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Abstract

In this work, we optimize speculative sampling
for parallel hardware accelerators to improve
sampling speed. We notice that substantial por-
tions of the intermediate matrices necessary for
speculative sampling can be computed concur-
rently. This allows us to distribute the workload
across multiple GPU threads, enabling simul-
taneous operations on matrix segments within
thread blocks. This results in profiling time
improvements ranging from 6% to 13% rela-
tive to the baseline implementation, without
compromising accuracy. To further accelerate
speculative sampling, probability distributions
parameterized by softmax are approximated
by sigmoid. This approximation approach re-
sults in significantly greater relative improve-
ments in profiling time, ranging from 37% to
94%, with a minor decline in accuracy. We con-
duct extensive experiments on both automatic
speech recognition and summarization tasks to
validate the effectiveness of our optimization
methods.

1 Introduction
Large foundational speech and language models
based on autoregressive Transformer (Vaswani
et al., 2017) architectures have demonstrated re-
markable proficiency across a variety of down-
stream tasks (Hsu et al., 2021; Radford et al.,
2022; Touvron et al., 2023b; Achiam et al., 2024).
These models frequently increase in size, con-
sequently requiring more memory and computa-
tional resources. However, downstream applica-
tions, such as dialogue systems, have strict wall-
clock constraints and are often required to generate
long sequences (Pope et al., 2023; Chi et al., 2023;
Fischer et al., 2024). Due to the sequential token
generation in autoregressive decoding, latency in-
creases with both the length of the sequence and
the size of the model, resulting in a significant bar-
rier to widespread deployment. On many general-
purpose GPU hardware accelerator architectures,

the increasing size of models leads to more read and
write operations between high-bandwidth memory
(HBM) and on-chip shared memory (SRAM) at
each decoding step, necessitating more memory
bandwidth to meet latency constraints (Pope et al.,
2023; Dao et al., 2022; Dao, 2024). Consequently,
the speed of autoregressive decoding becomes pri-
marily limited by the available memory bandwidth
and not by the number of computations that need
to be executed on the dedicated hardware (Shazeer,
2019).

In many cases, however, tokens may be accu-
rately generated by much smaller models that re-
quire fewer resources. Motivated by this hypothe-
sis, speculative sampling has been developed to
accelerate autoregressive sampling (Stern et al.,
2018; Xia et al., 2023; Leviathan et al., 2023; Chen
et al., 2023a). Speculative sampling employs a
small draft model to generate tokens, which are
potential future outputs of a larger target model.
These drafted tokens are then verified in parallel
by the target model, and only tokens that meet
the validation criteria are retained as final outputs
to ensure generation accuracy. This approach has
been shown to significantly reduce the frequency of
time-consuming operations, thereby improving in-
ference latency (Leviathan et al., 2023; Chen et al.,
2023a).

In this paper, we focus on optimizing the valida-
tion part of speculative sampling to further increase
the inference speed. Inspired by recent advances
in accelerating computations in the attention mech-
anism (Dao et al., 2022; Dao, 2024), we explore
two faster methods for assessing drafted tokens by
leveraging the parallelism capabilities of modern
GPUs. We identify that a significant portion of
the intermediate matrices required for the sampling
process can be computed independently. Exploit-
ing this observation, we distribute the workload
across multiple GPU threads and simultaneously
compute portions of the intermediate output matri-
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ces within thread blocks. This optimization method
is faster than the non-optimized baseline imple-
mentation and exact with regard to the decoding
outputs, i.e., it generates the same outputs as the
non-optimized method.

To further accelerate speculative sampling, we
propose using sigmoid as an element-wise approxi-
mation to softmax (Bridle, 1989), which is used to
parameterize distributions of target and draft mod-
els. Since sigmoid is applied to logits in element-
wise fashion, it can be computed in parallel and
fused with other sampling-related computations.
This enables significant acceleration of the overall
process, but results in a small accuracy decline due
to the non-exact nature of the method.

We evaluate our two optimized algorithms on
automatic speech recognition (ASR) and summa-
rization tasks, covering draft model sizes between
166M and 2B parameters and target model sizes
between 244M and 13B parameters. The exact op-
timization method reduces profiling time between
6% and 13% relative to the baseline implementa-
tion without compromising accuracy. Moreover,
the non-exact optimization method improves pro-
filing time by 37% to 94%, albeit with a small
reduction in accuracy. We summarize our main
contributions as follows:1

• Implementation of an exact and consistently
faster variant of speculative sampling optimized
for GPU hardware accelerators.

• Exploration of sigmoid as an element-wise ap-
proximation to softmax in an even faster but non-
exact variant of speculative sampling.

• Comprehensive evaluation across multiple tasks,
covering a wide range of draft and target model
combinations.

2 Related work

Techniques such as quantization (Dettmers et al.,
2022; Bondarenko et al., 2023; Stock et al., 2021;
Nagel et al., 2021), pruning (Voita et al., 2019; La-
gunas et al., 2021; Gromov et al., 2024) and knowl-
edge distillation (Sun et al., 2019; Sanh et al., 2019;
Jiao et al., 2020; Hsieh et al., 2023) have proven ef-
fective in reducing inference latency with minimal
performance impact. However, these approaches
often require architectural changes or custom train-
ing procedures. Efforts specifically targeting the

1The source code of our optimized sampling al-
gorithm is available at https://github.com/dwgnr/
optimized-speculative-sampling.

reduction of memory bandwidth bottlenecks dur-
ing decoding include methods like multi-query at-
tention, which aims to optimize memory usage
per attention layer (Shazeer, 2019), or FlashAtten-
tion (Dao et al., 2022; Dao, 2024), which aims to re-
duce the number of read/write operations between
HBM and SRAM on GPUs. Pope et al. (2023),
achieve improvements in large-scale inference la-
tency by partitioning models and workload across
multiple accelerators combined with various low-
level optimizations to improve communication effi-
ciency between devices.

Speculative sampling approaches can be broadly
categorized based on how drafting and verifica-
tion are conducted (Xia et al., 2024a). Drafting
refers to the efficient prediction of multiple future
tokens with a draft model and verification refers
to the methods used to verify the token sequence
with the target model. Some works use specialized
draft models (Xia et al., 2023; Zhou et al., 2024).
Others employ an existing smaller model from the
same series (Chen et al., 2023a; Spector and Re,
2023; Leviathan et al., 2023; Yang et al., 2024)
or leverage the target model directly for drafting,
e.g., by skipping intermediate layers (Zhang et al.,
2024b), using special look-ahead tokens (Monea
et al., 2023), or additional modeling heads (Stern
et al., 2018; Cai et al., 2024; Zhang et al., 2024a).
Verification approaches first supported greedy de-
coding (Stern et al., 2018; Xia et al., 2023; Zhang
et al., 2024b) and were subsequently extended to
support other methods such as nucleus sampling
(Leviathan et al., 2023; Chen et al., 2023a). Re-
cently, methods to verify multiple draft sequences
in parallel have also been explored (Miao et al.,
2024; Cai et al., 2024; Spector and Re, 2023).

Several studies have experimented with ReLU
and sigmoid as alternatives to softmax in the at-
tention mechanism (Bai et al., 2023b; Shen et al.,
2023; Hron et al., 2020; Hua et al., 2022; Li et al.,
2022; Wortsman et al., 2023; Ramapuram et al.,
2024). They either require training new models
from scratch or maintain the computational over-
head of gathering information along the full se-
quence length. Other softmax-related optimiza-
tions are tailored to reduce the memory require-
ment during training by computing only smaller
fractions of the full softmax output in the backward
pass (Lee and Lee, 2023) or leverage word frequen-
cies in the training data to speed up computation
(Grave et al., 2017). Shim et al. (2017) approxi-
mate softmax by computing only a fraction of the
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full input with singular value decomposition. Other
approximation methods are specifically designed
for custom hardware such as field-programmable
gate arrays (Chen et al., 2023b) and application
specific integrated circuits (Geng et al., 2018).

3 Method
3.1 Preliminaries
Speculative sampling. Let Mtarget

p be an autore-
gressive target model, which induces a categorical
distribution distribution p(x|x<i+1) over a vocab-
ulary V = {x ∈ N : 1 ≤ x ≤ vocab_size},
given the prefix x<i+1 = (x1, . . . , xi). Our goal is
to use speculative sampling to accelerate the sam-
pling process of discrete tokens x ∈ V . This is
achieved by approximating the target model with a
draft model Mdraft

q , resulting in another categori-
cal distribution q(x|x<i+1).

First, given the prefix (x1, . . . , xi+c−1), γ ∈ N+

draft tokens are sequentially sampled with Mdraft
q :

xi+c ∼ q(x|x<i+c) for c = 1, . . . , γ. The draft
tokens are then evaluated using the target model
Mtarget

p , a process that can be performed in par-
allel. Each draft token xi+c ∈ V is accepted if
rc ≤ τc(xi+c) for c = 1, . . . , γ. The terms rc and
τc(xi+c) are computed as follows:

τc(xi+c) = min

(
1,

p(xi+c|x<i+c)

q(xi+c|x<i+c)

)

rc ∼ U(0, 1),

(1)

where U(0, 1) denotes a uniform distribution be-
tween 0 and 1. If xi+c is accepted, the process is
repeated for the next token xi+c+1 until either a
token is rejected or all tokens have been accepted.
If xi+c is rejected, a token is resampled from the
following adjusted distribution instead:

xi+c ∼ max_norm (p(x|x<i+c)− q(x|x<i+c)) ,
(2)

where max_norm(f(x)) is given by:

max_norm(f(x)) =
max(0, f(x))∑

x′∈V max(0, f(x′))

=
a(x)

b

(3)

We denote the numerator of Eq. 3 by a(x) and
the denominator by b, as these terms are treated
separately in subsequent sections.

The underlying concept of speculative sampling
is similar to rejection sampling (Neal, 2003). Intu-
itively, a new token for the target model Mtarget

p

is generated by first sampling from a smaller draft
model Mdraft

q , which shares the same support (V)
as Mtarget

p . The token sampled from Mdraft
q is

then evaluated in parallel with Mtarget
p , and its ac-

ceptance is determined based on the probability
ratio defined in Eq. 1. If the token is rejected, a
new one is drawn using the modified distribution
in Eq. 2.

GPU memory and execution model. We briefly
describe the memory components and parts of the
execution model of GPU hardware accelerators
relevant to this work. GPU memory has a hierarchi-
cal layout, consisting of various types of memory
that differ in size and read/write bandwidth (Jia
et al., 2018). Recent GPUs (e.g., NVIDIA’s A100
series) typically feature several gigabytes of high-
bandwidth memory (HBM) and only a few hundred
kilobytes of on-chip shared memory (SRAM) per
streaming multiprocessor (SM) (NVIDIA Corpo-
ration, 2020). While HBM provides substantial
capacity, its memory bandwidth is lower compared
to SRAM. The execution model of GPU hardware
accelerators involves a large number of threads ex-
ecuting operations known as kernels (Cheng et al.,
2014). These threads are organized into thread
blocks and assigned to SMs. Each SM partitions
its assigned thread blocks into warps of 32 threads,
which are then queued for execution on available
hardware resources. Each kernel typically follows
a pattern: loading inputs from HBM into registers
and SRAM, performing computations, and writing
the outputs back to HBM.

3.2 Acceleration of speculative sampling
3.2.1 Exact optimization
Our optimization of speculative sampling is de-
signed for parallel heterogeneous hardware accel-
erators, such as NVIDIA GPUs, which are widely
employed to perform inference on large scale mod-
els. Similar to the approaches described in Ryoo
et al. (2008) and Dao et al. (2022), we aim to redis-
tribute the speculative sampling workload across
threads and thread blocks. We load chunks of in-
puts from HBM to SRAM and make the necessary
computations with respect to this input chunk be-
fore writing the final result back to HBM.

We notice that the intermediate elements needed
for speculative sampling can be computed concur-
rently within thread blocks and are largely indepen-
dent of other thread blocks. Specifically, we can
compute (τc(x))x∈V and parts of Eq. 3 in parallel.
The kernel is tiled (Lam et al., 1991), such that
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Figure 1: Overview of our exact optimization approach. We compute most of the results required for speculative sampling in
parallel using fast SRAM to read and write intermediate results. We maximize the number of threads per block to run parallel
computation on as many elements as possible without exhausting the available on-chip memory.

each thread block computes a tile of n elements
from each matrix at once. Threads within a block
jointly load segments of the probability matrices
p(x|xx<i+c) and q(x|x<i+c), whose full dimen-
sions are B × γ × |V|, into SRAM, effectively
distributing the overhead of load latency (Ryoo
et al., 2008). B denotes the batch size used during
speculative decoding.

Fig. 1 illustrates the details of our approach.
The overall workload is distributed across a two-
dimensional grid of batch size B and number of
draft tokens γ. The vocabulary V is partitioned into
disjoint subsets {Vk}Kk=1, where K = ⌈|V|/n⌉
and ⌈·⌉ is the ceiling function. Each thread in a
block performs operations on the sub-vocabulary
Vk within its corresponding tile. The results in each
tile k are obtained in three steps. 1 The domains
of the probability density functions p(x|xi+c) and
q(x|xi+c) are restricted to the sub-vocabulary Vk

and the restricted functions are denoted as pk(x)
and qk(x), respectively. All function values of
pk(x) and qk(x) are loaded from HBM to SRAM.

2 All necessary partial results are computed
with respect to the sub-vocabulary Vk and stored
in SRAM. Note that the probability ratio τc(x)
in Eq. 1, the difference f(x) = p(x|x<i+c) −
q(x|x<i+c) in Eq. 2, and the numerator a(x) =
max(0, f(x)) in Eq. 3 can be computed in element-
wise fashion. Their partial evaluations with the
sub-vocabulary Vk, denoted as τck(x), fk(x), and
ak(x), respectively, do not require any synchro-
nization between threads and blocks, thus allow-
ing fast parallel computation. The denominator
in Eq. 3, b =

∑
x′∈V max(0, f(x′), requires a re-

duction across all elements in the vocabulary V and
is more challenging to fully compute in parallel,
due to its dependency on other thread blocks. We
use parallel reduction (Harris, 2007) to compute
the partial sum bk =

∑
x′∈Vk

max(0, f(x′)) of the

denominator with the sub-vocabulary Vk in SRAM,
and perform the final aggregation across blocks in
the subsequent procedure on HBM.

3 The partial results, τck , ak(x), and bk, are
written back to HBM. The partial sum bk is now
combined with the partial sums from other thread
blocks to compute the full sum b. The final division
operation to compute max_norm(f(x)) in Eq. 3 and
the resampling procedure in Eq. 2 are done once
all the partial results are aggregated.

By reorganizing the computations as illustrated
in Fig. 1, batches of p(x|x<i+c) and q(x|x<i+c)
are loaded only once from HBM into SRAM. More-
over, most operations are coupled within the kernel
and performed in parallel while using fast SRAM
to store intermediate values. Only the results nec-
essary to produce token acceptance decisions are
written to HBM.

3.2.2 Approximated optimization
To further accelerate speculative sampling, we use
sigmoid to approximate p(x|x<i+c) and q(x|xi+c),
which are parameterized by softmax in the baseline
implementation and the exact method described
in Section 3.2.1. Instead of treating p(x|x<i+c)
and q(x|xi+c) as precomputed inputs to the kernel,
the sigmoid approximation is tightly coupled with
the other operations in the speculative sampling
process. This integration within the kernel substan-
tially accelerates the overall sampling procedure.

Bottleneck of softmax. For any given input vec-
tor w = (w1, . . . , w|V|), the outputs must be posi-
tive and they must sum to unity to be interpretable
as a probability distribution (Bridle, 1989). In soft-
max, both conditions are satisfied via a normalized
exponential transformation. With limited value
ranges that can be represented in hardware, soft-
max is prone to overflow or underflow due to the
exponentiation. Therefore, a numerically stable
version is often used (Milakov and Gimelshein,
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Figure 2: Overview of the computations within each thread block for sigmoid approximation. Each set of logits is scaled by
a minimum constant α and a maximum constant β. Sigmoid activations σ are then computed and stored in SRAM for each
segment of draft and target logits. Subsequently, the intermediate values f̂k(x), âk(x), b̂k, and τ̂ck (x) are computed analogous
to Fig. 1. The resulting outputs are then used to update τ̂c(x), â(x), and b̂ in HBM.

2018):

softmax(w)j =
exp (wj − wmax)∑|V|
l=1 exp(wl − wmax)

(4)

for j = 1, . . . , |V|, where wmax = max{wl : 1 ≤
l ≤ |V|}. Eq. 4 requires summing over the size
of the vocabulary and finding wmax, which makes
parallelization on GPUs challenging, since both
the summation and wmax require keeping track of
intermediate values across blocks (Dao et al., 2022;
Rabe and Staats, 2021; Wortsman et al., 2023).

The attention mechanism including its soft-
max computation has been optimized in FlashAt-
tention (Dao et al., 2022) by fusing its opera-
tions and using an online algorithm (Milakov and
Gimelshein, 2018; Rabe and Staats, 2021) that
splits the workload into blocks and rescales the
output of each block. Unlike FlashAttention, we
explore a fully local operation that can run with-
out expensive tracking of intermediate variables
across blocks, thus allowing for non-blocking par-
allel computation.

Sigmoid approximation. Let zp(x|x<i+c) be
the logits of the target model Mtarget

p given the
prefix (x1, . . . , xi+c−1). Similarly, let zq(x|x<i+c)
be the logits of the draft model Mdraft

q . First, we
rescale the logits using predefined constant values
α < 0 and β > 0, and then apply sigmoid to
these scaled logits to approximate p(x|xi+c) and
q(x|x<i+c) as follows:

p̂(x|x<i+c) = σ

(
zp(x|x<i+c)− α

β − α

)

q̂(x|x<i+c) = σ

(
zq(x|x<i+c)− α

β − α

)
,

(5)

where σ(x) = 1/(1 + exp(−x)). Although all
values of p̂(x|x<i+c) and q̂(x|x<i+c) are positive,
they do not sum to 1 and thus do not constitute valid

probability distributions. Nonetheless, we rely on
these approximations with the hope that they are
sufficiently accurate for guiding token acceptance
decisions. Using the approximations p̂ and q̂, we
accept the draft token xi+c sampled from Mdraft

q

if rc ≤ τ̂c(xi+c):

τ̂c(xi+c) = min

(
1,

p̂(xi+c|x<i+c)

q̂(xi+c|x<i+c)

)

rc ∼ U(0, 1),

which is the approximation of Eq. 1. If the token
xi+c is rejected, we resample a token from a distri-
bution that approximates Eq. 2:

xi+c ∼ max_norm (p̂(x|x<i+c)− q̂(x|x<i+c)) .

Fig. 2 illustrates the computations with sig-
moid approximation executed in parallel within
each thread block. The main changes are high-
lighted in red rectangles. 1 Let zpk(x|x<i+c)
and zqk(x|x<i+c) be restrictions of the log-
its zp(x|x<i+c) and zq(x|x<i+c) to the sub-
vocabulary Vk of the corresponding current
tile. The function values of zpk(x|x<i+c) and
zqk(x|x<i+c) evaluated on Vk are loaded from
HBM into SRAM. 2 We apply sigmoid to the
rescaled logits zpk(x|x<i+c) and zqk(x|x<i+c).
Since the computation of sigmoid is an element-
wise operation and does not depend on values from
other threads and blocks, we can execute it in par-
allel, thereby further accelerating speculative sam-
pling. Similar to step 2 of the exact optimiza-
tion in Fig. 1, the partial results, f̂k(x), âk(x), b̂k,
and τ̂ck(x), which are approximations of fk(x),
ak(x), bk, and τck(x), respectively, are computed
and stored in SRAM. 3 The partial results are
written back to HBM, and for b̂k, they are aggre-
gated across blocks to compute the final result b̂,
which is approximation of b.
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4 Experiments

4.1 Experimental setup
Datasets and metrics. We evaluate accuracy and
inference speed of our optimized speculative sam-
pling on ASR and single-document summarization.
For ASR, we measure word error rates (WERs)
on the test portions of three English datasets:
CommonVoice 16 (CV16) (Ardila et al., 2020),
LibriSpeech (Panayotov et al., 2015), and TED-
LIUM (Rousseau et al., 2012). For summarization,
we use the test portions of Extreme Summarization
(Xsum) (Narayan et al., 2018) and CNN/Daily Mail
(CNN/DM) (Nallapati et al., 2016) to evaluate the
quality of summaries generated by language mod-
els with ROUGE-1 (Lin, 2004). Additional dataset
details are provided in Appendix A.3.

For all tasks, we use the PyTorch (Paszke et al.,
2019) profiling tool to obtain execution times for
performing speculative sampling. We measure
the execution time within the entire call stack of
the speculative sampling function, including any
nested function call (e.g. softmax). The profiling
times are summed over all decoding steps and ex-
amples in a dataset, before the relative improve-
ment is calculated.

Hyperparameters. We set the batch size B to 1
and employ the same heuristic used in the baseline
speculative sampling implementation in the Trans-
formers library (Wolf et al., 2020), to determine
the number of draft tokens γ. Initially, γ is set to 5
and increases by 2 if all speculative tokens sampled
from the draft model are accepted; otherwise, it de-
creases by 1. We set the maximum sequence length
to 256 tokens for ASR and 100 tokens for summa-
rization. For ASR, using sigmoid approximation,
α and β are set to −103 and 103, respectively. In
summarization experiments, we use α = −104 and
β = 104. We set n = 1024, i.e., the maximum
available threads per block on the NVIDIA A100
GPU.

Target models. We employ Whisper (Radford
et al., 2022) as the target model series for the ASR
task. We use both the multilingual 1.55B param-
eter whisper-large-v2 version and the English-
only 244M parameter whisper-small.en version
of the model. For the summarization task, we use
Llama2 7B/13B (Touvron et al., 2023b), Qwen
1.8B/7B (Bai et al., 2023a), and Gemma 7B (Mes-
nard et al., 2024). More details on the target models
are provided in Appendix A.1.

Draft models. Following Leviathan et al. (2023),
Chen et al. (2023a), and Zhou et al. (2024) we
either use smaller models of the same series or
distilled versions of the target model for drafting.
The draft model family for the ASR task is Distil-
Whisper (Gandhi et al., 2023). In particular, we
use the 166M parameter small.en and the 756M
parameter distil-large-v2 versions. The draft
model for Llama2 is Sheared-LLaMA (Xia et al.,
2024b), a version of Llama2 pruned to 1.3B param-
eters. The draft models corresponding to Qwen and
Gemma are the 500M and 2B parameter versions
of the same series. More details on the draft models
are provided in Appendix A.2.

Implementation details. We use the implementa-
tion of speculative sampling provided by the Trans-
formers library (Wolf et al., 2020) (v4.38.2) in con-
junction with PyTorch (v2.2.2) as our baseline. Un-
less stated otherwise, all models are loaded in FP16
and executed on A100 GPUs with 80GB HBM us-
ing the same compute node running CUDA 12.3
and NVIDIA device driver version 545.

4.2 Main results
Table 1 summarizes accuracy metrics and profil-
ing results for the ASR and text summarization
tasks. The table details the datasets, target and
draft models used, performance metrics, and the
relative reduction in overall GPU profiling time
achieved by our optimized approaches (exact and
sigmoid approximation) compared to the baseline.

In the ASR task, our exact optimization method
maintains the same WER compared to the baseline
and achieves reduction in profiling time ranging
from 8.7% to 12.5%. The sigmoid approximation
approach results in moderately increased WERs,
but yields more significant profiling time improve-
ments, ranging from 71.9% to 84.0%.

In the text summarization task, our exact opti-
mization method demonstrates a similar trend as
observed in the previous ASR experiments, reduc-
ing profiling time by 5.7% to 11.1% without af-
fecting ROUGE-1 scores. The non-exact sigmoid
approximation further achieves significant profiling
time reductions, reaching up to 93.6%. However,
we also observe an absolute difference in ROUGE-
1 of 0.02 to 0.06 points.

Additionally, we provide relative wall-clock time
improvements for the overall text generation pro-
cess in Table 5 of Appendix A.5, showing that the
results obtained via profiling translate into improve-
ments in wall-clock time for both the exact and the
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Dataset Subset Model WER (↓) ∆% Profiling Time

Target Draft Baseline Exact Sigmoid Exact Sigmoid

LibriSpeech clean
Whisper

Small.EN

Distil-
Whisper

Small.EN

0.08 0.08 0.09 11.7% 71.9%
other 0.14 0.14 0.15 10.7% 74.6%

TED-LIUM release3 0.22 0.22 0.24 12.5% 78.9%
CV16 en 0.22 0.22 0.27 10.4% 66.8%

LibriSpeech clean
Whisper
Large V2

Distil-
Whisper
Large V2

0.07 0.07 0.15 10.8% 83.9%
other 0.12 0.12 0.19 11.4% 84.0%

TED-LIUM release3 0.20 0.20 0.23 11.4% 83.3%
CV16 en 0.25 0.25 0.31 8.7% 78.5%

Dataset Subset Model ROUGE-1 (↑) ∆% Profiling Time

Target Draft Baseline Exact Sigmoid Exact Sigmoid

CNN/DM

– Llama2 7B Sheared Llama 1.3B 0.30 0.30 0.26 5.7% 78.0%
– Llama2 13B Sheared Llama 1.3B 0.31 0.31 0.29 10.1% 37.2%
– Qwen 7B Qwen 0.5B 0.31 0.31 0.26 6.8% 92.4%
– Gemma 7B Gemma 2B 0.23 0.23 0.17 10.6% 68.4%

Xsum

– Llama2 7B Sheared Llama 1.3B 0.20 0.20 0.18 11.1% 83.6%
– Llama2 13B Sheared Llama 1.3B 0.20 0.20 0.17 10.5% 45.7%
– Qwen 7B Qwen 0.5B 0.18 0.18 0.13 7.8% 93.6%
– Gemma 7B Gemma 2B 0.18 0.18 0.13 9.9% 63.5%

Table 1: Accuracy and profiling results on ASR and text summarization. The column “∆% Profiling Time” measures the relative
reduction in GPU time achieved with our optimized approaches (exact and sigmoid approximation) compared to the baseline.

sigmoid approximation method.

4.3 Analysis and discussion
Execution times remain stable over varying γ.
To assess the robustness of our exact and sigmoid
optimization methods, we measure execution times
across different models and varying numbers of
initial draft tokens γ. For text summarization, we
randomly sample 10% of the Xsum test set and use
Gemma, Qwen, and Llama2 model combinations
to generate summaries. For ASR, we use 10% of
randomly sampled examples from the CV16 test
set. Fig. 3a and Fig. 3b illustrate the average
execution times of the different implementations
profiled per decoding step. Both figures show aver-
age execution times measured in milliseconds (ms)
for the number of draft tokens ranging from 1 to
20. The average execution times for the optimized
approaches (exact and sigmoid) are consistently be-
low the baseline across all models and values of γ.
Furthermore, the execution times of the optimized
approaches are stable across different choices of
γ for the Gemma and Qwen models, whereas the
Llama2 7B/Sheared LLaMA 1.3B model combi-
nation exhibits small sensitivity to the number of
draft tokens.

As depicted in Fig. 3b, the ASR models also
exhibit stable execution times across different γ,
further validating the robustness of our optimiza-
tion methods with varying numbers of draft tokens.

Optimized sampling does not introduce addi-
tional memory overhead. We assess the mem-

ory usage of our optimized methods relative to the
baseline implementation. Fig. 4 shows the peak
memory usage (HBM) on randomly sampled in-
stances (10%) of the Xsum test set with various
initial values of γ and different language models.
The graph indicates that our optimized approaches
do not introduce additional memory overhead com-
pared to the baseline. For all three model combina-
tions (Llama2, Qwen, and Gemma), the memory
usage of the optimized methods fluctuates slightly
(within a range of approximately 200MB) around
the memory usage of the baseline across all draft
tokens. As illustrated in Fig. 5, the memory usage
results for the Whisper models display a pattern
consistent with the text summarization experiments,
showing fluctuation within a range of under 10 MB.

Effect of scaling logits. To study the effect of
logit scaling in the sigmoid approximation method,
we compare profiling time and performance met-
rics under varying values of α and β (cf. Eq. 5).
Table 2 provides a comparison of different scaling
factors for subsets (10%) of CV16 and Xsum using
Whisper Small.EN and Llama2 7B, respectively.
For each task, the table shows the values of α and
β applied, the resulting WER or ROUGE-1 score,
and the relative improvement in profiling time over
the non-optimized baseline implementation. Note
that scaling is necessary due to the numerical insta-
bility induced by the exponentiation in the sigmoid
function.

The Llama2 model combination exhibits relative
stability across different scaling factors, showing
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Figure 3: Average execution time of the speculative sampling algorithm per decoding step for varying
initial γ values on randomly sampled subsets (10%) of Xsum and CV16 test sets.
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Figure 4: Peak memory usage (HBM) on randomly sampled
10% of the Xsum test set for varying initial values of γ.

minor fluctuations in ROUGE-1 scores and pro-
filing time improvements, whereas the Whisper
model combination is more sensitive, with scaling
factors of ±105 leading to substantial deteriora-
tion of both WER and profiling time. This can be
attributed to the logits of Whisper models being
generated in half precision, whereas the logits gen-
erated by the Llama models are available in full
precision. However, we also find that scaling fac-
tors of ±103 and ±104 generally yield comparable
results in both accuracy and profiling time improve-
ment across the model combinations investigated
in this work. The results of the same analysis for
the other draft and target model combinations are
provided in Table 7 from Appendix A.6.

3.60 GB

3.62 GB

3.64 GB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.74 GB

0.76 GB

# of Draft Tokens ( )
Whisper Large
Sigmoid
Exact
Baseline

Whisper Small
Sigmoid
Exact
Baseline

Figure 5: Peak memory usage (HBM) on randomly sampled
10% of the CV16 test set for varying initial values of γ.

Furthermore, we see a general trend where
higher accuracy (lower WER and higher ROUGE-
1) coincides with higher profiling time improve-
ments. This relationship is due to the token ac-
ceptance process, where better calibrated models
accept more tokens, requiring fewer executions of
resampling and fewer overall calls of the specula-
tive sampling kernel.

Data transfer between HBM and SRAM. To
assess efficiency in terms of data movement be-
tween HBM and on-chip SRAM, we compare the
realized bandwidths of each implementation. The
bandwidth is calculated by dividing the total bytes
transferred by the execution time. The number of
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Target/Draft Scale (α, β) WER (↓) ∆% Prof. Time

Whisper Small.EN/
Distil-Whisper

Small.EN

Baseline 0.24 –
−101 101 0.41 24.0%
−103 103 0.28 59.5%
−104 104 0.26 64.6%
−105 105 29.34 -10826.1%

Target/Draft Scale (α, β) ROUGE-1 (↑) ∆% Prof. Time

Llama2 7B/
Sheared

Llama 1.3B

Baseline 0.19 –
−101 101 0.16 49.8%
−103 103 0.16 53.4%
−104 104 0.15 50.0%
−105 105 0.16 51.9%

Table 2: Impact of varying α and β on accuracy and profiling
time of sigmoid approximation on CV16 and Xsum.

bytes transferred is derived from the total number
of sectors moved between HBM and SRAM, with
each sector consisting of 32 bytes. Execution time
refers to the duration during which the GPU is ac-
tively running a kernel, i.e., when at least one GPU
unit is engaged in computation rather than idling,
waiting, or stalled. A lower realized bandwidth
indicates a reduced communication overhead be-
tween HBM and SRAM.

The results in Table 3 show lower memory band-
width usage for the Qwen and Gemma models with
the exact optimization approach compared to the
baseline implementation. However, in the case of
the Llama2 and Whisper models, despite overall
lower realized bandwidths relative to the Qwen and
Gemma models, higher bandwidths are observed
with the exact optimization compared to their cor-
responding baseline.

The sigmoid approximation has consistently
higher realized bandwidths across all model com-
binations compared to the baseline. Although the
sigmoid optimization approach reduces the overall
amount of data transferred, i.e., the total number of
bytes moved between HBM and SRAM, due to the
element-wise approximation of the softmax func-
tion within the sampling kernel, the significantly
faster execution times result in higher overall real-
ized bandwidths. However, even the highest real-
ized bandwidths are far below the theoretical HBM
bandwidth limit of ∼2 TB/s (NVIDIA Corporation,
2020), indicating that memory transfer is not the
limiting factor for performance.

Results on RTX 2080 TI GPU. Table 4 shows
an accuracy and profiling time comparison using
RTX 2080 TI GPUs. We observe that our opti-
mization methods achieve performance similar to
A100 GPUs with relative improvements in profil-
ing time ranging between ∼5% and ∼13% with
the exact method and between ∼62% and ∼82%

Model Realized Bandwidth

Draft Target Baseline Exact Sigmoid

Whisper
Small.EN

Distil-Whisper
Small.EN

13.98 GB/s 14.16 GB/s 16.33 GB/s

Whisper
Large V2

Distil-Whisper
Large V2

9.32 GB/s 11.18 GB/s 16.06 GB/s

Qwen 7B Qwen 0.5B 44.99 GB/s 31.65 GB/s 52.14 GB/s
Gemma 7B Gemma 2B 53.69 GB/s 38.51 GB/s 62.99 GB/s
Llama2 7B Sheared Llama 1.3B 24.56 GB/s 27.70 GB/s 30.52 GB/s
Llama2 13B Sheared Llama 1.3B 20.18 GB/s 24.08 GB/s 31.39 GB/s

Table 3: Comparison of realized bandwidths across models
and optimization techniques using 100 examples of the XSum
test set for Qwen, Gemma, and Llama2 models and 100 exam-
ples of the CV16 test set for Whisper models.

with sigmoid approximation. The summarization
experiment with Qwen uses a 1.8B/0.5B parameter
model combination instead of the 7B/0.5B model
combination from the main experiments in Table 1,
due to the limited HBM size of 11GB available on
the RTX 2080 TI series.

Dataset Subset Target/Draft WER (↓) ∆ Prof. Time
Basel. Exact Sigm. Exact Sigmoid

LibriSpeech clean Whisper
Small.EN/

Distil
Small.EN

0.08 0.08 0.09 7.6% 66.8%
LibriSpeech other 0.14 0.14 0.15 12.3% 65.9%
TED-LIUM release3 0.22 0.22 0.24 12.6% 62.8%

CV16 en 0.22 0.22 0.27 12.3% 62.0%
LibriSpeech clean Whisper

Large V2/
Distil

Large V2

0.07 0.07 0.15 11.2% 82.5%
LibriSpeech other 0.12 0.12 0.19 5.7% 79.2%
TED-LIUM release3 0.20 0.20 0.23 9.4% 79.8%

CV16 en 0.25 0.25 0.31 7.8% 75.6%

Dataset Subset Target/Draft ROUGE-1 (↑) ∆ Prof. Time
Base. Exact Sigm. Exact Sigmoid

Xsum –
Qwen 1.8B
Qwen 0.5

0.15 0.15 0.11 5.0% 76.8%

Table 4: Accuracy and profiling time comparison across vari-
ous datasets and models using a RTX 2080 TI GPUs.

5 Conclusions
We introduced two optimization methods to ac-
celerate speculative sampling for autoregressive
models on hardware accelerators. By computing
significant portions of intermediate matrices across
multiple GPU threads within thread blocks, our ex-
act optimization method led to improved sampling
speed without compromising accuracy. Addition-
ally, we employed an approximation technique us-
ing element-wise sigmoid instead of softmax, to
enable parallel computation of probabilities. This
approximation further accelerated the decoding pro-
cess but resulted in a small degradation of sampling
quality.

Limitations
In this work, we study the inference efficiency of
speech and language models in the context of spec-
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ulative decoding using GPU hardware accelerators.
Our investigation includes two optimized specula-
tive sampling algorithms, tested on these models
to enhance inference speed. While GPUs are the
most common general-purpose hardware accelera-
tors, there exist purpose-built architectures such as
Cerebras’s Wafer Scale Engines, Google’s TPUs,
and GraphCore’s IPUs, where the differences in
system design may negate or significantly reduce
the latency gains. Our experiments were conducted
exclusively on A100 and RTX 2080 TI GPUs on a
single compute node. Therefore, the generalizabil-
ity of the results to other hardware configurations
remains uncertain. The performance outcomes may
be influenced by other hardware and network con-
figurations, such as multi-GPU and multi-node se-
tups, as well as the availability fast interconnects
(e.g. Infiniband), and other network conditions. Ad-
ditionally, our study evaluates the effectiveness of
the optimized algorithm based on decoding time,
and our claims may not translate to other metrics,
such as energy usage or heat generation, although
they play an important role in real-world produc-
tion settings.
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A Appendix

A.1 Target model details
Whisper. Whisper (Radford et al., 2022) is a fam-
ily of models trained to perform multiple tasks
such as multilingual ASR, language identification,
and speech translation. The models are trained on
∼680k hours of labeled audio data retrieved from
the world wide web and are available in five sizes
ranging from 39M parameters to 1.55B parame-
ters. Utilizing an encoder-decoder Transformer
architecture, Whisper receives 80-channel log-Mel
spectrogram representations with a 25ms window
and a stride of 10ms as inputs. We conduct exper-
iments on both the multilingual 1.55B parameter
whisper-large-v2 version and the English-only
244M parameter whisper-small.en version.

Llama2. Llama2 (Touvron et al., 2023b) is a
collection of LLMs ranging from 7B to 70B pa-
rameters. The models are pretrained on 2 tril-
lion tokens of text data from publicly available
sources. The architecture is based on Llama1 (Tou-
vron et al., 2023a), utilizing pre-normalization with
RMSNorm (Zhang and Sennrich, 2019), SwiGLU
(Shazeer, 2020) activation functions, and rotary
positional embeddings (RoPE) (Su et al., 2024).
Notable architectural changes include an expanded
context length of 4K tokens and the adoption of
grouped-query attention (GQA) for the 34B and
70B models. We employ the 7B and 13B versions
of Llama2 as target models.

Qwen. The Qwen (Bai et al., 2023a) model series
offers a range of decoder-only language models
with parameter counts between 500M and 110B.
The models are pretrained on up to 3 trillion tokens
of various multilingual text, code, and mathematics
resources. The architecture is similar to Llama2
with small modifications, such as no weight tying
between input embeddings and output projection.
We employ Qwen v1.5 in our experiments and use
the 7B parameter variant as the target model.

Gemma. Gemma (Mesnard et al., 2024) com-
prises two model variants, featuring 2B and 7B
parameters, pretrained on 3 trillion and 6 trillion
tokens respectively. Gemma is based on the Gem-
ini (Anil et al., 2023) model family. The focus
is primarily on English text from web documents,
mathematics, and code, omitting multimodal ca-
pabilities and optimization for multilingual tasks.
Similar to Llama2, the Gemma models leverage
RoPE and RMSNorm, and embeddings are shared

across inputs and outputs to reduce model size. We
use the 7B parameter variant of Gemma v1.0 as the
target model.

A.2 Draft model details
Distil-Whisper. The draft model series for the
ASR task is Distil-Whisper (Gandhi et al., 2023),
a collection of smaller versions of the Whisper
model. Distil-Whisper applies knowledge distil-
lation (Hinton et al., 2015) to emulate the perfor-
mance of the original Whisper model using a large
(≈21k hours) pseudo-labeled training corpus. The
distilled models aim to maintain the robustness of
Whisper towards varying audio domains and noisy
acoustic conditions and are designed to be paired
with Whisper in a speculative decoding setting. We
use the 166M parameter small.en version as the
draft model for the small 244M parameter target
model and the 756M parameter distil-large-v2
version as the draft model for the large 1.55B pa-
rameter target model.

Sheared-LLaMA. The draft model series for our
experiments with Llama2 is Sheared-LLaMA (Xia
et al., 2024b). Sheared-LLaMA utilizes a struc-
tured pruning approach to reduce the size of the 7B
parameter Llama 2 model to 1.3B and 2.7B param-
eters. The structured pruning approach removes pa-
rameters from the source model until a given target
configuration is satisfied. Learned pruning masks
representing discrete prune or retain decisions are
used to create a smaller sub-network matching the
specified target configuration. We employ the 1.3B
version of Sheared-LLaMA in our experiments.

A.3 Dataset details
ASR. We used the test sets of three English ASR
benchmark datasets: CommonVoice v16 (Ardila
et al., 2020), LibriSpeech (Panayotov et al., 2015),
and TED-LIUM (Rousseau et al., 2012) for the
ASR task. The data comprises multiple domains
such as audiobooks, political speeches, interviews,
and narrated Wikipedia articles. The utterance
lengths vary between 0.2 and 330 seconds with
an average duration of 7.6±6.6 seconds.

Text summarization. We used two datasets
for text summarization: Extreme Summarization
(Xsum) (Narayan et al., 2018) and CNN/Daily Mail
(CNN/DM) (Nallapati et al., 2016). The Xsum test
set contains 11,334 online articles from the British
Broadcasting Corporation (BBC) and the CNN/DM
test set contains 11,490 news articles published by
CNN and the Daily Mail. We performed 0-shot
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Dataset Subset Model Wall-clock Improvement
Target Draft Exact Sigmoid

TED-LIUM release3 Whisper Small.EN Distil-Whisper Small.EN 8.7% 58.7%
release3 Whisper Large V2 Distil-Whisper Large V2 6.6% 66.3%

LibriSpeech

clean Whisper Small.EN Distil-Whisper Small.EN 5.8% 49.5%
clean Whisper Large V2 Distil-Whisper Large V2 7.4% 65.3%
other Whisper Small.EN Distil-Whisper Small.EN 7.1% 54.5%
other Whisper Large V2 Distil-Whisper Large V2 7.0% 66.2%

CV16 en Whisper Small.EN Distil-Whisper Small.EN 8.1% 51.8%
en Whisper Large V2 Distil-Whisper Large V2 5.4% 61.3%

CNN/DailyMail

– Gemma 7B Gemma 2B 3.0% 24.2%
– Qwen 7B Qwen 0.5B 1.6% 39.8%
– Llama2 7B Sheared Llama 1.3B 4.2% 18.2%
– Llama2 13B Sheared Llama 1.3B 2.6% 23.5%

Xsum

– Gemma 7B Gemma 2B 1.2% 18.5%
– Qwen 7B Qwen 0.5B 4.3% 59.1%
– Llama2 7B Sheared Llama 1.3B 6.5% 53.1%
– Llama2 13B Sheared Llama 1.3B 10.9% 23.6%

Table 5: Relative wall-clock time improvements for both exact and sigmoid sampling on all tasks and model combinations.
Wall-clock time measures the total time spent in the speculative decoding loop, including all forward passes through the draft
and target models. The relative improvements are computed based on the total time required to perform speculative decoding for
the full dataset.

evaluation for CNN/DM and Xsum, and used the
ROUGE-1 metric for comparison. To prompt the
model for a summary, we placed “Summary:” after
each input article. Summaries were generated with
a maximum token length of 100 for both Xsum and
CNN/DM.

A.4 Wall-clock time improvement

Table 5 summarizes the relative wall-clock time
improvements for the overall text generation pro-
cess. Both the exact and the sigmoid approximation
method translate into relative improvements com-
pared to the baseline implementation. Wall-clock
times are less precise, since they also include the
forward passes through the draft and target models,
which may lead to additional overhead introduced
by the deep learning framework (Fernandez et al.,
2023), and the time spent on CPU, which does not
take varying rates of context switches and stalling
due to execution of higher-priority processes into
account.

A.5 Average times per decoding step

The average times spent in the speculative sampling
procedure per decoding step are summarized in Ta-
ble 6. Our implementation achieved consistently
lower average sampling times than the reference
implementation. While the the average sampling
time was generally longer for the text generation
tasks, the average times with our implementation
were still consistently lower than the reference im-
plementation.

A.6 Effect of scaling logits
Table 7 shows the impact of various logit scaling
factors on performance and profiling time of sig-
moid approximation on CV16 and Xsum. The
values are computed on a random sample of 10%
of each dataset.

A.7 Relation to other optimization methods
Our method is orthogonal to other optimizations of
speculative decoding. Whenever speculative sam-
pling is used, our kernel can serve as a drop-in
replacement for the standard implementation. For
example, our proposed method can be integrated
with the recently proposed self-speculative decod-
ing approach (Zhang et al., 2024b). Instead of using
a separate draft model, self-speculative decoding
samples draft tokens by skipping some layers of
the target model. Afterwards, it follows the same
draft verification and resampling procedure as the
original speculative decoding, which can be further
accelerated with our optimization method.

Our method is also orthogonal to other ap-
proaches for accelerating decoding. For instance,
FlashAttention (Dao et al., 2022; Dao, 2024),
which focuses on optimizing the attention com-
putation, can be easily combined with our method
to further improve efficiency.

A.8 Overhead caused by resampling
To assess the overhead caused by resampling, we
followed Chen et al. (2023a) and computed aver-
age acceptance rates of draft tokens for various
models on 10% of Xsum. Table 8 includes the
acceptance rates using a varying number of draft
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Dataset Subset Model Avg.±Std. (ms) ∆% Prof. Time
Target Draft Baseline Exact Sigmoid Exact Sigmoid

TED-LIUM release3 Small.EN Distil Small.EN 4.17±0.81 3.67±0.64 3.12±1.09 11.9% 25.1%
release3 Large V2 Distil Large V2 4.37±0.58 3.88±0.46 3.62±1.09 11.2% 17.2%

LibriSpeech

clean Small.EN Distil Small.EN 4.31±1.00 3.81±0.80 3.15±1.13 11.7% 27.0%
clean Large V2 Distil Large V2 4.35±0.60 3.88±0.52 3.55±1.08 10.8% 18.4%
other Small.EN Distil Small.EN 4.14±0.84 3.68±0.68 3.20±1.07 11.1% 22.7%
other Large V2 Distil Large V2 4.39±0.61 3.90±0.49 3.55±1.07 11.2% 19.1%

CV16 en Small.EN Distil Small.EN 4.14±0.85 3.71±0.70 3.33±1.10 10.4% 19.8%
en Large V2 Distil Large V2 4.37±0.61 3.92±0.51 3.62±1.07 10.4% 17.2%

CNN/DailyMail

– Gemma 7B Gemma 2B 6.54±0.47 5.84±0.39 4.37±0.54 10.6% 33.1%
– Qwen 7B Qwen 0.5B 12.01±1.08 11.20±1.03 3.34±0.45 6.8% 72.2%
– Llama2 7B Sheared Llama 1.3B 11.33±0.94 10.69±0.83 3.65±0.62 5.7% 67.8%
– Llama2 13B Sheared Llama 1.3B 3.99±0.52 3.59±1.70 3.26±0.26 10.1% 18.3%

Xsum

– Gemma 7B Gemma 2B 6.39±0.50 5.76±0.42 4.61±0.55 9.9% 27.9%
– Qwen 7B Qwen 0.5B 11.55±1.39 10.65±1.51 3.20±0.42 7.8% 72.3%
– Llama2 7B Sheared Llama 1.3B 4.66±0.42 4.14±2.88 3.64±0.56 11.1% 21.8%
– Llama2 13B Sheared Llama 1.3B 4.67±0.41 4.17±1.70 3.70±0.44 10.5% 20.7%

Table 6: Average time and standard deviation spent within the speculative sampling algorithm per decoding step. The column
“∆% Prof. Time” measures the relative reduction in average time per decoding step (“Baseline” vs. “Exact” and“Sigmoid”).
Scaling constants for sigmoid approximation: α = −103 and β = 103 for ASR, α = −104 and β = 104 for summarization.

tokens (γ ∈ {3, 5, 10, 15}), as well as the average
execution time per decoding step of the speculative
sampling algorithm. Since our exact optimization
method aims to generate the same tokens as the
baseline implementation, we expect the acceptance
rates to be the same. Table 8 shows that this is
indeed the case for all choices of γ and model com-
binations. Table 8 also shows that the acceptance
rates with the sigmoid optimization method are
often higher than the acceptance rates of the base-
line and the exact method. However, these higher
acceptance rates, do not have a significant effect
on the average execution time. In particular, the
acceptance rates of the three methods (sigmoid, ex-
act, and baseline) are similar for the Qwen model
combination (∼48% with γ = 10), but the sigmoid
approximation achieves better execution times than
the exact optimization and the baseline. The aver-
age execution times provided Table 8 are consistent
with the ones presented in Fig. 3a.

Draft/Target Scale
(α, β) WER (↓) Prof. Time

∆%

Whisper Small.EN
Distil Small.EN

Baseline 0.24 –
−101 101 0.41 24.0%
−103 103 0.28 59.5%
−104 104 0.26 64.6%
−105 105 29.34 -10826.1%

Whisper Large V2/
Distil Large V2

Baseline 0.24 –
−101 101 0.42 64.3%
−103 103 0.34 75.0%
−104 104 0.31 78.6%
−105 105 30.91 -4458.3%

Draft/Target Scale
(α, β) ROUGE-1 (↑) Prof. Time

∆%

Gemma 7B/
Gemma 2B

Baseline 0.17 –
−101 101 0.01 -124.6%
−103 103 0.13 66.1%
−104 104 0.13 71.3%
−105 105 0.14 73.0%

Qwen 7B/
Qwen 0.5B

Baseline 0.18 –
−101 101 0.09 57.6%
−103 103 0.12 71.4%
−104 104 0.12 71.5%
−105 105 0.11 71.7%

Llama2 7B/
Sheared 1.3B

Baseline 0.19 –
−101 101 0.16 49.8%
−103 103 0.16 53.4%
−104 104 0.15 50.0%
−105 105 0.16 51.9%

Llama2 13B/
Sheared 1.3B

Baseline 0.20 –
−101 101 0.15 46.9%
−103 103 0.17 46.8%
−104 104 0.15 46.7%
−105 105 0.16 45.9%

Table 7: Impact of varying scaling factors α and β on perfor-
mance and profiling time of sigmoid approximation on CV16
and Xsum. The values are computed on a random sample of
10% of each dataset.
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Target Model Draft Model Method Acceptance Rate Average Execution Time
γ = 3 γ = 5 γ = 10 γ = 15 γ = 3 γ = 5 γ = 10 γ = 15

Gemma 7B Gemma 2B
Sigmoid 56.2% 57.0% 57.1% 56.1% 2.95 ms 3.10 ms 3.09 ms 3.12 ms

Exact 48.5% 48.4% 48.6% 46.4% 4.35 ms 4.36 ms 4.40 ms 4.40 ms
Baseline 48.5% 48.4% 48.6% 46.4% 4.86 ms 4.88 ms 4.90 ms 4.96 ms

Qwen 7B Qwen 0.5B
Sigmoid 46.2% 47.8% 48.1% 47.8% 2.92 ms 2.89 ms 2.84 ms 2.83 ms

Exact 46.8% 45.7% 48.4% 48.0% 3.91 ms 3.97 ms 3.88 ms 3.95 ms
Baseline 46.8% 45.7% 48.4% 48.0% 4.45 ms 4.49 ms 4.41 ms 4.48 ms

Llama2 7B
Sheared

Llama 1.3B

Sigmoid 58.4% 59.3% 58.1% 59.4% 3.13 ms 3.26 ms 3.20 ms 3.52 ms
Exact 51.5% 53.7% 56.2% 54.4% 3.41 ms 3.42 ms 3.49 ms 3.78 ms

Baseline 51.5% 53.7% 56.2% 54.4% 3.96 ms 3.95 ms 3.96 ms 4.31 ms

Table 8: Comparison of acceptance rates by optimization type for different models on a random sample of 10% of the Xsum
dataset with varying γ.
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