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Abstract

Recent advances in Large Language Models
(LLM) have led to substantial interest in their
application to commonsense reasoning tasks.
Despite their potential, LLMs are susceptible to
reasoning errors and hallucinations that may be
harmful in use cases where accurate reasoning
is critical. This challenge underscores the need
for verifiable, debuggable, and repairable LLM
reasoning. Recent works have made progress
toward verifiable reasoning with LLMs by us-
ing them as either (i) a reasoner over an ax-
iomatic knowledge base, or (ii) a semantic
parser for use in existing logical inference sys-
tems. However, both settings are unable to
extract commonsense axioms from the LLM
that are not already formalized in the knowl-
edge base, and also lack a reliable method to
repair missed commonsense inferences. In this
work, we present LLM-TRes, a logical reason-
ing framework based on the notion of “theory
resolution” that allows for seamless integration
of the commonsense knowledge from LLMs
with a verifiable logical reasoning framework
that mitigates hallucinations and facilitates de-
bugging of the reasoning procedure as well as
repair. We crucially prove that repaired axioms
are theoretically guaranteed to be given prece-
dence over flawed ones in our theory resolution
inference process. We conclude by evaluat-
ing on three diverse language-based reasoning
tasks – preference reasoning, deductive reason-
ing, and causal commonsense reasoning – and
demonstrate the superior performance of LLM-
TRes vs. state-of-the-art LLM-based reasoning
methods in terms of both accuracy and reason-
ing correctness.

1 Introduction

The rise of Large Language Models (LLMs) has
marked a pivotal moment in the real-world de-
ployment of AI, particularly due to the excep-
tional ability of LLMs to handle complex reason-
ing tasks (Chang et al., 2024; Huang and Chang,

2023). Research has shown that LLMs have ac-
quired significant commonsense knowledge (Zhao
et al., 2024; Bian et al., 2023), which is crucial
for engaging with real-world users in tasks such as
question answering (Singhal et al., 2023) and rec-
ommendation (Sanner et al., 2023). Unfortunately,
LLMs are prone to a variety of reasoning errors; for
example, they commonly incorporate superficially
plausible but factually incorrect information into
their reasoning in a phenomenon known as hallu-
cination (Zhang et al., 2023b; Ji et al., 2023; Guo
et al., 2024). Furthermore, since the underlying
reasoning process of the LLM is latent and hence
largely opaque, validating reasoning soundness and
identifying errors remains an open research prob-
lem. Such issues present a significant challenge to
the reliability of using LLMs as reasoning systems,
which impedes their practical utility (Mallen et al.,
2023).

In light of these obstacles, recent research has
proposed methodologies for extracting verifiable
reasoning from LLMs by leveraging formal reason-
ing procedures. Such works fall under two main
categories: (i) Using the LLM as a reasoner across
an axiomatic knowledge base, while organizing the
reasoning process into simpler subgoals to facili-
tate soundness of the overall reasoning (Kazemi
et al., 2023). (ii) Leveraging the LLM as a se-
mantic parser that translates natural language state-
ments into logical axioms, followed by the use of
an off-the-shelf theorem prover to perform logical
reasoning (Pan et al., 2023; Olausson et al., 2023).
While these seminal works have made progress
towards verifiable LLM reasoning, their applica-
tion in real-world tasks requiring commonsense
reasoning is limited since they all suffer from the
inability to extract verifiable commonsense axioms
from the LLM that are not already formalized in
the provided knowledge base axioms. Hence, these
existing methodologies critically lack the ability
to leverage the LLM as a verifiable commonsense
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Figure 1: Preference reasoning is used as an illustrative example to show the LLM-TRes workflow. Top:
LLM-based theory resolution is performed to calculate proof scores of two candidate Recipes entailing the
Query. The proof begins from the negated query, and for each resolvent clause, a priority score tuple:
(proof plausibility score, proof length) is calculated and pushed to a priority queue (only Recipe 2 clauses are
shown here). At each step, the clause with the highest priority in the queue becomes the active clause. Here, due
to a flawed low probability assigned to “catfish” entailing “seafood”, the proof score of Recipe 2 is mistakenly
calculated lower than it should be. Bottom: After insertion of the Repair Axiom, the erroneous reasoning is repaired,
leading to a higher score for the correct Recipe 2.

reasoner to fill-in inevitable knowledge base gaps.
Furthermore, these methods lack any mechanism
for repairing reasoning mistakes after detection.

To address these challenges, we propose LLM-
TRes, a formal reasoning framework using LLMs.
LLM-TRes satisfies three key desiderata that we
illustrate through the worked example in Figure 1:
(i) Verifiability: allowing for verification of every
step in the reasoning process (i.e., from each suc-
cessful refutation resolution ⊥, one can backtrace
the entire proof of the Query). (ii) Debuggability:
being able to identify the incorrect inferences that
led to a reasoning mistake (i.e., we observe an in-
correct low probability LLM inference that “catfish”
entails “seafood” for Recipe 2). (iii) Repairability:
enabling a deterministic and reliable mechanism
for rectifying the identified errors to produce cor-
rect inference (e.g., once we add the the explicit Re-
pair Axiom ∀y “catfish”(y) ⇒ “seafood”(y), we
arrive at a much higher proof plausibility for the
correct preference match of the query to Recipe 2).

Formally, LLM-TRes is based on the concept
of theory resolution (Stickel, 1985; Baumgartner,
1992), drawn from classical logical reasoning that
enables the integration of specialized reasoners
into the resolution theorem-proving inference rule.
Leveraging theory resolution, LLM-TRes seam-
lessly incorporates LLMs as specialized reasoners
equipped with commonsense knowledge into veri-
fiable logical reasoning. This integration enables
extraction of relevant commonsense axioms from
the LLM that cannot otherwise be obtained from
the knowledge base. Finally, by capitalizing on a
specially defined selection rule in our resolution
framework, we formally prove that repairing flawed
reasoning by the LLM is possible by providing cor-
rect axioms that are theoretically guaranteed to
override the LLM’s flawed reasoning.

In summary, we contribute the following:

• We propose LLM-TRes, a formal reasoning
framework founded on theory resolution that
allows for incorporating the internal knowl-
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edge of the LLMs in a formal reasoning pro-
cess to mitigate their hallucinations.

• We demonstrate that LLM-TRes provides
a fully verifiable and debuggable reasoning
scheme by granting access to all reasoning
steps at an atomic level.

• We provide a mechanism for correcting errors
in the reasoning process with a theoretical
guarantee of prioritizing correct Repair Ax-
ioms over incorrect LLM inferences.

• We experiment with LLM-TRes on three dis-
tinct tasks – preference reasoning, deductive
reasoning, and causal commonsense reason-
ing – demonstrating superior accuracy and
reasoning correctness compared to Chain of
Thought (CoT) (Wei et al., 2022) prompting
in LLMs (much larger in size) and LAM-
BADA (Kazemi et al., 2023), a state-of-the-art
formal reasoning framework.

2 Related Works

Reasoning with LLMs While their primary de-
sign was for text generation, LLMs exhibit re-
markable performance in many other NLP tasks
that require a variety of reasoning skills (Chang
et al., 2024; Xu et al., 2023). Despite such im-
pressive capabilities, errors and hallucinations that
can commonly occur in LLM reasoning have moti-
vated research on obtaining dependable reasoning
from LLMs while leveraging their intrinsic knowl-
edge (Toroghi et al., 2024). In this regard, several
approaches have been proposed to elicit stronger
reasoning performance from LLMs such as Chain-
of-Thought prompting (Wei et al., 2022; Kojima
et al., 2022), Self-Consistency (Wang et al., 2022),
Least-to-Most prompting (Zhou et al., 2022), and
Selection-Inference (Creswell et al., 2022). De-
spite being effective in improving reasoning perfor-
mance, all these methods follow an informal rea-
soning procedure in which the LLM is in charge of
performing reasoning and thus does not guarantee
the faithfulness of the reasoning process (Shanahan,
2024; Pan et al., 2023). For instance, the reasoning
ability of these methods may be unreliable for tasks
requiring out-of-domain reasoning (Saparov et al.,
2024; Liang et al., 2022), tasks involving nega-
tion (Anil et al., 2022), and often degrades with
an increase in the length of reasoning steps (Dziri
et al., 2024).

Formal Reasoning with LLMs To obtain reli-
able and verifiable reasoning from LLMs, a number

of works have proposed the idea of using LLMs
in a formal reasoning framework — a systematic
and logical process governed by a set of rules and
principles (Galotti, 1989). Two main approaches
have been proposed in this regard. In the first ap-
proach, the LLM is utilized to perform different
sub-tasks of a formal logical inference rule to rea-
son over an axiomatic knowledge base. For ex-
ample, LAMBADA (Kazemi et al., 2023) uses the
LLM to perform goal decomposition, rule selection,
and fact-checking in a backward chaining process.
In a related vein, SymBa (Lee and Hwang, 2024)
introduces a top-down solver to control the proof
process and uses the LLM as an aide to the solver.
In the second approach, LLMs are used as a se-
mantic parser to translate natural language axioms
and facts to a specific logical format; here the re-
sponsibility of inference is delegated to a symbolic
theorem prover. LogicLM (Pan et al., 2023) uses
this idea with a self-refinement mechanism to al-
low the LLM to refine its symbolic conversions.
Since LLMs commonly make syntactic and seman-
tic errors in the parsing process, LINC (Olausson
et al., 2023) performs majority voting over multiple
solutions to obtain the final result.

These works have made significant progress in
increasing the reliability and verifiability of LLM
reasoning. However, they only utilize axioms that
are explicitly provided in the knowledge base, and
lack the ability to leverage the intrinsic common-
sense knowledge of the LLM by extracting com-
monsense axioms. This prevents existing methods
from incorporating verifiable LLM-derived com-
monsense knowledge in their reasoning, which is
often critical in practical deployed usage. More-
over, these existing methods do not support a reli-
able mechanism for rectifying incorrect reasoning
steps. We aim to address all of these limitations
with our contribution of the LLM-TRes framework.

3 Methodology: LLM-based Theory
Resolution (LLM-TRes)

We first introduce the resolution rule and the con-
cept of theory resolution and then explain our LLM-
based Theory Resolution (LLM-TRes) methodol-
ogy. For the logical knowledge representation in
this work, we assume a function- and equality-free
first-order logical (FOL) syntax (Chang and Lee,
2014) with all FOL sentences translated to clausal
normal form as demonstrated in Figure 1.
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Resolution Rule Resolution is a sound and com-
plete inference rule that performs inference by de-
riving a resolvent clause from two premise clauses
containing complementary literals. Given two FOL
sentences in clausal form, a new clause can be de-
rived via resolution of their complementary literals,
e.g.,

A(x) ∨B(x) ¬B(y) ∨ C(y)

A(x) ∨ C(x)
,

(1)

under the unification θ = {x/y}. Following this
procedure, new clauses are derived until either
a contradiction ⊥ is found (e.g., deriving both
clauses A(x) and ¬A(x) that resolve to ⊥), or no
further resolutions are possible. Finding a contra-
diction implies that the original set of clauses is
inconsistent. Therefore, given the knowledge base
K and a query q, to prove thatK ⊢ q, one can apply
the resolution inference rule to show that K ∧ ¬q
leads to a contradiction ⊥.

Theory Resolution Theory resolution (Stickel,
1985) is a methodology that enables the integra-
tion of special purpose reasoning theories into res-
olution theorem proving. Based on theory reso-
lution, given two clauses c1 = A(x) ∨ B(x) and
c2 = C(x)∨D(x), if a theorem prover T identifies
B(x) and ¬C(y) under unification θ = {x/y} to
be unsatisfiable (i.e., ∀xB(x) ∧ ¬C(x) ⊢T ⊥), de-
spite lacking complementary literals with identical
predicates, the two clauses can still be resolved:

A(x) ∨B(x) ¬C(y) ∨D(y)

A(x) ∨D(x)
.

(2)

Theory resolution considerably broadens the appli-
cability of the resolution inference rule by lifting
the condition of resolving only complementary lit-
erals. In this work, we use an LLM as the theory
that identifies the unsatisfiable natural language
predicates to do reasoning via theory resolution.

Natural Language Logic Natural language en-
compasses a significant amount of information that
cannot be easily represented using symbolic logic.
Although one can represent functions and predi-
cates in symbolic logic, it may be hard to fully
axiomatize their real-world meaning, which is a
substantial limitation of the semantic parsing ap-
proaches. For instance, being “spicy” and having

“a kick to it” are assigned completely different predi-
cates, and pure symbolic reasoning cannot identify
the intuitive entailment relationship between them

without specific axioms. Moreover, representing
commonsense knowledge in symbolic logic is very
challenging (Davis, 2014). However, LLMs are
capable of understanding the semantic relationship
between such predicates and also encompass sub-
stantial commonsense knowledge, which can be
used for reasoning in real-world applications.

As mentioned earlier, theory resolution offers the
capability to resolve non-complementary literals if
they are deemed unsatisfiable by a theorem prover.
By employing an LLM as the theorem prover, we
can leverage the theory resolution framework to
conduct resolution within an extended version of
First-Order Logic, where predicates and functions
are no longer symbols but natural language texts, a
system we call Natural Language (NL) Logic.

Using the LLM theorem prover in the NL
logic, the unsatisfiability condition of the the-
ory resolution reduces to natural language en-
tailment. In other words, if an LLM identifies
a natural language predicate B to entail predi-
cate D, i.e., B(x) ⊢LLM D(x), and therefore,
B(x) ∧ ¬D(x) ⊢LLM ⊥, then literals B(x) and
¬D(x) can be resolved. For instance, given clauses
c1 =“kick to it”(x) and c2 = ¬“spicy” (x)∨Q(x),
in which Q(x) is another literal with a natural lan-
guage predicate, since the LLM identifies the natu-
ral language entailment “kick to it” ⊢LLM “spicy”,
a theory resolution step can be performed as

“kick to it”(x) ¬“spicy”(x) ∨Q(x)

Q(x)
.

(3)

3.1 LLM-TRes Algorithm
This section presents LLM-TRes, an algorithm for
efficient logical commonsense reasoning based on
theory resolution using LLMs. The workflow of
LLM-TRes is shown through a worked example in
Figure 1, and formalized in Algorithm 1.

Problem Definition Consider a set of queries Q
and a knowledge base (KB) denoted by K which
comprises a set of axioms A and a set of facts F ,
all represented in natural language logic in clausal
form. In this work, we aim to propose an inference
rule i that for each q ∈ Q, finds a set of proofs
denoted by proofs, such that each proof f ∈ proofs
consists of a subset of clauses in K, and is assigned
a priority score ρ reflecting the priority of the proof.

Algorithm To prove thatK entails the query q via
resolution, we must demonstrate that iteratively ap-
plying resolution to derive new clauses fromK∧¬q
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leads to a contradiction, thereby proving its unsat-
isfiability. The first question that arises is which
clause should be chosen to begin the resolution
proof. Two major paradigms are used in perform-
ing resolution: (i) starting from the clauses in K
to derive q from them and resolve it with ¬q, an
approach known as forward chaining, or (ii) start-
ing from ¬q and resolving it with clauses in K to
reach a contradiction, known as backward chaining.
Since backward chaining employs a goal-driven
approach, which is shown to improve efficiency
in reasoning over natural language (Kazemi et al.,
2023), we begin the resolution process from ¬q.
Therefore, ¬q becomes our first active clause that
we need to resolve with a clause from K.

The potentially enormous size of K poses a ma-
jor challenge. Also, as the resolution process pro-
gresses, new clauses are created, leading to a fur-
ther expansion in the size of the search space. To
perform resolution efficiently in this combinatorial
search space, LLM-TRes employs two strategies:
(i) prioritizing the resolvent clauses to continue the
resolution process, and (ii) restricting the theory
resolution search space using semantic similarity.

Resolution Priority Definition and Ordering: The
first mechanism employed in LLM-TRes to enable
efficient resolution is prioritizing candidate clauses.
Using this prioritization scheme, resolvent clauses
that have a higher potential for being part of a plau-
sible proof will be given precedence over clauses
generated from less plausible resolution steps. The
plausibility of a theory resolution step, in which
an active clause c is resolved with a clause ctarget

to generate the resolvent clause cres, denoted by
ρentail
cres

, is determined by calculating the probability
that the LLM assigns to ctarget entailing c.

ρentail
cres

= p(ctarget ⊢LLM c). (4)

These plausibility scores can help us prioritize
the resolvent clauses. For instance, in the exam-
ple provided in Figure 1, since resolving “shrimp”
with “seafood” yields a higher entailment score
than resolving “garlic” with “seafood”, it is in-
tuitive to prioritize the first resolvent as it is more
likely to be part of the final proof. Since we are
interested in identifying the most plausible proofs,
i.e., the sequences of theory resolution steps with
the highest entailment scores, we define the first
entry of our priority score for each resolvent clause
cres as the overall entailment score of all resolution
steps beginning from the original negated query

Algorithm 1 LLM-TRes Algorithm
1: Input: K, q, max_proofs, max_iters, b
2: proofs← ∅
3: PQ ← ∅ // PQ is an initially empty priority

queue.
4: PQ.push(¬q, (1, 0)) // Negation of the initial

query q has priority (1, 0), PQ is ordered by
Equation 7

5: while i < max_iters do
6: while PQ ̸= ∅ ∧ i < max_proofs do
7: c← PQ.pop()
8: if c = ⊥ then
9: max_proofs++

10: proofs← proofs ∪ {c}
11: else
12: βc ← b most likely candidates in K to

resolve with c
13: for ctarget ∈ βc do
14: Compute resolvent cres of c and

ctarget using Equation 2
15: PQ.push(cres, (ρ

e(cres), ρ
l(cres)) //

cf. Equations 5 and 6
16: Output: proofs

that led to its derivation. Denoting the set of parent
clauses of cres as Pcres , we can inductively define
the overall proof entailment score of cres as

ρe(cres) =

( ∏

c′∈Pcres

ρe(c′)

)
· ρentail

cres
. (5)

When choosing between equally plausible
proofs, we are interested in shorter proofs that
avoid redundant steps. We assign a second priority
score to reflect this preference which is considered
only when the entailment proof scores are equal.
As for the proof entailment score, we can obtain
the proof length score of cres inductively from the
maximum proof length of its parent clauses as

ρl(cres) = 1 + max
c′∈Pcres

ρl(c′). (6)

The final priority score for each resolvent clause
cres is formed as the tuple (ρe(cres), ρ

l(cres)) and
all resolvents are pushed to a priority queue PQ.
The total order of clauses in PQ is then determined
as

c1 ⪯ c2 ⇐⇒ [ρe(c1) > ρe(c2)] (7)

∨ [(ρe(c1) = ρe(c2)) ∧ (ρl(c1) < ρl(c2))].

Restricting Theory Resolution with Embeddings:
The knowledge base may contain various axioms
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and facts, many of which are irrelevant to the ac-
tive clause. To enhance efficiency and maintain the
growth of the resolution space tractable, we restrict
the size of our resolution search space by a branch-
ing factor b and select candidate target clauses for
performing resolution based on their semantic rele-
vance to the current active clause. Concretely, we
use the similarity scores between zc, the word em-
bedding vector of the active clause c, and zc′ , word
embedding vectors of each candidate clause c′ to
find βc, the set of b most relevant clauses to c as

βc = {c′|(c′ ∈ K)∧ (c′ ̸= c)∧ (zTc zc′ ≥ τ)}, (8)

in which τ is set to the bth highest inner product
score between embeddings of c and other clauses,
thus resulting in top-b theory resolution candidates.
Next, theory resolution can be performed between
c and each clause in βc as in Equation 2.

These two mechanisms together enable an effi-
cient inference via LLM-based theory resolution.
At the beginning of each iteration of LLM-TRes,
the clause holding the foremost position in PQ
becomes the active clause. Once a resolution step
leads to contradiction, the proof and its respec-
tive priority score are added to the set of found
proofs by backtracking the ancestor clauses up to
the negated query.

This algorithm continues until either a certain
number of proofs are found or the maximum num-
ber of iterations is exceeded. Notably, LLM-TRes
is not limited to proving a single query; instead, it
finds a set of proofs with each assigned a strength
score. This functionality allows it to assess the
likelihood of each query being entailed, which is
beneficial for applications requiring ranking, such
as answering multiple-choice questions. In appli-
cations where a binary truth value is considered
for the query, the proof scores of q and ¬q are
compared. Our experiments cover both cases.

4 Repairability of Erroneous Resolution

Since LLM-TRes provides access to atomic infer-
ence steps in the resolution process, it facilitates
verifiability and debuggability. Although the entail-
ment probabilities assigned by the LLMs may be
erroneous, the exact resolution step at which the
failure occurs is discernible. Furthermore, it can
be easily corrected by introducing a rectifying rule
into the knowledge base.

An example of such a case is presented in Figure
1. The LLM’s mistake in assigning a low entail-
ment score for “catfish” to entail “seafood” leads

to incorrect reasoning. However, introducing the
correct axiom ∀y“catfish”(y) =⇒ “seafood”(y)
to the KB repairs this mistake. The following
proposition formalizes this property and is proven
in Appendix A.

Proposition 1. Consider proof P ϕ
c using axiom ϕ

that derives clause c. For any incorrect LLM rea-
soning axiom ϕ, a Repair Axiom ϕ′ can be inserted
such that P ϕ′

c will be produced before P ϕ
c .

5 Experiments

We evaluate LLM-TRes on three different tasks
involving commonsense reasoning on natural lan-
guage data: preference reasoning, deductive rea-
soning, and causal commonsense reasoning. We
release our implementation and data1.

5.1 Tasks and Datasets

Preference Reasoning Understanding user prefer-
ences from natural language statements is a com-
plex but essential task in applications such as rec-
ommendation (Austin et al., 2024; Toroghi et al.,
2023). For this task, we use Recipe-MPR (Zhang
et al., 2023a), a dataset consisting of 500 user
queries stating their preference toward recipes, e.g.,

“I would like meat lasagna but I’m watching my
weight” with five-way recipe options.

Deductive Reasoning We use ProntoQA (Saparov
and He, 2022), a widely used dataset for evaluat-
ing the deductive reasoning ability of LLMs. This
dataset consists of natural language queries about
KBs including facts and axioms generated from on-
tologies. We use 500 queries of the true ontology as
they are consistent with the real world and are use-
ful to evaluate commonsense reasoning. We select
the most challenging 5-hop subset of the dataset.

Causal Commonsense Reasoning We use COPA-
SSE (Brassard et al., 2022), a dataset for reason-
ing about event causes and effects using a semi-
structured KB. In the “effect” split of this dataset,
an event is provided such as “The pen ran out of
ink.”, together with semi-structured explanations
with assigned quality scores, and the task is to de-
termine the more plausible candidate effect, e.g.,

“I used a pencil.” or “I signed my name.”.

1https://github.com/atoroghi/LLM-TRes
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Table 1: Reasoning performance of methods across the three datasets. Gemma fails to provide explanations for
Recipe-MPR, so reasoning scores cannot be calculated for it (Fail). LAMBADA requires a rule set that is not
provided in Recipe-MPR, and cannot rank proofs which is necessary for COPA-SSE. Pure entailment does not
generate proofs, so the reasoning scores do not apply to it (NA).

Method Recipe-MPR ProntoQA COPA-SSE

Accuracy RS Macro RS Micro Accuracy RS Macro RS Micro Accuracy RS Macro RS Micro

CoT (GPT-3.5-Turbo) 0.844 0.850 0.900 0.738 0.600 0.878 0.860 0.800 0.921

CoT (Llama3 8B) 0.768 0.550 0.742 0.718 0.250 0.802 0.839 0.800 0.916

CoT (Gemma 7B) 0.460 Fail Fail 0.588 0.250 0.657 0.818 0.520 0.450

CoT (Mistral 7B) 0.689 0.850 0.946 0.902 0.600 0.890 0.643 0.850 0.892

LAMBADA (GPT-3.5-Turbo) NA NA NA 0.580 0.800 0.900 NA NA NA

Pure Entailment (BART 406M) 0.682 NA NA 0.740 NA NA 0.825 NA NA

LLM-TRes (BART 406M) 0.822 1.000 1.000 0.990 1.000 1.000 0.888 0.900 0.958

5.2 Baselines and Evaluation

We use LAMBADA2, a seminal work in formal
reasoning with LLMs, and zero-shot Chain-of-
Thought (CoT) prompting (Kojima et al., 2022) as
our comparison baselines. Semantic parsing meth-
ods are inherently unable to perform commonsense
reasoning and do not apply to our tasks. We use
GPT-3.5 Turbo as the LLM for LAMBADA and for
converting the natural language axioms and queries
to the clausal form in our method, and obtain the
entailment probabilities for theory resolution using
BART large (Lewis et al., 2020) model3 trained
on MNLI (Williams et al., 2018) dataset. We com-
pare against CoT prompting with GPT-3.5 Turbo,
Llama3 8B, Mistral 7B, and Gemma 7B. To en-
sure that the difference in the performance of our
model and the baselines is not due to using differ-
ent LLMs, we also use pure BART-large entailment
scores between facts and query as a baseline.

We evaluate the reasoning performance of the
models considering the correctness of the final an-
swers, measured by the accuracy, and correctness
of the reasoning process measured by the reasoning
score (RS) which we manually assess for the first
20 queries the models answer correctly. RS is com-
monly evaluated as a binary judgment on whether
the predicted proof is supported by the ground truth
proof (Kazemi et al., 2023; Lee and Hwang, 2024).
However, RS does not assess the number of er-
rors. Therefore, in addition to this metric which
we call macro RS, to provide a more fine-grained
evaluation of the provided proofs, based on the idea
provided in Min et al. (2023), we use a new metric
which we name micro RS. Given a provided proof

2Since the original paper did not release code, we use the
implementation in (Lee and Hwang, 2024).

3https://huggingface.co/facebook/bart-large-mnli

P and the ground truth proof P ∗, and denoting the
indicator function as I, the micro RS for each query
is defined as

RSMicro =
1

|P |
∑

p∈P
I(p ∈ P ∗). (9)

5.3 Results

RQ1: Comparison of Reasoning Performance
Results of the reasoning performance are provided
in Table 1. On deductive and causal commonsense
reasoning tasks, LLM-TRes achieves higher ac-
curacies than the baselines although the language
models they use are multiple times larger. On pref-
erence reasoning, LLM-TRes achieves the second-
highest accuracy after CoT prompting with GPT3.5
Turbo with a rather small margin. On ProntoQA,
since the high-quality conversion of the query and
the knowledge base to the clausal format is straight-
forward, LLM-TRes can prioritize complementary
literals to perform exact resolution, resulting in
a near-ideal performance. The failure cases of
LLM-TRes are due to the LLM’s limitation in
understanding contraposition as noted in previous
work (Zhang et al., 2024). Nonetheless, LLM-TRes
maintains consistently high performance, unlike
other baselines which vary across tasks. For in-
stance, while CoT with GPT-3.5 excels on Recipe-
MPR and COPA-SSE, it is outperformed by Mistral
on ProntoQA, which in turn performs rather poorly
on Recipe-MPR and COPA-SSE.

On Reasoning Score, LLM-TRes outperforms
all baselines across the three datasets at both the
macro and micro level, showcasing its capability to
provide proofs that are consistent with the ground
truth proof. LAMBADA is unable to reason on
Recipe-MPR as it performs backward chaining on

6640



0 1 2 3 4 5 6
Number of Masked Rules

0.40

0.60

0.80

1.00

Ac
cu

ra
cy

LLM-TRes
CoT Mistral 7B
CoT GPT3.5
CoT Llama3 8B
CoT Gemma 7B
LAMBADA

0 1 2 3 4 5 6
Number of Masked Rules

0.00

0.20

0.40

0.60

0.80

1.00

RS
 M

ac
ro

LLM-TRes
CoT Mistral 7B

0 1 2 3 4 5 6
Number of Masked Rules

0.40

0.60

0.80

1.00

RS
 M

icr
o

LLM-TRes
CoT Mistral 7B

Figure 2: Reasoning performance of different models on ProntoQA with an incomplete KB. We mask out a number
of rules to vary the degree of incompleteness of KB.
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Figure 3: Reasoning performance of different models on ProntoQA with larger KB. We sample random axioms
from other queries to increase the size of KB.

explicit rule sets, which Recipe-MPR does not pro-
vide. Also, since LAMBADA can only prove or
refute a query based on a KB and cannot score and
rank the plausibility of proofs, it cannot choose the
more plausible effects on the COPA-SSE dataset.
Since CoT using Gemma refrained from providing
any proof for preference reasoning despite being
prompted to do so, the reasoning score could not
be calculated for it. Finally, pure entailment does
not provide proofs so RS cannot be evaluated.

RQ2: Robustness to Incompleteness of the KB
Assuming access to a complete KB in which all
required axioms are provided is often unrealistic
in practical applications. Therefore, a common-
sense reasoning methodology must be able to ex-
tract the intrinsic commonsense knowledge of the
LLMs to overcome the incompleteness of the KB.
We assess this capability by repeatedly running
experiments on ProntoQA, each time removing a
number of randomly chosen rules from the KB.
We chose ProntoQA for this study as it is the only
dataset with large rule sets that enables experiments
with various ablated rules. Results of this experi-
ment are provided in Figure 2. Although ablating
rules from the KB decreases the accuracies of both
LLM-TRes and the best baseline, CoT with Mis-

tral, LLM-TRes often maintains higher accuracy.
Moreover, the consistently higher reasoning score
of LLM-TRes proves its superior ability to generate
valid proofs.

RQ3: Robustness to Increase in Size of the KB
In this experiment, we evaluate the robustness of
LLM-TRes and other baselines to increases in the
KB size. We form a large KB consisting of 75
distinct rules across different ProntoQA queries
and each time add a fraction of this KB to the
original rule set of the query while randomly mask-
ing 2 rules of the original KB. This experiment
mainly aims to determine if the restricting resolu-
tion search space of LLM-TRes using semantic sim-
ilarity can identify the relevant clauses to the active
clause. In all tests, LLM-TRes uses the similarity
between GPT-3 embeddings of the clauses with a
branching factor of 15. Meanwhile, other baselines
include the entire KB in the prompt which is costly
and inefficient. Results of this test, shown in Fig-
ure 3, depict that LLM-TRes and the best baseline,
CoT with Mistral, sustain their performance, but
LLM-TRes consistently obtains higher reasoning
scores while using a more efficient methodology
for pruning the reasoning search space.
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6 Conclusion

We presented LLM-TRes, a novel framework for
formal reasoning with LLMs based on theory reso-
lution that allowed us to integrate LLMs into reso-
lution logical reasoning seamlessly. By providing
access to every atomic reasoning step, LLM-TRes
enabled verifiability and debuggability of the pro-
cess. It also offered a reliable repairing mecha-
nism for correcting flaws in the LLM reasoning by
asserting the particular missed axiom which was
theoretically guaranteed to override the mistakenly
low-probability resolution step. The promising per-
formance of LLM-TRes on preference reasoning,
deductive reasoning, and causal commonsense rea-
soning tasks demonstrates its efficacy in providing
accurate answers and correct proofs. These capabil-
ities make LLM-TRes a robust foundation for coun-
teracting hallucination and pave the way for more
trustworthy deployment of LLM-based common-
sense reasoners in applications where correctness,
verifiability, and repairability are paramount.

Limitations

While we believe this work has made substantial
progress in verifiable, debuggable, and repairable
commonsense reasoning, it naturally has limita-
tions that we hope will encourage further inves-
tigation and future work. As mentioned in the
paper, we provided a reliable mechanism for er-
roneous reasoning processes; however, determin-
ing a flawed step requires expert judgment. In our
work, we do not focus on evaluating the reasoning
steps and how the repair axioms are introduced.
Proposing an automated mechanism for evaluat-
ing the reasoning steps can be a direction of future
research. Furthermore, as in all LLM-based reason-
ing methodologies, obtaining high reasoning per-
formances requires an apt LLM. As we discussed
in Section 5.3, limitations of the utilized LLM such
as their shortcomings in understanding contraposi-
tion can pose challenges to the overall performance
of the method. Finally, as we mentioned in the
paper, LLM-TRes focuses on the natural language
extension of First Order Logic (FOL) which we
introduced, and extending it to Higher-Order Logic
(HOL) could be considered as a future research
direction given the prior uses of HOL in formaliz-
ing natural language semantics and complex modal
constructs (van Eijck and Unger, 2010).

Ethics Statement

Our contribution of LLM-TRes aims to enable
transparent reasoning with LLMs such that the cor-
rectness of every reasoning step can be verified and
potentially repaired if incorrect. However, it is im-
portant for us to note that a correct proof or line of
argument from premises neither presupposes that
the premises are ethical nor that the conclusion de-
rived from the premises and line of reasoning is
ethical. In this sense, practical use of LLM-TRes
still requires ethical oversight to monitor ethical
and bias considerations for any axioms entered by
the user as well as to verify that unintended reason-
ing hallucinations by the underlying LLM have not
led to incorrect, biased, or unethical conclusions.
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A Proof of Repairability of LLM-TRes

Proposition 2. Consider proof P ϕ
c using axiom ϕ

that derives clause c. For any incorrect LLM rea-
soning axiom ϕ, a Repair Axiom ϕ′ can be inserted
such that P ϕ′

c will be produced before P ϕ
c .

Proof. A proof P ϕ
c = Pc ∪ {ϕ} can be viewed

as the combined set of clauses Pc and ϕ that
derive clause c. We can define the proof score
ρe(P ϕ

c ) of clause c by inductively unrolling Equa-
tion 5 for ρe(c) over all ancestor clauses P ϕ

c that
derive it. This yields a simple product form:
ρe(P ϕ

c ) = ρentail
ϕ · ∏c′∈Pc

ρentail
c′ . Now, compar-

ing two different derivations P ϕ
c and P ϕ′

c of c,
we can easily show that ρe(P ϕ′

c ) > ρe(P ϕ
c ) since

ρe(Pϕ′
c )

ρe(Pϕ
c ))

=
ρentail
ϕ′ ·∏c′∈Pc

ρentail
c′

ρentail
ϕ ·∏c′∈Pc

ρentail
c′

=
ρentail
ϕ′

ρentail
ϕ

> 1 given that

the explicit Repair Axiom has ρentail
ϕ′ = 1 (by defi-

nition) while the LLM entailment score ρentail
ϕ < 1

(necessarily). Hence, the proof P ϕ′
c containing the

Repair Axiom ϕ′ will always be given precedence
over P ϕ

c according to the total ordering of Equa-
tion 7 used to prioritize proofs in the LLM-TRes
Algorithm 1.

B Anecdotal Examples

To offer deeper insight into the responses and
proofs generated by LLM-TRes and the compar-
ison baselines, this section presents anecdotal ex-
amples illustrating each model’s performance on
the evaluated tasks. Specifically, we showcase the
outputs from the following models:

• LLM-TRes

• Chain of Thought prompting with Mistral

• Chain of Thought prompting with Llama3

• Chain of Thought prompting with Gemma

• Chain of Thought prompting with GPT-3.5

• LAMBADA

We apply these models to three distinct tasks,
offering a comparative analysis of their responses.
Detailed anecdotal examples are provided to elu-
cidate the models’ capabilities and limitations. In
each anecdotal example, we present the query, the
rule set (on datasets that contain it), and the ground
truth proof, followed by the response that each
model provides. We also indicate correct proof

steps with green color and highlight incorrect ones
in red.

An example of the Deductive reasoning task, as
evaluated on the ProntoQA dataset, is detailed in
Section B.1. Additionally, we explore the models’
performance on causal commonsense reasoning
using the COPA-SSE dataset and on preference
reasoning using the Recipe-MPR dataset, with ex-
amples discussed in Sections B.2 and B.3, respec-
tively.
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B.1 Deductive Reasoning

Query: is x imaginary?
Rule set: Real numbers are numbers. Every real number is not imaginary. Each integer is a real number.
Natural numbers are integers. Each natural number is not negative. Every prime number is a natural
number. Each prime number is prime. Mersenne primes are prime numbers. Every Mersenne prime is
not composite. Complex numbers are imaginary. x is a Mersenne prime.
Ground Truth Proof: x is a Mersenne prime. Mersenne primes are prime numbers. Every prime number
is a natural number. Natural numbers are integers. Each integer is a real number. Every real number is
not imaginary. Answer: False.
LLM-TRes:

Proof for query imaginary(x):
Negated query: ¬imaginary(x)
Step 1-

¬imaginary(x) ¬complex(x) ∨ imaginary(x)
¬complex(x)

.

Step 2-
¬complex(x) ¬real(x) ∨ ¬imaginary(x)

¬real(x)
.

Step 3-
¬real(x) ¬integer(x) ∨ real(x)

¬integer(x)
.

Step 4-
¬integer (x) ¬natural number(x) ∨ integer(x)

¬natural number(x)
.

Step 5-
¬natural number(x) ¬prime number(x) ∨ natural number(x)

¬prime number(x)
.

Step 6-
¬prime number(x) ¬mersenne prime number(x) ∨ prime number(x)

¬mersenne prime number(x)
.

Step 7-
¬mersenne prime number(x) mersenne prime number(x)

⊥
.

Proof score: ρquery = (0.923, 7)
∗ ∗ ∗

Proof for negation of query ¬imaginary(x):
Negated query: imaginary(x)
Step 1-

imaginary(x) ¬real(x) ∨ ¬imaginary(x)
¬real(x)

.

Step 2-
¬real(x) ¬integer(x) ∨ real(x)

¬integer(x)
.
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Step 3-
¬integer (x) ¬natural number(x) ∨ integer(x)

¬natural number(x)
.

Step 4-
¬natural number(x) ¬prime number(x) ∨ natural number(x)

¬prime number(x)
.

Step 5-
¬prime number(x) ¬mersenne prime number(x) ∨ prime number(x)

¬mersenne prime number(x)
.

Step 6-
¬mersenne prime number(x) mersenne prime number(x)

⊥
.

Proof score: ρ¬query = (1, 6)
∗ ∗ ∗

Since ρe¬query > ρequery, the answer is False.
CoT with Mistral: 1. Rule 1: Every real number is not imaginary.
2. Rule 11: Complex numbers are imaginary.
3. Given:x is a Mersenne prime.
4. Rule 1: Every Mersenne prime is a real number (since it is a prime number and a prime number is a
real number).
5. Since x is a Mersenne prime and a real number, it is not imaginary by definition.
Therefore, the answer to the query is False.
CoT with Llama3: From the Knowledge Base, we know that “x is a Mersenne prime” (Rule 9).
From Rule 8, we know that “Every Mersenne prime is not composite”.
From Rule 7, we know that “Each prime number is prime”.
From Rule 6, we know that “Every prime number is a natural number”.
From Rule 5, we know that “Each natural number is not negative”.
From Rule 4, we know that “Natural numbers are integers”.
From Rule 3, we know that “Each integer is a real number”.
From Rule 2, we know that “Every real number is not imaginary”.
From Rule 1, we know that “Real numbers are numbers”.
Since x is a Mersenne prime, and Mersenne primes are not composite, and prime numbers are natural
numbers, and natural numbers are integers, and integers are real numbers, and real numbers are not
imaginary, we can conclude that x is not imaginary. Therefore, the answer to the query is False.
CoT with Gemma: I used the following rules from the Knowledge Base to answer the query:
“Real numbers are numbers”
“Every real number is not imaginary”
“Mersenne primes are prime numbers”
“Every Mersenne prime is not composite”
Answer: Therefore, the answer to the query is False.
CoT with GPT3.5: To answer this query, we will use the following rules from the Knowledge Base:
1. Each prime number is prime. 2. Each prime number is not composite. 3. x is a Mersenne prime. 4.
Every Mersenne prime is not composite. 5. Complex numbers are imaginary.
Proof: From rule 3 and rule 4, we can conclude that x is not a composite number. Since x is a Mersenne
prime, and every Mersenne prime is not composite (rule 4), we can infer that x is a prime number. From
rule 1, “Each prime number is prime”. Finally, from rule 5, “Complex numbers are imaginary”, we can
conclude that if x is a prime number and all prime numbers are prime, then x is not imaginary.
Therefore, the answer to the query is False.
LAMBADA: Begin proof from “x is imaginary.”
Fact selection: No fact proves this rule.
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Goal decomposition by selecting the next rule: “Complex numbers are imaginary.”
Goal decomposed to: x is a complex number.
Fact selection: found fact: Every Mersenne prime is not composite.
Fact verification failed. (the fact does not prove the subgoal.)
Goal decomposition by selecting the next rule: Complex numbers are imaginary.
Goal decomposed to: x is an imaginary number.
Fact selection: found fact: x is a Mersenne prime.
Fact verification failed. (the fact does not prove the subgoal.)
Goal decomposition by selecting the next rule: Complex numbers are imaginary.
Goal decomposition failed.
Since the query cannot be proven, it is False.

6648



B.2 Causal Commonsense Reasoning

Query: The crowd intensified.
Options: 1- The father handed his son some money., 2- The father grabbed his son’s hand.
Answer: The father grabbed his son’s hand.
Rules: 1- (an intense crowd, capable of, making your son hard to find), 2- (making your son hard to
find, causes desire, keep an eye on son), 3- (keeping an eye on son, results in, grabbing son’s hand), 4-
(handing money to son, causes, son having money), 5- (father, capable of, handing money to son)
Ground Truth Proof: 1, 2, 3.
LLM-TRes:

Proof for Option 1:
Negation of query: ¬handing his son money(father)
Step 1-

¬handing his son money(father) ¬making son hard to find(x) ∨ keep an eye on son(x)
¬making son hard to find(man)

θ = [x/father].

Step 2-

¬making son hard to find(x) ¬intense crowd(x) ∨ could make finding son hard(x)
¬intense crowd(x)

θ = [x/father].

Step 3-

¬instense crowd(x) intensified crowd(x)
⊥

.

Proof score: ρoption1 = (0.005, 3)
∗ ∗ ∗

Proof for Option 2:
Negation of query: ¬grabbed son’s hand(father)
Step 1-

¬grabbed son’s hand(father) ¬making son hard to find(x) ∨ keep an eye on son(x)
¬making son hard to find(man)

θ = [x/father].

Step 2-

¬making son hard to find(x) ¬intense crowd(x) ∨ could make finding son hard(x)
¬intense crowd(x)

θ = [x/father].

Step 3-

¬instense crowd(x) intensified crowd(x)
⊥

.

Proof score: ρoption2 = (0.883, 3)
∗ ∗ ∗

Since ρeoption2 > ρeoption1, the answer is Option2.
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CoT with Mistral: Based on the given knowledge base, the consequence “The father grabbed his son’s
hand” is the more probable one.
Proof: According to the knowledge base, an intense crowd can make your son hard to find. This situation
would likely cause a desire in the father to keep a close eye on his son (rule: [“making your son hard to
find”, “causes desire”, “keep an eye on son”]). The rule [“keeping an eye on son”, “results in”, “grabbing
son’s hand”] states that keeping an eye on his son results in the father grabbing his son’s hand. Therefore,
the father grabbing his son’s hand is a more probable consequence given the knowledge base.
Additionally, the rule [“father”, “capable of”, “handing money to son”] states that a father is capable
of handing money to his son. However, there is no rule directly linking an intense crowd to the father
handing money to his son. Therefore, the probability of the father handing his son some money is lower
than the father grabbing his son’s hand.
CoT with Llama3: Consequence: The father handed his son some money.
Proof: The rules used from the Knowledge Base are:
1. [“father”, “CapableOf”, “handing money to son”] 2. [“handing money to son”, “Causes”,“son having
money”]
From the event “The crowd intensified”, we can infer that the crowd was intense, which is related to the
first rule. This rule states that a father is capable of handing money to his son. The second rule states that
handing money to son causes son having money. Therefore, we can conclude that the father handed his
son some money.
CoT with Gemma: The father handed his son some money.
(Gemma did not provide any proof for this query.)
CoT with GPT3.5: The father handed his son some money.
Proof: 1. “handing money to son”, “causes”, “son having money” (KB)
2. “father”, “capable of”, “handing money to son” (KB)
3. Therefore, the father handing money to his son can be inferred from the KB.
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B.3 Preference Reasoning

Query: I’d like a seafood recipe with a kick to it.
Options: 1- Garlic shrimp., 2- Cajun catfish stew.
Answer: 2- Cajun catfish stew.
LLM-TRes: Please refer to Figure 1.
CoT with Mistral: The query asks for a seafood recipe with a kick to it. Option 1, Garlic shrimp, is a
classic seafood recipe that is known for its strong garlic flavor, but it doesn’t necessarily have a "kick" to
it. Option 2, Cajun catfish stew, on the other hand, is a spicy seafood dish that is known for its bold and
fiery flavors, which would provide the desired kick.
Therefore, the selected option is: 2. Cajun catfish stew.
CoT with Llama3: I think the most suitable option for a seafood recipe with a kick is the Cajun catfish
stew because it combines the bold flavors of Cajun cuisine with the richness of seafood, which is likely
to provide a spicy and savory experience.
Therefore, the selected option is: 2- Cajun catfish stew.
CoT with Gemma: The query calls for a seafood recipe with a kick. Garlic shrimp is a popular seafood
recipe that is known for its bold flavor and spicy kick.
Therefore, the selected option is: 1- Garlic shrimp.
CoT with GPT3.5: The query asks for a seafood recipe with a kick, which implies a dish with bold and
spicy flavors. While garlic shrimp is delicious, Cajun cuisine is known for its spicy and flavorful dishes,
making Cajun catfish stew a more suitable option for someone looking for a seafood recipe with a kick.,
the selected option is: 2. Cajun catfish stew.
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C Prompts Used for Language Models

In this section, we provide prompts used in
performing experiments with language models in
this paper. They are also included in the repository
containing our code and data.

Prompt for Deductive Reasoning with Baselines
Task: You will be given a query about an

object x. You are a helpful and smart
assistant trying to answer this query.
In order to do this, a fact about x
and a set of rules are provided to you
in a Knowledge Base. Using these
rules, you must both provide an answer
to the query (the answer has to be
"True" or "False") and give a proof of
your answer by using the rules from
Knowledge Base. Think step-by-step and
try to use the rules one-by-one to
answer the query. Begin your response
by providing the proof and stating the
rules you used from the knowledge base
to give the answer. Then, give your
final answer to the query by saying
either "Therefore, the answer to the
query is True" or "Therefore, the
answer to the query is False" and not
saying anything else.

Query: {{ QUERY }}
KB: {{ KB }}

Prompt for Causal Commonsense Reasoning
with Baseline LLMs

Task: You will be given a sentence
about an event. Also, a number of
rules in the form of a Knowledge
Base are presented to you. For
this event, two possible
consequences are given. You need
to determine which of these
consequences can be inferred from
the event and the rules in the
Knowledge Base. You must provide a
proof for your answer by using the
rules from the Knowledge Base.
First, copy the consequence you
think can be inferred. Then, in
the next line, provide your proof
by stating the rules you used from
the Knowledge Base. Let's think
step by step.

Event: {{ EVENT }}
KB: {{ KB }}
Consequence1: {{ CONSEQUENCE1 }}
Consequence2: {{ CONSEQUENCE2 }}

Prompt for Preference Reasoning with Baseline
LLMs

Task: Consider the provided query and the
set of options. You must pick the
option that is most suitable for the
query. Think step by step. First,
explain your reason for why you
think this recipe is the most

proper. Remember that you have to
state the reason first. Then,
mention the most proper recipe by
saying: Therefore, the selected
option is: <option number>.

Query: {{ QUERY }}
Options: {{ OPTIONS }}

Prompt for Conversion of Natural Language KB
to Clausal Form

Task: you are a First-Order Logic expert.
A sentence written in Natural
Language will be presented to you.
Convert that sentence to First-Order
Logic. In this conversion, follow
these syntactic rules:

1- Instead of universal quantifier, write
FOR_ALL.

2- Write all predicates for the variable
(x) , even if the sentence refers to
a specific object. For example, "127
is an integer" must be converted to
"integer(x)" or "Bob is a cat" must
be converted to "cat(x)".

3- If the predicate name has multiple
parts, use _ instead of in the
name.

4- Instead of the implication symbol, use
=> .

5- Use ~ as the symbol of negation.
6- Only use lowercase letters for

predicate names.
7- Even if the sentence is incorrect in

your opinion, convert it to FOL
given the stated rules without any
further explanation.

8- If the sentence is not in the format
of a universal statement, just state
it as a predicate. For example, "Bob
is a cat" must be converted to
"cat(x)".

[few-shot examples]
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