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Abstract

Personalization in large language models
(LLMs) is increasingly important, aiming to
align the LLMs’ interactions, content, and rec-
ommendations with individual user preferences.
Recent advances have highlighted effective
prompt design by enriching user queries with
non-parametric knowledge through behavior
history retrieval and textual profiles. However,
these methods faced limitations due to a lack
of model ownership, resulting in constrained
customization and privacy issues, and often
failed to capture complex, dynamic user behav-
ior patterns. To address these shortcomings, we
introduce One PEFT Per User (OPPU)1, em-
ploying personalized parameter-efficient fine-
tuning (PEFT) modules to store user-specific
behavior patterns and preferences. By plugging
in personal PEFT parameters, users can own
and use their LLMs individually. OPPU inte-
grates parametric user knowledge in the per-
sonal PEFT parameters with non-parametric
knowledge from retrieval and profiles, adapting
LLMs to user behavior shifts. Experimental
results demonstrate that OPPU significantly
outperforms existing prompt-based methods
across seven diverse tasks in the LaMP bench-
mark. Further studies reveal OPPU’s enhanced
capabilities in handling user behavior shifts,
modeling users at different activity levels, main-
taining robustness across various user history
formats, and displaying versatility with differ-
ent PEFT methods.

1 Introduction

Personalization refers to mining users’ behavior
history, and therefore tailoring and customizing a
system’s interactions, content, or recommendations
to meet specific needs, preferences, and characteris-
tics of individual users (Tan and Jiang, 2023; Chen,
2023). By adapting to each user’s preferences, per-
sonalization systems enhance user experience, in-

1The code is available at https://github.com/
TamSiuhin/OPPU
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Figure 1: LLM ownership and behavior shift are two
challenges that developing personalized LLMs has to
face. Ownership emphasizes that the model needs to
be owned by individual user to enhance customization
and privacy. Behavior shift adaption refers to the LLMs’
ability to effectively generalize and adapt to emerging
new patterns in user behaviors.

creasingly getting vital in areas like content recom-
mendation (Qian et al., 2013; Wu et al., 2023; Baek
et al., 2023), user simulation (Dejescu et al., 2023),
personalized chatbots (Srivastava et al., 2020; Ma
et al., 2021), user profiling (Gu et al., 2020; Gao
et al., 2023), healthcare (Goldenberg et al., 2021),
and education (Pratama et al., 2023).

Large language models (LLMs) display emer-
gent abilities not seen in smaller models (Wei et al.,
2022; Lu et al., 2023), as they have billions of pa-
rameters and are trained on vast corpora. However,
existing LLMs predominantly follow the “one-size-
fits-all” paradigm. They are generally trained on
extensive, domain-agnostic datasets, which limits
their effectiveness in meeting the specific needs and
preferences of individual users (Chen et al., 2023).
Therefore, the challenge of integrating the strong
generative capabilities of LLMs with the tailored
requirements of individual users has emerged as a
significant area of research (Li et al., 2023).

Existing works on personalizing LLMs have pre-
dominantly concentrated on developing prompt
templates, which fall into three categories: vanilla,
retrieval-augmented, and profile-augmented per-
sonalized prompts. The vanilla personalized
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prompt approach leverages the in-context learning
capability of LLMs, utilizing the user’s entire or
randomly sampled history as contextual examples
(Dai et al., 2023; Zhiyuli et al., 2023). Considering
the growing length of user behavior history and the
limited LLM context length, some studies applied
retrieval methods to select the most relevant part
of user behavior history to enhance LLM personal-
ization (Mysore et al., 2023). Besides the retrieval,
some techniques explicitly generate user prefer-
ences and profiles in natural language to augment
LLMs’ input (Richardson et al., 2023).

Despite much research progress has been made
in LLM personalization, existing methods face
ownership and behavior shift challenges (Fig. 1):

• Ownership: Existing methods are processed cen-
tralized, where user history is encoded in a per-
sonalized prompt and processed by centralized
LLMs. This paradigm limits the model’s cus-
tomization and ability to provide deep, person-
alized experiences tailored to individual users.
Moreover, when using a centralized model, users
often have to share personal data with the service
provider, which raises concerns about how user
data are stored, used, and protected.

• Behavior Pattern Generalization: As is re-
vealed by Shi et al. (2023), LLMs can be easily
distracted by irrelevant context information that
retrieval can hardly avoid. In LLM personaliza-
tion, where the retrieval corpus is confined to a
specific user’s behaviors, retrieval augmentation
might underperform, especially when the user’s
past behaviors do not closely mirror the patterns
needed for the query at hand.

In light of these challenges, we propose One
PEFT Per User (OPPU), equipping each user
with a personalized, parameter-efficient fine-tuning
(PEFT) module. Characterized by PEFT’s plug-
and-play functionality and the minimal weight of
updated parameters (typically less than 1% of the
base LLM), OPPU facilitates LLM ownership and
enhances generalization in scenarios of user be-
havior shifts. By fine-tuning the PEFT module
with the user’s personal behavior history, the per-
sonalized PEFT parameters encapsulate behavior
patterns and preferences. This process, when in-
tegrated into base LLMs, allows users to obtain
their private LLMs, ensuring LLM ownership and
enhancing model customization. Furthermore, as is
revealed by Gupta et al. (2024), fine-tuning LLMs

is more effective than retrieval augmentation when
the retrieved instances are not highly relevant to
the query. The fine-tuned personal LLMs in OPPU
are adept at capturing complex behavior patterns
and thus capable of understanding new behaviors
with less reliance on highly relevant history data.
Experimental results show that OPPU outperforms
all baselines on seven public tasks in the Lan-
guage Model Personalization (LaMP) benchmark
(Salemi et al., 2023). Additional studies empha-
size the importance of integrating non-parametric
user knowledge from retrieved history with para-
metric knowledge from personal PEFT parameters.
In scenarios of user behavior shifts, where history
is less relevant, OPPU significantly outperforms
retrieval-based methods. Moreover, OPPU is re-
silient to varying user history formats and demon-
strates versatility across different PEFT methods,
among other advantages.

To summarize, the contribution of OPPU lies
in its pioneering approach to PEFT-based LLM
personalization. Each user (or user cohort) bene-
fits from a personal PEFT module, which not only
ensures LLM ownership but also significantly im-
proves the model’s ability to adapt to shifts in user
behavior. The superiority of OPPU is evidenced
by state-of-the-art performance across seven tasks
in the LaMP benchmark. By introducing this inno-
vative parametric-based personalization technique,
OPPU opens up new opportunities in democratiz-
ing personalized LLMs.

2 Preliminaries

2.1 Research Problem Formulation

For personalizing LLMs at time t, the output ru for
user u is conditioned on both input qu and the user’s
behavior history Hu. Specifically, Hu = {hu},
includes all user behaviors hu before time t. User
behavior hu may consist of (xu, yu) pairs, aligning
with the task-specific query-answer format (qu, ru),
or plain text sequences xu providing context for
behavior patterns. We aim to obtain personalized
parameters Θu for each user u.

2.2 Base LLMs Task Adaption

Given that off-the-shelf LLMs are not inherently
equipped for personalization tasks, we follow the
methods of LaMP (Salemi et al., 2023) by fine-
tuning LLMs for fair comparison. This section out-
lines the development of base LLMs with a set of
held-out users to enhance their general capabilities
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Figure 2: Overview of our proposed OPPU, where each user is equipped with a personal PEFT module and plug-in
base LLMs to get their individual LLM. Beyond parametric personalization via PEFT, OPPU is also compatible
with the non-parametric user knowledge via retrieval and profile augmentation.

for personalization tasks without involving target
user preferences. Specifically, we provide three
alternatives: base LLM Θ(B) that only involves
task related data, retrieval-augmented base LLM
Θ(R) that augment input with top-k relevant user
history, and profile-augmented base LLM Θ(P) that
involves textual user profiles as input. Note that
introducing RAG and PAG means users would ex-
pose their historical data or profiles to a centralized
LLM, potentially affect the model ownership. For
users prioritizing privacy and ownership, OPPU
without retrieval avoids revealing user data to ser-
vice providers. Conversely, those seeking optimal
performance and consent to reveal data to central-
ized LLMs should opt for RAG or PAG. The fine-
tuning objectives of three base models are:





LB =CE[Θ(B)(ϕt(qu)), ru]

LR =CE[Θ(R)(ϕr(qu,Du)), ru],

LP =CE[Θ(P)(ϕp(qu,Du, su)), ru],

where CE denotes the cross entropy loss func-
tion, ϕt, ϕr, and ϕp denote prompt construction
function for base, retrieval-augmented, and profile-
augmented LLM. The retrieved user history Du =
R(qu,Hu, k) denotes the top-k user history from
retriever R. su = LLM(Hu) is a textual user pro-
file generated by an instruction-tuned LLM, e.g.,
Vicuna (Chiang et al., 2023), based on user history.

To make this process more computationally ef-
ficient, we adopt the low-rank adaptation (LoRA)
(Hu et al., 2021) for base LLM task adaption that
only updates about 0.5% external parameters com-
pared to the total LLM parameter size. After train-
ing, LoRA parameters are merged into the base
model, equipping LLMs with task capabilities.

3 One PEFT Per User (OPPU)

Once the base model for task adaption is obtained,
users can only access the base model parameters
and their personal behavior history data, controlling
privacy risks. This section introduces personalized
LLMs for target users through parametric PEFT
and integrates non-parametric knowledge such as
retrieval and profile augmentation. For each user,
we plug a personal trainable PEFT module (LoRA
by default) ∆Θ

(B)
u , ∆Θ

(R)
u , ∆Θ

(P)
u to correspond-

ing base LLM under three settings to obtain per-
sonalized LLM Θ

(B)
u , Θ(R)

u , and Θ
(P)
u , while base

LLM parameters Θ(B), Θ(R), Θ(P) are frozen.




Θ(B)
u =Θ(B) ⊕∆Θ(B)

u ,

Θ(R)
u =Θ(R) ⊕∆Θ(B)

u ,

Θ(P)
u =Θ(P) ⊕∆Θ(B)

u .

We then use the user data Hu for LLM fine-tuning
to learn the personalized PEFT parameters. The
training objectives for user u under base, retrieval-
augmented, and profile-augmented settings are:




L(B)
u =CE[Θ(B)

u (ϕt(xu)), yu],

L(R)
u =CE[Θ(R)

u (ϕr(xu,D<t(xu)
u )), yu],

L(P)
u =CE[Θ(P)

u (ϕp(xu,D<t(xu)
u ), su), yu],

where D<t(xu)
u = R(ϕt(xu),H<t(xu)

u , k), H<t(xu)
u

is restricted to user u’s past behavior history that
occurred before xu.

User behavior history often does not align neatly
with the query format. For example, in personal-
ized tweet paraphrasing tasks, where the input is a
text sequence qu and the output is the paraphrased
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tweet ru, the history Hu only includes historical
tweets. In scenarios where user history does not di-
rectly aligned with the specific task format, denoted
as Hu = {xu}, we replace the user history output
yu in personal PEFT training objectives L(B)

u , L(R)
u ,

L(P)
u with right-shifted history x′u for unsupervised

next token prediction.
By optimizing personal PEFT parameters with

the objectives mentioned above, OPPU comprehen-
sively capture the user behavior patterns in PEFT
parameters ∆Θ

(B)
u , ∆Θ

(R)
u , ∆Θ

(P)
u , creating per-

sonalized LLMs owned by users. We envision the
proposed OPPU as a versatile LLM personaliza-
tion framework, where each user possesses their
own PEFT parameters that contain personal behav-
ior history and preferences. By plugging their per-
sonal PEFT parameters into the base LLMs, users
can get their personalized LLMs, while achieving
a better understanding and generalization of users’
preferences from the parametric dimension.

4 Experimental Settings

Datasets We use data from the Large Language
Model Personalization (LaMP) benchmark (Salemi
et al., 2023), which includes seven public language
model personalization tasks: four classification
tasks and three generation tasks.2 To promote LLM
ownership, we emphasize the need for users to con-
tribute extensive historical data for personalizing
their model. Therefore, we focus on the most active
users, selecting 100 users with the longest history
logs from the time-based dataset version as the
test set, while using all other users for base LLM
training. Dataset statistics are presented in Table 2.

Baselines We compare our proposed OPPU with
the non-personalized baseline and the retrieval-
augmented (RAG) and profile-augmented (PAG)
LLM personalization methods. For all baselines
and OPPU, we choose one of the most widely
adopted open-source LLM Llama-2-7B (Touvron
et al., 2023) as our base LLM and take BM25 (Trot-
man et al., 2014) for all retrieval operations to en-
sure efficient and fair comparison.3

Evaluation Metrics Following LaMP (Salemi
et al., 2023), we use accuracy and F1-score for clas-
sification tasks (LaMP-1, LaMP-2N, and LaMP-

2We exclude LaMP-6 as it involves private data that we
cannot access.

3Baselines and hyperparameter details are presented in
Appendix C and A to facilitate further research.

2M), MAE and RMSE for LaMP-3, and adopt
ROUGE-1 and ROUGE-L (Lin, 2004) for text gen-
eration tasks (LaMP-4, LaMP-5, LaMP-7). Note
that all metrics are the higher the better, except for
RMSE and MAE used for the LaMP-3.

5 Results

Table 1 shows the performance on the test set for
all seven public tasks in the LaMP benchmark, we
have observations as follows.

OPPU brings universal improvement. Mod-
els equipped with OPPU outperform all base-
line personalization methods across all seven
tasks. Notably, in personalized classification tasks,
OPPU achieves an average relative improvement
of 17.38% in MAE and 8.89% in RMSE for per-
sonalized product rating prediction. Additionally,
it shows an 11.87% improvement in accuracy and
7.56% in F1-score for personalized movie tagging.
For personalized text generation tasks, OPPU en-
hances ROUGE-1 and ROUGE-L scores by 3.42%
and 3.87%, respectively, in personalized scholarly
title generation.

Integrating non-parametric and parametric
knowledge performs the best. Combining
OPPU’s parametric knowledge stored in PEFT
parameters and the non-parametric in retrieved
items and user profiles, results in notable perfor-
mance gains. For instance, averaging across all
seven tasks, combining retrieval in OPPU will
bring 1.93% and 2.48% relative improvement com-
pared with the non-retrieval and non-OPPU yet
retrieval version model, respectively. Moreover,
integrating OPPU with user profiles would also
bring 4.56% and 7.18% performance gain against
non-profile and non-OPPU versions, respectively.
Overall, combining non-parametric retrieval and
profile knowledge with parametric PEFT knowl-
edge in OPPU delivers the best performance.

Performance w.r.t. difference between task and
history format. In tasks like personalized cita-
tion identification, there is a notable discrepancy
between the user history format and the task itself.
Here, the user history comprises the user’s publica-
tion history, while the task involves binary classi-
fication to identify the correct citation paper. This
disparity is also seen in the personalized tweet para-
phrasing task. In these cases, OPPU significantly
enhances performance. Specifically, for personal-
ized citation identification, OPPU increases accu-
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Table 1: Main experiment results on the LaMP benchmark. R-1 and R-L denote ROUGE-1 and ROUGE-L,
respectively. k refers to the number of retrieved items, with k = 0 indicating no retrieval. ↑ indicates that higher
values are better, and ↓ implies lower values are preferable. For each task, the best score is in bold and the second
best is underlined.‘∗’ indicates significant improvement against counterparts without OPPU.

Task Metric Non-Personalized RAG PAG RAG+OPPU (Ours) PAG+OPPU (Ours)

k=0 Random k=1 k=2 k=4 k=0 k=1 k=0 k=1 k=2 k=4 k=0 k=1

LAMP-1: PERSONALIZED

CITATION IDENTIFICATION

Acc ↑ .659 .650 .659 .691 .691 .756 .755 .683∗ .675∗ .707∗ .723∗ .772∗ .797∗
F1 ↑ .657 .647 .657 .689 .690 .755 .755 .682∗ .674∗ .705∗ .723∗ .772∗ .794∗

LAMP-2N: PERSONALIZED

NEWS CATEGORIZATION

Acc ↑ .787 .785 .820 .832 .832 .817 .817 .810∗ .823 .834 .838∗ .827∗ .831∗

F1 ↑ .538 .527 .598 .632 .647 .623 .621 .589∗ .615∗ .635 .661∗ .648∗ .638∗

LAMP-2M: PERSONALIZED

MOVIE TAGGING

Acc ↑ .478 .499 .587 .598 .622 .534 .587 .600∗ .626∗ .634∗ .645∗ .636∗ .648∗
F1 ↑ .425 .441 .512 .514 .542 .476 .506 .493∗ .531∗ .535∗ .553∗ .536∗ .540∗

LAMP-3: PERSONALIZED

PRODUCT RATING

MAE ↓ .223 .259 .214 .214 .232 .321 .223 .179∗ .196∗ .214 .223∗ .205∗ .143∗
RMSE ↓ .491 .590 .535 .463 .535 .582 .473 .443∗ .518∗ .463 .526∗ .473∗ .378∗

LAMP-4: PERSONALIZED

NEWS HEADLINE GEN.
R-1 ↑ .186 .187 .191 .196 .198 .187 .193 .191∗ .194∗ .196 .199 .189∗ .194
R-L ↑ .167 .168 .172 .176 .178 .168 .173 .171∗ .175 .177 .180∗ .170∗ .175

LAMP-5: PERSONALIZED

SCHOLARLY TITLE GEN.
R-1 ↑ .476 .478 .505 .510 .499 .486 .516 .519∗ .522∗ .511 .526∗ .490∗ .525∗

R-L ↑ .415 .418 .445 .444 .434 .429 .440 .442∗ .457∗ .440 .467∗ .428∗ .473∗

LAMP-7: PERSONALIZED

TWEET PARAPHRASING

R-1 ↑ .527 .524 .568 .577 .562 .542 .568 .539∗ .579∗ .575∗ .581∗ .542 .577∗

R-L ↑ .474 .474 .521 .527 .514 .501 .518 .483∗ .533∗ .531∗ .528∗ .492 .533∗

Table 2: Dataset statistics: We report average sequence
length in terms of number of tokens. #Q is the number
of queries, Lin and Lout are the average length of input
and output sequence respectively, and #History is the
number of adopted items. To save space, task names
can be found in Table 1.

Task in
LaMP

Base LLM Training Personal PEFT Training

#Q Lin Lout #Q #History Lin Lout

1 7,919 51.3 1.0 123 317.5 52.0 1.0
2M 3,181 92.1 1.4 3,302 55.6 92.6 2.0
2N 3,662 68.2 1.3 6,033 219.9 63.5 1.1
3 22,388 128.7 1.0 112 959.8 211.9 1.0
4 7,275 33.9 9.2 6,275 270.1 25.2 11.1
5 16,075 162.1 9.7 107 442.9 171.6 10.3
7 14,826 29.7 18.3 109 121.2 29.4 18.0

racy by 3.48% and F1-score by 3.52%, thanks to
personalized context knowledge provided through
personal PEFT.

The more retrieved items, the better perfor-
mance. Our experimental results generally in-
dicate that an increase in the number of retrieved
items correlates with improved performance. How-
ever, we also observe that some data points don’t
fit this trend, and we hypothesize that this inconsis-
tency may arise from the retrieved items introduc-
ing noise and irrelevant behavior patterns, poten-
tially complicating the model’s process of under-
standing user preferences.

6 Analysis

Performance under User Behavior Shift Re-
cent studies have shown that retrieval-augmented
generation methods tend to underperform when the
retrieved corpus does not contain highly relevant

Table 3: Performance under user behavior shift, where
we remove the user behavior history highly similar to
the query at hand. k denotes the number of retrieved
history items, and k = 0 means non-retrieval. Armed
with irrelevant user history, the retrieval-only method
falls short and performs close to the non-personalized
baseline, while OPPU shows stronger generalizability
in the user behavior shift scenario.

LaMP
Task

History
Type

Non-
Personalized

Retrieval
k=1

OPPU
k=0

OPPU
k=1

1
Acc F1 Acc F1 Acc F1 Acc F1

full
.659 .657

.659 .657 .683 .682 .675 .674
irrelevant .626 .626 .683 .683 .699 .697

3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

full
.223 .491

.214 .535 .179 .443 .196 .518
irrelevant .268 .583 .196 .463 .241 .559

5
R-1 R-L R-1 R-L R-1 R-L R-1 R-L

full
.476 .415

.505 .445 .519 .442 .522 .457
irrelevant .475 .417 .493 .437 .490 .417

7
R-1 R-L R-1 R-L R-1 R-L R-1 R-L

full
.527 .474

.571 .521 .539 .483 .579 .533
irrelevant .543 .495 .528 .482 .563 .523

documents (Shi et al., 2023; Gupta et al., 2024).
This problem is common in personalization con-
texts where the user’s behavior history does not
closely match their current queries. To simulate
this scenario, we use DeBERTa-v3 (He et al., 2022)
to extract features from the user’s historical behav-
iors and current query, computing cosine similarity
to assess relevance. We then rank the historical be-
haviors and select the top 100 items with the lowest
relevance scores as irrelevant user history.

Table 3 shows that limiting user history to less
relevant items significantly reduces the perfor-
mance of retrieval-based methods, often aligning
with non-personalized approaches. In contrast,
OPPU demonstrates stronger robustness and gen-
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Figure 3: Model performance on personalized movie
tagging and personalized tweet paraphrasing for users
with different numbers of behavior history.

eralization to less relevant history, even outper-
forming models trained with all user history items.
Additionally, the combination of parametric and
non-parametric knowledge (OPPU, k=1) enhances
robustness in personalized text generation tasks,
while models using only parametric knowledge
(OPPU, k=0) perform better in personalized text
classification tasks.

Modeling Users with Different Active Levels
In our main experiment, we focus on highly ac-
tive users. However, many users exhibit lower
activity levels, resulting in shorter behavior histo-
ries. To examine the impact of user activity levels
on model performance, we randomly selected 20
users from each activity range. Figure 3 shows
that LLMs equipped with OPPU consistently out-
perform baseline methods across various activity
levels. Key observations include: 1) The longer the
user history, the more pronounced the superiority
of retrieval + OPPU over baselines. 2) Includ-
ing non-parametric user knowledge via retrieval
improves performance compared to methods with-
out retrieval. 3) Integrating parametric knowledge
in OPPU with non-parametric knowledge from
retrieval yields the strongest performance across
different user activity levels.

Performance w.r.t. Retrieved History Items k
In this study, we alter the number of retrieved items
of both retrieval-only baseline and retrieval+OPPU
to gain a better understanding of the integration
of non-parametric and parametric user knowledge.
Figure 4 illustrates that as we increase the num-
ber of retrieved historical behavior items, both the
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Figure 4: Performance of OPPU and retrieved-only
baseline when the number of retrieved items k increases.

Table 4: Performance of OPPU with different ablated
versions of user history configurations. k refers to the
number of retrieved items, and k = 0 denotes non-
retrieval. The best score is in bold and the second best
is underlined.

Task in
LaMP History Retrieval

k=1
OPPU

k=0
OPPU

k=1

2M

w/ desc. w/ tag Acc F1 Acc F1 Acc F1

✓ .530 .488 .486 .437 .624 .539
✓ .567 .514 .499 .440 .634 .548

✓ ✓ .587 .512 .600 .493 .626 .531

5

w/ abs. w/ title R-1 R-L R-1 R-L R-1 R-L

✓ .493 .422 .497 .434 .495 .449
✓ .475 .425 .489 .430 .492 .429

✓ ✓ .505 .445 .519 .442 .522 .457

retrieval-only baselines and the retrieval+OPPU
approaches show improved performance. Interest-
ingly, we observe that as the number of retrieved
items k becomes larger, the performance difference
between the retrieval-only and retrieval+OPPU nar-
rows. This trend could be attributed to the longer
logs of user behavior history in non-parametric
prompts, which reduce the gap between the compre-
hensive user behavior history encapsulated in per-
sonalized PEFT parameters and the non-parametric
user knowledge included in the prompts.

Robustness against Task Formats Our main
results demonstrate that OPPU significantly im-
proves performance even when the user history
corpus does not strictly follow the task format. We
tested this robustness by ablating the history for-
mat in personalized movie tagging (LaMP-2M) and
personalized scholarly title generation (LaMP-5)
tasks, covering both text classification and gener-
ation categories. In both tasks, each user history
item consists of input and output aligned with the
user query xu and output yu. We ablated history
behavior items from the input and output sides,
comparing them with the retrieval baseline to test
OPPU’s robustness against mismatched formats.
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she's a patient in the same mental 
institution that currently employs…
tag: psychology

Retrieved History

+ =

🤖🤝
🧑

twist ending 
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❌
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Figure 5: Case study in the personalized movie tagging task. It is shown that the retrieval-augmented personalization
method can be easily distracted by less relevant user behavior history. In contrast, our OPPU demonstrates a more
effective and comprehensive ability to capture the user’s behavior patterns.
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Figure 6: Performance of OPPU on personalized movie
tagging and personalized scholarly title generation tasks
when equipped with different PEFT methods. We find
that a larger proportion of trainable parameters generally
results in better personalization performance.

Shown in Table 4, OPPU achieves performance
close to that with full history in the text generation
task, even with incomplete user behavior history.
In news categorization, LLMs struggle with only
parametric knowledge, but integrating retrieval aug-
mentation, OPPU shows robust performance, out-
performing models tuned on complete user his-
tory data. Overall, results reveal that combining
non-parametric and parametric knowledge makes
OPPU robust to different user history formats.

On PEFT Method Choices We propose OPPU
as a versatile PEFT-based LLM personalization
framework compatible with various PEFT meth-
ods. This study evaluates OPPU’s performance
across different PEFT approaches, including LoRA,
prompt tuning, and (IA)3, which plug in external
learnable parameters in the embedding space and
scale the attention factor, respectively. As shown
in Figure 6, OPPU enhances performance with all
three PEFT types, demonstrating its effectiveness
and versatility. Notably, LoRA typically delivers

the highest performance, followed by (IA)3, and
then prompt tuning. This hierarchy aligns with the
proportion of trainable parameters in each method:
LoRA at 0.01%, (IA)3 at 0.06%, and prompt tun-
ing at 0.001%. These results suggest that a greater
number of trainable parameters in a personalized
PEFT method generally leads to improved person-
alization performance.

Case Study To illustrate the effectiveness of
OPPU, we conduct a case study on personalized
movie tagging task for an individual user. Figure
5 shows that the non-personalized method, relying
solely on query input, ignores user behavior history
and yields incorrect answers. The retrieval-based
method, though incorporating user history, fails
to retrieve closely matched behaviors to the query,
also resulting in errors. We argue that retrieval aug-
mentation with a few user history examples cannot
fully capture user preferences. In contrast, OPPU
uses a personalized PEFT module to effectively
understand the user’s behavior patterns across the
entire user history. In this case, OPPU successfully
recognizes the user’s frequent tagging of “based on
a book" and provides the correct response.

Similarities Between Personalized PEFTs To
understand how user behavior patterns are reflected
in their private PEFT parameters, we analyze the
cosine similarities between these parameters across
different users, as shown in Figure 7. We select
two representative tasks from text classification and
generation categories and compute the cosine simi-
larities for 100 users’ PEFT parameters in the test
set. The private PEFT similarities generally range
from 0.4 to 0.7, with the highest average similari-
ties observed in the scholarly title generation task,
likely due to its task-specific nature. Relative differ-
ences among users offer additional insights: in per-
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Figure 7: Similarities between personal PEFT parameters under personalized text classification and generation.

sonalized text classification tasks, similarities vary
more, indicating that some users have higher sim-
ilarities than others. Conversely, in personalized
text generation tasks, the similarities are relatively
uniform, suggesting that personal preferences in
these tasks are harder to categorize.

7 Related Work

7.1 Personalization of LLMs

The thrust of existing LLM personalization re-
search is centered on designing prompts that in-
corporate historical user-generated content and be-
havior. These approaches help LLMs understand
users’ preferences, tailoring responses to individual
needs (Tan and Jiang, 2023; Chen et al., 2023). The
endeavors towards personalized LLMs mainly fall
into three categories: vanilla, retrieval-augmented,
and profile-augmented personalized prompts.

In the vanilla personalized prompt category, re-
searchers use in-context and few-shot learning to
encode either complete or a sample of user be-
havior history as contextual examples (Liu et al.,
2023a; Wang et al., 2023). For instance, Dai et al.
(2023) and Kang et al. (2023) encode the user’s
personal rating history as few-shot demonstration
examples. Moreover, some research works (Chris-
takopoulou et al., 2023; Zhiyuli et al., 2023) also
discovered a long user history would bring bet-
ter performance. To manage the growing user be-
havior data and LLMs’ limited context windows,
the retrieval-augmented personalized prompt ap-
proach has emerged (Salemi et al., 2023; Li et al.,
2023). For instance, Pearl (Mysore et al., 2023)
proposes a generation-calibrated retriever to se-
lect historic user-authored documents for prompt
augmentation. Beyond simple retrieval, some re-
searchers summarize user preferences and behavior
patterns into natural language profiles for input
query augmentation, termed profile-augmented per-
sonalized prompts (Liu et al., 2023b; Sun et al.,
2024). Richardson et al. (2023) use the instruction-

tuned LLMs to generate an abstract summary of
user history data, augmenting retrieval-based per-
sonalization methods. There is also another line
of work focusing on personalized alignment meth-
ods via parameter merging (Jang et al., 2023) and
personalized reward model (Cheng et al., 2023).

7.2 Parameter-Efficient Fine-tuning (PEFT)

With the exponential growth in LLM parameters,
fine-tuning all parameters is expensive (Liu et al.,
2022b; Xu et al., 2023; Gupta et al., 2024; Jian
et al., 2024). To address this, parameter-efficient
fine-tuning (PEFT) methods update only a small
number of extra parameters while keeping pre-
trained weights frozen (He et al., 2021; Fu et al.,
2023; Liu et al., 2024; Dou et al., 2024; Zhang
et al., 2024). For example, adapter tuning (Houlsby
et al., 2019) injects learnable parameters into each
feedforward layer, updating only these during fine-
tuning. Inspired by discrete textual prompts (Sanh
et al., 2022; Wang et al., 2022), prefix tuning (Li
and Liang, 2021) and prompt tuning (Lester et al.,
2021) optimize prompts and prefixes for specific
tasks. LoRA (Hu et al., 2021) adds low-rank matri-
ces to approximate parameter updates, and (IA)3

(Liu et al., 2022a) scales activation in the attention
mechanism. These methods achieve performance
comparable to full fine-tuning by updating less than
1% of the original parameters, are effective against
catastrophic forgetting (Pfeiffer et al., 2021), and
are robust to out-of-distribution samples (Li and
Liang, 2021).

Previous works focused on prompt design, lim-
ited by model ownership and user behavior shifts.
PEFT’s small number of updated parameters and
plug-and-play nature make it ideal for efficient
LLM personalization and model ownership. OPPU
introduces personalization at the parametric level
via a personal PEFT module, pioneers storing user
history within personal PEFT parameters, equip-
ping each user with a unique, easily integrable
PEFT module for model ownership.
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8 Conclusion

We introduced OPPU, equipping each user with a
personal PEFT module that facilitates model own-
ership and generalization under behavior shifts.
By tuning these parameters with a user’s history,
OPPU captured personalized behavioral patterns.
It integrated non-parametric user knowledge via
retrieval and user profiles, showing superior per-
formance across all seven LaMP benchmark tasks.
Additional experiments demonstrated OPPU’s ver-
satility, robustness, and effectiveness for users with
varying activity levels. Our framework paved the
way for new opportunities in PEFT-based LLM
personalization, enhancing LLM modularity for
effective and democratized personalization.

9 Limitations

We identify three key limitations in OPPU. Firstly,
limited by the dataset, we mainly focus on one
specific task per user rather than examining user
behaviors across multiple tasks and domains. For
example, in the movie tagging task, users are solely
engaged in that specific activity, without the inclu-
sion of behaviors from other areas. Despite this,
the OPPU framework is inherently adaptable to
any text sequence generation task and is capable
of conducting diverse user instructions across dif-
ferent tasks and domains. The exploration of LLM
personalization across a broader range of tasks and
domains remains an area for future investigation.
Secondly, OPPU serves as a general framework
that incorporates the entirety of a user’s behavior
history into their private PEFT module. However,
user interests are dynamic and may display incon-
sistencies or conflicts over time. Future research
directions include examining methodologies for se-
lecting the most relevant or valuable items from a
user’s history and devising strategies to effectively
manage any discrepancies or conflicts within this
historical data.

10 Ethical Considerations

Privacy Personalization in LLMs involves tailor-
ing responses based on user-specific data, which
may include sensitive or private information. The
capacity of an LLM to adapt its outputs to indi-
vidual users raises privacy concerns, as it might
inadvertently reveal personal details. This under-
scores the importance of implementing robust pri-
vacy safeguards in LLM personalization, ensuring

that personal data is handled respectfully and se-
curely to prevent any unintended disclosures.

Data Bias Personalizing LLMs heavily relies on
the personal data fed into the system. If this per-
sonal data is biased or unrepresentative, the model’s
outputs could potentially perpetuate these biases,
leading to unfair or prejudiced responses. It is
crucial to monitor and mitigate such biases in the
personal data and the personalized model we ob-
tain to ensure that personalized LLMs are fair and
harmless in their responses.

Accessibility By advancing the field of LLM per-
sonalization, we aim to enrich user interactions
with AI systems. However, the complexity and
resource-intensive nature of LLMs might pose ac-
cessibility challenges. Smaller entities or individ-
ual researchers with limited computational power
and budgetary constraints might find it difficult to
engage with advanced personalized LLMs, poten-
tially widening the gap in AI research and applica-
tion. It is essential to develop strategies that make
personalized LLM technologies more accessible to
a broader range of users and researchers, ensuring
equitable progress in this domain.

11 Acknowledgements

This work was supported by NSF IIS-2119531,
IIS-2137396, IIS-2142827, IIS-2234058, CCF-
1901059, and ONR N00014-22-1-2507.

References
Jinheon Baek, Nirupama Chandrasekaran, Silviu

Cucerzan, Sujay Kumar Jauhar, et al. 2023.
Knowledge-augmented large language models for
personalized contextual query suggestion. arXiv
preprint arXiv:2311.06318.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu,
Gangwei Jiang, Yuanhao Pu, Yuxuan Lei, Xiaolong
Chen, Xingmei Wang, et al. 2023. When large lan-
guage models meet personalization: Perspectives
of challenges and opportunities. arXiv preprint
arXiv:2307.16376.

Junyi Chen. 2023. A survey on large language models
for personalized and explainable recommendations.
arXiv preprint arXiv:2311.12338.

Pengyu Cheng, Jiawen Xie, Ke Bai, Yong Dai, and
Nan Du. 2023. Everyone deserves a reward:
Learning customized human preferences. Preprint,
arXiv:2309.03126.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan

6484

https://arxiv.org/abs/2309.03126
https://arxiv.org/abs/2309.03126


Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023).

Konstantina Christakopoulou, Alberto Lalama,
Cj Adams, Iris Qu, Yifat Amir, Samer Chucri, Pierce
Vollucci, Fabio Soldo, Dina Bseiso, Sarah Scodel,
et al. 2023. Large language models for user interest
journeys. arXiv preprint arXiv:2305.15498.

Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu,
Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang,
and Jun Xu. 2023. Uncovering chatgpt’s capa-
bilities in recommender systems. arXiv preprint
arXiv:2305.02182.

Cosmina Andreea Dejescu, Lucia V Bel, Iulia Melega,
Stefana Maria Cristina Muresan, and Liviu Ioan Oana.
2023. Approaches to laparoscopic training in veteri-
nary medicine: A review of personalized simulators.
Animals, 13(24):3781.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding,
and Eric Wong. 2024. Avoiding copyright in-
fringement via machine unlearning. arXiv preprint
arXiv:2406.10952.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai
Lam, Lidong Bing, and Nigel Collier. 2023. On the
effectiveness of parameter-efficient fine-tuning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 12799–12807.

Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong,
Haofen Wang, and Jiawei Zhang. 2023. Chat-
rec: Towards interactive and explainable llms-
augmented recommender system. arXiv preprint
arXiv:2303.14524.

Dmitri Goldenberg, Kostia Kofman, Javier Albert, Sarai
Mizrachi, Adam Horowitz, and Irene Teinemaa. 2021.
Personalization in practice: Methods and applica-
tions. In Proceedings of the 14th ACM international
conference on web search and data mining, pages
1123–1126.

Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, and
Dawei Yin. 2020. Hierarchical user profiling for
e-commerce recommender systems. In Proceedings
of the 13th International Conference on Web Search
and Data Mining, pages 223–231.

Aman Gupta, Anup Shirgaonkar, Angels de Luis Bal-
aguer, Bruno Silva, Daniel Holstein, Dawei Li, Jen-
nifer Marsman, Leonardo O Nunes, Mahsa Rouzbah-
man, Morris Sharp, et al. 2024. Rag vs fine-tuning:
Pipelines, tradeoffs, and a case study on agriculture.
arXiv preprint arXiv:2401.08406.

Charles R Harris, K Jarrod Millman, Stéfan J Van
Der Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming
with numpy. Nature, 585(7825):357–362.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2022.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. In The Eleventh International Conference on
Learning Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong
Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu.
2023. Personalized soups: Personalized large lan-
guage model alignment via post-hoc parameter merg-
ing. arXiv preprint arXiv:2310.11564.

Yiren Jian, Tingkai Liu, Yunzhe Tao, Chunhui Zhang,
Soroush Vosoughi, and Hongxia Yang. 2024. Ex-
pedited training of visual conditioned language gen-
eration via redundancy reduction. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers,
Oral Presentation).

Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Mah-
eswaran Sathiamoorthy, Lichan Hong, Ed Chi, and
Derek Zhiyuan Cheng. 2023. Do llms understand
user preferences? evaluating llms on user rating pre-
diction. Preprint, arXiv:2305.06474.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Cheng Li, Mingyang Zhang, Qiaozhu Mei, Yaqing
Wang, Spurthi Amba Hombaiah, Yi Liang, and
Michael Bendersky. 2023. Teach llms to personalize–
an approach inspired by writing education. arXiv
preprint arXiv:2308.07968.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In

6485

https://arxiv.org/abs/2305.06474
https://arxiv.org/abs/2305.06474
https://arxiv.org/abs/2305.06474
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353


Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022a. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan
Zhang. 2023a. Is chatgpt a good recommender? a
preliminary study. arXiv preprint arXiv:2304.10149.

Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming
Wu. 2023b. Once: Boosting content-based recom-
mendation with both open- and closed-source large
language models. Preprint, arXiv:2305.06566.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022b. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun
Tian, and Meng Jiang. 2024. Towards safer large
language models through machine unlearning. arXiv
preprint arXiv:2402.10058.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva,
Harish Tayyar Madabushi, and Iryna Gurevych.
2023. Are emergent abilities in large language
models just in-context learning? arXiv preprint
arXiv:2309.01809.

Zhengyi Ma, Zhicheng Dou, Yutao Zhu, Hanxun Zhong,
and Ji-Rong Wen. 2021. One chatbot per person:
Creating personalized chatbots based on implicit user
profiles. In Proceedings of the 44th international
ACM SIGIR conference on research and development
in information retrieval, pages 555–564.

Sheshera Mysore, Zhuoran Lu, Mengting Wan,
Longqi Yang, Steve Menezes, Tina Baghaee, Em-
manuel Barajas Gonzalez, Jennifer Neville, and Tara
Safavi. 2023. Pearl: Personalizing large language
model writing assistants with generation-calibrated
retrievers. arXiv preprint arXiv:2311.09180.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,

high-performance deep learning library. Advances in
neural information processing systems, 32.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503.

Muh Putra Pratama, Rigel Sampelolo, and Hans Lura.
2023. Revolutionizing education: harnessing the
power of artificial intelligence for personalized learn-
ing. Klasikal: Journal of Education, Language
Teaching and Science, 5(2):350–357.

Xueming Qian, He Feng, Guoshuai Zhao, and Tao
Mei. 2013. Personalized recommendation combining
user interest and social circle. IEEE transactions on
knowledge and data engineering, 26(7):1763–1777.

Chris Richardson, Yao Zhang, Kellen Gillespie, Sudipta
Kar, Arshdeep Singh, Zeynab Raeesy, Omar Zia
Khan, and Abhinav Sethy. 2023. Integrating sum-
marization and retrieval for enhanced personaliza-
tion via large language models. arXiv preprint
arXiv:2310.20081.

Alireza Salemi, Sheshera Mysore, Michael Bendersky,
and Hamed Zamani. 2023. Lamp: When large lan-
guage models meet personalization. arXiv preprint
arXiv:2304.11406.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
et al. 2022. Multitask prompted training enables
zero-shot task generalization. In ICLR 2022-Tenth
International Conference on Learning Representa-
tions.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pages
31210–31227. PMLR.

Biplav Srivastava, Francesca Rossi, Sheema Usmani,
and Mariana Bernagozzi. 2020. Personalized chat-
bot trustworthiness ratings. IEEE Transactions on
Technology and Society, 1(4):184–192.

Chenkai Sun, Ke Yang, Revanth Gangi Reddy, Yi R
Fung, Hou Pong Chan, ChengXiang Zhai, and
Heng Ji. 2024. Persona-db: Efficient large lan-
guage model personalization for response prediction
with collaborative data refinement. arXiv preprint
arXiv:2402.11060.

Zhaoxuan Tan and Meng Jiang. 2023. User mod-
eling in the era of large language models: Cur-
rent research and future directions. arXiv preprint
arXiv:2312.11518.

6486

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2305.06566
https://arxiv.org/abs/2305.06566
https://arxiv.org/abs/2305.06566
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm25 and language models
examined. In Proceedings of the 19th Australasian
Document Computing Symposium, pages 58–65.

Danqing Wang, Kevin Yang, Hanlin Zhu, Xiaomeng
Yang, Andrew Cohen, Lei Li, and Yuandong Tian.
2023. Learning personalized story evaluation. arXiv
preprint arXiv:2310.03304.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, et al. 2022. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5085–5109.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
Transactions on Machine Learning Research.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Chuhan Wu, Fangzhao Wu, Yongfeng Huang, and
Xing Xie. 2023. Personalized news recommenda-
tion: Methods and challenges. ACM Transactions on
Information Systems, 41(1):1–50.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language models:
A critical review and assessment. arXiv preprint
arXiv:2312.12148.

Chunhui Zhang, Yiren Jian, Zhongyu Ouyang, and
Soroush Vosoughi. 2024. Working memory identifies
reasoning limits in language models. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing.

Aakas Zhiyuli, Yanfang Chen, Xuan Zhang, and Xun
Liang. 2023. Bookgpt: A general framework for
book recommendation empowered by large language
model. arXiv preprint arXiv:2305.15673.

6487



Table 5: Hyperparameter settings of OPPU accross
various tasks on LaMP benchmark. We find our hyper-
parameter settings robust across all 7 tasks.

Tasks rank #epoch lr R2 reg. batch size

LAMP-1: PERSONALIZED

CITATION IDENTIFICATION
8 3 1e−5 1e−2 16

LAMP-2: PERSONALIZED

NEWS CATEGORIZATION
8 3 1e−5 1e−2 16

LAMP-2: PERSONALIZED

MOVIE TAGGING
8 3 1e−5 1e−2 4

LAMP-3: PERSONALIZED

PRODUCT RATING
8 3 1e−5 1e−2 3

LAMP-4: PERSONALIZED

NEWS HEADLINE GENERATION
8 2 1e−5 1e−1 8
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Figure 8: Efficiency analysis of OPPU, in which we
alter the number of history items and average token per
history item and record the training time.

A Hyperparameters

The hyperparameters of OPPU are presented in
Table 5 to facilitate further research. For LoRA, we
add trainable low-rank matrice in the Wq and Wv

B Efficiency Analysis

Personalization is a technique that aims at univer-
sally benefiting everyone, where scalability and
efficiency are crucial factors in large-scale deploy-
ment. In this experiment, we study the training
efficiency of our proposed OPPU. We specifically
examine two critical factors: the number of user
history items and the average token numbers per
history item across classification and generation
tasks. Given that the training of each user’s private
PEFT can occur simultaneously or in a distributed
manner, we choose not to consider the user count
factor in this scenario, concentrating instead on the
efficiency of training for an individual user. Ini-
tially, we set a consistent count of 100 whitespace-
separated tokens for each history entry and vary
the number of history items from 10 to 100. We
then fix the history item count at 10 and adjust the
token count from 10 to 100. The training time for
each configuration, necessary for users to develop
their personal PEFT modules. Presented in Figure
8, the results suggest that training time increases

linearly with the number of user history items. The-
oretically, training time grows quadratically with
the increase in average tokens per history entry, yet
our observations indicate a trend more akin to lin-
ear growth. It’s noteworthy that the longer training
durations for personalized movie tagging tasks, as
opposed to personalized tweet paraphrasing, are
attributed to different training epochs.

C Baseline Details

The baseline details are presented as follows:

• Non-Personalized Baseline: We present two
approaches under the non-personalized setting:
non-retrieval and random history. Non-retrieval
method refers to only feeding the user’s query
without revealing the user’s behavior history to
the LLMs. Random history baseline means aug-
menting the user’s query with random history
behavior from all user history corpus.

• Retrieval-Augmented Personalization (RAG):
We follow the retrieval-augmented personaliza-
tion method presented in LaMP (Salemi et al.,
2023), where the user’s query is augmented with
top k retrieved items from the corresponding
user’s history corpus. We take k=1, 2, 4 in this
work.

• Profile-Augmented Personalization (PAG):
This method is taken from Richardson et al.
(2023), in which the user’s input sequence would
concatenate the user’s profile summarizing the
user’s preference and behavior patterns. In our
experiments, we generate user profiles using the
vicuna-7B (Chiang et al., 2023) model. More-
over, the profile-augmented method could be
combined with the retrieval augmentation. In
this case, we take the number of retrieval items
k=1 following the setting of Richardson et al.
(2023).

D Scientific Artifacts

OPPU is built with the help of many existing sci-
entific artifacts, including PyTorch (Paszke et al.,
2019), Numpy (Harris et al., 2020), huggingface
transformers (Wolf et al., 2020), and bitsandbytes
(Dettmers et al., 2022). We will make the OPPU
implementation publicly available to facilitate fur-
ther research.
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E Computation Resources Details

All experiments are implemented on a server with 3
NVIDIA A6000 GPU and Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz with 20 CPU cores. Train-
ing 100 personal PEFT sequentially took around
12 minutes to 12 hours depending on the size of the
behavior history corpus and the sequence length
per history item.

F PEFT Cosine Similarity Details

Each user’s private PEFT parameters contain mul-
tiple learnable tensors, we first flatten the tensors
and calculate the cosine similarities between cor-
responding private PEFT parameters, then average
cosine similarities for each pair of PEFT modules.
A pseudo-code using PyTorch is as follows:

def cosine_similarity(PEFT_1, PEFT_2):
similarity_sum = 0
count = 0
for key in PEFT_1:

if key in PEFT_2:
v1 = PEFT_1[key].flatten()
v2 = PEFT_2[key].flatten()

dot = torch.dot(v1, v2)
norm_1 = torch.linalg.norm(v1)
norm_2 = torch.linalg.norm(v2)

similarity = dot / (norm_1 * norm_2)
similarity_sum += similarity
count += 1

return similarity_sum / count

G Task Details

We present the task details as follows to help read-
ers gain a better understanding of the task format.

• Personalized Citation Identification is a binary
text classification task. Specifically, given user u
writes a paper x, the task aims to make the model
determine which of the two candidate papers u
will cite in paper x based on the user’s history
data, which contains the publications of user u.

• Personalized News Categorization is a 15-way
text classification task to classify news articles
written by a user u. Formally, given a news ar-
ticle x written by user u, the language model is
required to predict its category from the set of
categories based on the user’s history data, which

contains the user’s past article and corresponding
category.

• Personalized Movie Tagging is a 15-way text
classification task to make tag assignments
aligned with the user’s history tagging prefer-
ence. Specifically, given a movie description x,
the model needs to predict one of the tags for the
movie x based on the user’s historical movie-tag
pairs.

• Personalized Product Rating is a 5-way text
classification task and can also be understood as
a regression task. Given the user u’s historical re-
view and rating pairs and the input review x, the
model needs to predict the rating corresponding
to x selected from 1 to 5 in integer.

• Personalized News Headline Generation is a
text generation task to test the model’s ability
to capture the stylistic patterns in personal data.
Given a query x that requests to generate a news
headline for an article, as well as the user profile
that contains the author’s historical article-title
pairs, the model is required to generate a news
headline specifically for the given user.

• Personalized Scholarly Title Generation is a
text generation task to test personalized text gen-
eration tasks in different domains. In this task,
we require language models to generate titles for
an input article x, given a user profile of historical
article-title pairs for an author.

• Personalized Tweet Paraphrasing is also a text
generation task that tests the model’s capabili-
ties in capturing the stylistic patterns of authors.
Given a user input text x and the user profile of
historical tweets, the model is required to para-
phrase x into y that follows the given user’s tweet
pattern.

H Prompt for Personalization Tasks

We present the prompt used in our experiments
in this section, where the text in {BRACES} can be
replaced with content specific to different users and
queries.

H.1 Personalized Citation Identification

{USER PROFILE}
{RETRIEVED HISTORY}
Identify the most relevant reference for the listed
publication by the researcher. Select the reference
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paper that is most closely related to the researcherś
work. Please respond with only the number that
corresponds to the reference.
paper title: {QUERY PAPER TITLE}

reference: [1] - {OPTION1} [2] - {OPTION2}
answer:

H.2 Personalized News Categorization

{USER PROFILE}

{RETRIEVED HISTORY}

Which category does this article relate to among
the following categories? Just answer with the
category name without further explanation. cate-
gories: [travel, education, parents, style & beauty,
entertainment, food & drink, science & technology,
business, sports, healthy living, women, politics,
crime, culture & arts, religion]
article: {QUERY ARTICLE} category:

H.3 Personalized Movie Tagging

{USER PROFILE}

{RETRIEVED HISTORY}

Which tag does this movie relate to among the fol-
lowing tags? Just answer with the tag name without
further explanation. tags: [sci-fi, based on a book,
comedy, action, twist ending, dystopia, dark com-
edy, classic, psychology, fantasy, romance, thought-
provoking, social commentary, violence, true story]
description: {QUERY DESCRIPTION} tag:

H.4 Personalized Product Rating

{USER PROFILE}

{RETRIEVED HISTORY}

What is the score of the following review on a scale
of 1 to 5? just answer with 1, 2, 3, 4, or 5 without
further explanation.
review: {QUERY REVIEW} score:

H.5 Personalized News Headline Generation

{USER PROFILE}

{RETRIEVED HISTORY}

Generate a headline for the following article.
article: {QUERY ARTICLE} headline:

H.6 Personalized Scholarly Title Generation

{USER PROFILE}

{RETRIEVED HISTORY}

Generate a title for the following abstract of a paper.
abstract: {QUERY ABSTRACT} title:

H.7 Personalized Tweet Paraphrasing
{USER PROFILE}
{RETRIEVED HISTORY}
Following the given pattern, paraphrase the follow-
ing text into tweet without any explanation before
or after it.
text: {QUERY TEXT} tweet:

I Prompt for User Profile Generation

For user profile generation, we follow the prompt
template in Richardson et al. (2023).

I.1 Personalized Citation Identification
Write a summary, in English, of the research inter-
ests and topics of a researcher who has published
the following papers. Only generate the summary,
no other text. User History: {USER HISTORY} An-
swer:

I.2 Personalized News Categorization
Look at the following past articles this journalist
has written and determine the most popular cate-
gory they write in. Answer in the following form:
most popular category: <category>. User History:
{USER HISTORY} Answer:

I.3 Personalized Movie Tagging
Look at the following past movies this user has
watched and determine the most popular tag they
labeled. Answer in the following form: most pop-
ular tag: <tag>. User History: {USER HISTORY}
Answer:

I.4 Personalized Product Rating
Based on this user’s past reviews, what are the most
common scores they give for positive and nega-
tive reviews? Answer in the following form: most
common positive score: <most common positive
score>, most common negative score: <most com-
mon negative score>. User History: Answer:Look
at the following past movies this user has watched
and determine the most popular tag they labeled.
Answer in the following form: most popular tag:
<tag>. User History: {USER HISTORY} Answer:

I.5 Personalized News Headline Generation
Given this author’s previous articles, try to describe
a template for their headlines. I want to be able to
accurately predict the headline gives one of their
articles. Be specific about their style and word-
ing, don’t tell me anything generic. User History:
{USER HISTORY} Answer:

6490



I.6 Personalized Scholarly Title Generation
Given this author’s previous publications, try to de-
scribe a template for their titles. I want to be able to
accurately predict the title of one of the papers from
the abstract. Only generate the template descrip-
tion, nothing else. User History: {USER HISTORY}
Answer:

I.7 Personalized Tweet Paraphrasing
Given this person’s previous tweets, try to
describe a template for their tweets. I want
to take a generic sentence and rephrase it to
sound like one of their tweets, with the same
style/punctuation/capitalization/wording/tone/etc.
as them. Only give me the template description,
nothing else. User History: {USER HISTORY}
Answer:
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