sprayer

Tower Climbing Har-
ness

Violin varnish brush Vixen Plate Wall Hooks for Art

Waste basket Water jet cutter for
stone

Whalebone Scraper Wire Mesh Cable
Trays

Table 2: List of 100 Randomly Sampled Categories
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