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Abstract

Long-term memory is significant for agents,
in which insights play a crucial role. How-
ever, the emergence of irrelevant insight and
the lack of general insight can greatly under-
mine the effectiveness of insight. To solve this
problem, in this paper, we introduce Multi-
Scale Insight Agent (MSI-Agent), an embod-
ied agent designed to improve LLMs’ plan-
ning and decision-making ability by summa-
rizing and utilizing insight effectively across
different scales. MSI achieves this through the
experience selector, insight generator, and in-
sight selector. Leveraging a three-part pipeline,
MSI can generate task-specific and high-level
insight, store it in a database, and then use
relevant insight from it to aid in decision-
making. Our experiments show that MSI out-
performs another insight strategy when plan-
ning by GPT3.5. Moreover, We delve into the
strategies for selecting seed experience and in-
sight, aiming to provide LLM with more useful
and relevant insight for better decision-making.
Our observations also indicate that MSI ex-
hibits better robustness when facing domain-
shifting scenarios.

1 Introduction

Creating agents that can make autonomous deci-
sions in the environment has always been a promis-
ing and interesting research direction. (Significant-
Gravitas, 2023; Sun et al., 2023) With the emer-
gence of ChatGPT and GPT-4 (Achiam et al.,
2023), large language models (LLMs) have trans-
formed from specialized models to a general model
that can complete multiple types of tasks, hence
it can make decisions for agents. (Xi et al., 2023;
Yang et al., 2024; Wang et al., 2023b). This type
of agent will transform multi-modal information
into natural language as short-term memory. It
then prompts large language models with short-
term memory and long-term memory to plan and
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Figure 1: Example of insight summarizing and utiliz-
ing. MSI will summarize the insights in multi-scale
and utilize insights by selecting based on the task.
DB=Database.

make decisions. With these capabilities, the agent
can generate a series of actions that are executable
within a given environment. (Yao et al., 2023; Park
et al., 2023; Gao et al., 2023; Zheng et al., 2023)

Insight1, as a form of long-term memory, has
gradually become a crucial part of guiding LLM
planning and decision-making. (Shinn et al., 2023;
Zhao et al., 2023; Fu et al., 2024; Wang et al.,
2023a; Xi et al., 2023; Zeng et al., 2024). Rela-
tive to other long-term memory such as examples,
insight is more concise and higher-level. Although
previous work has proposed a method of using
LLM to summarize and utilize insights (Zhao et al.,
2023), it either provides LLM with too many ir-
relevant insights or can not summarize the high-
level insights, as shown in Figure 1. The former
can interfere with decision-making (Liu et al.,

1In this paper, "insight" refers to "the knowledge acquired
through multiple observations of facts or events"
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Figure 2: The overall pipeline for the MSI-agent to com-
plete a task. MSI Memory refers to the part that deals
with insight. In MSI Memory, Experience Selection and
Insight Generation will summarize historical experience
into insights, while Insight Selection will select insights
to assist the executor in completing future tasks.

2023a; Chen et al., 2023; Ren et al., 2023; Dong
et al., 2023), while the latter may result in a lack of
high-level prior information to assist in decision-
making. (Wen et al., 2023; Majumder et al., 2023;
Wang et al., 2023c). Therefore, providing mod-
els with comprehensive and related insights to the
current task has become important.

To address these challenges, we proposed Multi-
Scale Insight Agent (MSI-Agent), an embodied
agent designed to summarize and utilize insights
effectively. Inspired by Expel (Zhao et al., 2023),
MSI collects the task background, user queries,
agent’s plans, environmental feedback, and exe-
cution results as "experience" from a series of
training tasks. These experiences are then orga-
nized into the successful experience set or success-
failure experience pairs set via an experience selec-
tor. Subsequently, an insight generator summarizes
multi-scale insights based on the organized expe-
rience(s). Through this method, both high-level
and fine-grained insight can be generated.

During task execution, the insight will pass an
insight selector to filter out the irrelevant insight
and the remaining insight prompts the executor to
formulate plans and execute tasks within a given
environment. The overall pipeline for the MSI
agent to complete a task is illustrated in Figure 2,
while the architecture of the insight part in MSI is
detailed in Figure 3.

This solution effectively mitigates the issues
highlighted earlier. By allowing classifying and
selecting insights, MSI ensures that the LLM is not
overwhelmed with irrelevant insights. Simultane-
ously, the multi-scale insights generation provides
a nuanced understanding at various levels, address-

ing the challenge of high-level insights summariza-
tion. As a result, MSI stands as a robust solution,
offering contextual and comprehensive insights tai-
lored to enhance decision-making capabilities.

In summary, our contributions are as follows:
(1) We proposed MSI, an embodied agent that

can create and utilize multiple scales of insights,
greatly improving the alignment between insights
and tasks.

(2) We designed 3 useful modules among experi-
ence selection, multi-scale insight generation, and
task-related insight selection, shielding the noise
caused by irrelevant insights.

(3) We got the SOTA results in the TEACh TfD
benchmark with GPT3.5 and beat another insight
mechanism in the Alfworld. What’s more, our
experiment comprehensively investigates the se-
lection strategies of seed experiences and insights
under various approaches and has proven that the
MSI can enhance the robustness of insight utiliza-
tion facing domain shifting.

2 Related Work

2.1 Embodied AI

Embodied AI focuses on leveraging multi-model in-
formation for decision and execution of actions. Di-
verging from traditional reinforcement learning ap-
proaches (Schulman et al., 2017), current research
endeavors employ language models as decision-
makers for action decisions. Specifically, the model
transforms information from non-natural language
modalities into natural language through a modality
transformer (Inoue and Ohashi, 2022; Sarch et al.,
2023), using natural language information as input
to guide the Large Language Model in decision-
making (Song et al., 2023; Singh et al., 2023, 2022;
Suglia et al., 2021; Fu et al., 2024). Some methods
involve fine-tuning the language model to map lan-
guage inputs to action sequences at different hierar-
chical levels (Zhang et al., 2022; Zheng et al., 2022;
Koshti and Bhavsar, 2023), while others prompt a
frozen LLM to predict action plans, relying on the
instruction-following and context-learning proper-
ties of the LLM to simulate new tasks during test-
ing (Wu et al., 2023; Sarch et al., 2023; Song et al.,
2023; Singh et al., 2023, 2022; Dong et al., 2024a).
By relying on action(s) generated by the model, the
robot can accomplish the designated tasks in the
environment.
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Figure 3: Pipeline of MSI Memory. The Insight Summarization part will summarize the historical task experience,
while the Insight Utilization part will select relative insights to help the agent decide on future work. In the Insight
Generation part, we will continuously update the insight database based on the training task experience (pair).
We will freeze the database after updating insight with all training tasks. It should be noted that only some task
generates environment insights (aligning with §3.3). Env=environment

2.2 LLM Long-term Memory

When making decisions, humans often recall past
cases to assist in decision-making. Due to the lim-
ited input length, the LLM Agent cannot receive in-
finite historical experiences. Therefore, efficiently
utilizing existing success/failure experiences be-
comes crucial. The LLM Long-term Memory is
designed to address this challenging issue (Zhao
et al., 2023; Wen et al., 2023; Majumder et al.,
2023; Qian et al., 2024). Currently, the LLM Agent
Memory operates in two modes: example memory
and insight memory. Example memory involves
manually crafting experience examples that were
successful in tasks. During usage, similar exam-
ples are retrieved based on the current task, using
methods such as vectors or BM25, to prompt the
large language model (Wang et al., 2023a; Wen
et al., 2023; Dong et al., 2024b; Song et al., 2023;
Zhong et al., 2023). Insight memory, on the other
hand, summarizes success/failure experiences into
insights through the LLM. When new tasks occur,
the insights are directly input as a part of the prompt
into the LLM for helping planning and decision-
making. (Majumder et al., 2023; Zhao et al., 2023).

3 Method

Figures 2 and 3 illustrate our approach. Initially,
utilizing historical task data (train set), we employ
the task execution module to collect a sufficient
number of experiences. (§3.1) These experiences
are then subjected to the experience selector, which
identifies experiences/experience pairs suitable for
generating insights. (§3.2) Subsequently, the multi-

scale insights will be generated and stored in the
insight database. (§3.3) When a new task arises, we
retrieve relevant sights from the database based on
predefined rules. (§3.4) These insights, along with
task background, and user queries, are provided to
the task execution module to facilitate execution.
We refer to the process from experience collection
to insight generation as insight summarization, and
the subsequent insight selection and task execution
as insight utilization.

3.1 Experience Generation

As shown in Figure 2, we regard training data as
history tasks. For each history task, the execu-
tor leverages LLM to generate a plan based on
task background and user queries. Subsequently,
the robot employs first-order logic to decompose
the plan into atomic actions (e.g., moving forward,
picking up objects) and execute them in an envi-
ronment. In some tasks or cases, the executor may
replan based on the environment feedback. Upon
completion, task background, user queries, agent’s
plans, environmental feedback, and execution re-
sults are stored as experiences for summarization.
Detailed information can be found in Appendix A.

3.2 Experience Selection

The selection of experiences is crucial in summariz-
ing insights, as it determines the quality of insights
the model consolidates. As shown in Figure 3, our
Experience Selection employs two modes:

Success mode: We select experiences with suc-
cessful execution results as the success mode expe-
riences.
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Pair mode: For each successful experience ss,
we identify a corresponding experience sf from the
unsuccessful experience database Sf by:

sf = argmax
s∈Sf

emb(s) · emb(ss)√
||emb(s)||2||emb(ss)||2

(1)

Where emb is the embedding of the experience’s
user query and the (ss, sf ) is the final experience
pair in the pair mode.

These two types of selected experience (pair)
collections are subsequently preserved and utilized
as seed experience for insight summarization.

3.3 Multi-Scale Insight Generation
Multi-Scale Insight We categorize the insights
into several scales. For all tasks, we will gener-
ate general scale and subtask scale insights. If
the task provides a specific environment category
(for example, kitchen), we will also generate envi-
ronment scale insights. General insight refers to
the knowledge required for all tasks, which should
be high-level. Environment insight pertains to the
knowledge needed in a specific environment, and
subtask insight involves the understanding of exe-
cuting particular subtasks. The overall pipeline can
be seen in Figure 3’s Insight Generation module.

Insight Generation We initialize the insight
database to be empty. Whenever a seed experi-
ence merges, we select all insights in the order of
general, subtask.2 as a pool of candidate experience
for updating.

Subsequently, we prompt the LLM with tem-
plates containing the candidate insight, all expe-
rience information, and descriptions of 5 atomic
actions: adding, removing, editing, agreeing on
an insight, and moving an insight between scales,
requesting the LLM to update the insight database
through these atomic actions (Zhao et al., 2023).
For subtask insight, we also require the LLM to ad-
ditionally generate a subtask name corresponding
to the insights. 3

After the LLM generation is complete, we up-
date the insight database in the order of general,
environment (if have), and subtask, according to
the atomic actions.

Align with Expel, we also employ a scoring
mechanism in insight generation. Specifically, each

2If there is a specific environment category in the task, we
will select environment and subtask insight that is consistent
with the experience’s environment category, and the order is
general, environment, and subtask

3The prompt of Insight Generation can be seen in Ap-
pendix C

insight receives an initial score of 2 when an "add"
or "move" action is executed, the score increases by
1 for an "agree" action, remains unchanged for an
"edit" action, and decreases by 1 for a "remove" ac-
tion. An insight is discarded when its score reaches
zero.

3.4 Multi-Scale Insight Selection

Similar to the generation process, we use general
and subtask insights2 as candidate insights. For
subtask insights, we adopt two modes for further
selection:

Hashmap indexing: We extract all subtask
names from the subtask insight database, combine
them with user queries, and provide them to the
LLM, requiring the LLM to return all task names
related to the user query. Subsequently, we con-
sider all insights under returned subtask names as
the subtask insights for this user query. The prompt
of hashmap subtask selection can be seen in Ap-
pendix D

Vector indexing: We compute the cosine sim-
ilarity between all subtask insights and the user
query, selecting insights with at most 2000 tokens.4

Ultimately, we provide the different scales of
insights, and the user query to the task execution
module to accomplish the task.

4 Experiment

We evaluate MSI on the 2 benchmarks5: TEACh
TfD benchmark (Padmakumar et al., 2022) and
AgentBench Alfworld benchmark (Shridhar et al.,
2020; Liu et al., 2023b). Our experiments are de-
signed to address the following research questions
(RQs): RQ1: Does MSI outperform other insights
methods? RQ2: What kind of seed experience se-
lection strategy should be chosen when facing dif-
ferent insight generation strategies and tasks? RQ3:
What kind of insight selection strategy should be
adopted for different future tasks? RQ4: How does
the robustness of the MSI system evolve with the
domain shifts?

4.1 Experimental Setup

Evaluation metrics For TEACh, we calculate ac-
curacy (ACC) and path length weighted (PLW )
metrics under two settings: Task Success Rate
(SR) and Goal Condition Success Rate (GC).

4Due to the excessive noise through vector indexing, we
utilize this method only in ablation experiments.

5Detailed information can be seen in Appendix B.
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Aligned with HELPER, these four metrics are:

SRACC = Ex∼p (1(SCNx = GCNx)) (2)

GCACC =

∑
x∼p SCNx∑
x∼pGCNx

(3)

SRPLW =

∑
x∼p

1(SCNx=GCNx)∗L2
refx

Max(Lpredx ,Lrefx )∑
x∼p Lrefx

(4)

GCPLW =

∑
x∼p

(SCNx/GCNx)∗L2
refx

Max(Lpredx ,Lrefx )∑
x∼p Lrefx

(5)

SCN and GCN refer to the success condition
number and goal condition number respectively,
Lpred refers to the step used to execute the task by
the executor while Lref refers to the step used to
execute the task by a human annotator, p refers to
the distribution of the datasets and x is the sample
of the distribution of the datasets.

For Alfworld, we calculate the SRACC metric.

4.2 Executor
TEACh We use HELPER (Sarch et al., 2023) as the
TEACh’s executor. HELPER (Sarch et al., 2023)
is an executor framework built on top of TEACh.
As shown in Figure 2, it provides the task back-
ground, user query (i.e., the dialogue), and other
relevant information to the LLM in a fixed format,
allowing the LLM to generate a piece of code as
the plan(Chen et al., 2021) and create a sequence
of subtasks to guide the robot. Initially, the robot
will walk around the environment to observe and
obtain a spatial plan map that includes information
about the objects it has observed, as well as its lo-
cation (Blukis et al., 2022). At each time step, the
robot receives an RGB image through its camera. It
will then determine an atomic action based on the
image, location, and subtask, and execute it in the
simulation environment. (Sarch et al., 2023; Zhang
et al., 2022) If the execution fails, the robot will
call upon the VLM model (Li et al., 2023) to pro-
vide the most likely reason for the failure based on
the image and attempt a second try or replan (Yao
et al., 2022; Shinn et al., 2023). In the MSI, we in-
clude the environment, dialogue, planned subtasks,
actual executed subtasks, and the VLM-provided
failure reasons during replanning as part of the ex-
perience. (Note that: The EXPERIENCE in the
prompt refers to insight in the paper. )

Alfworld We use AgentBench as the Alfworld’s
executor. AgentBench (Liu et al., 2023b) is ex-
ecutor frameworks with ReAct format (Yao et al.,
2022), Alfworld is one of its subtask. As shown
in Figure 2, AgentBench provides the task back-
ground (as shown below), user query (i.e., the dia-
logue), and other relevant information to the LLM
in a fixed format, allowing the LLM to generate a
thought and an action (as the plan) in each turn. Af-
ter the action’s execution, the environment will give
the feedback to the agent and the agent will replan
another action based on feedback and new thoughts
until the task is finished. In the MSI, we include
the task background, user query, and all thought-
action-observations in the task as the experience.
The introduction of HELPER and AgentBench can
be seen in Appendix A

4.3 Hyperparameter
Our insight generation and decision-making com-
ponents are aligned with Expel. We have cho-
sen ChatGPT (gpt-3.5-turbo-1106) as the LLM
for selecting insight subtasks. GPT-4 (gpt-4-1106-
preview) as the LLM for insight generation. Dur-
ing the experience selection phase, we use text-
embedding-ada-002 to establish a vector library for
failed experiences for retrieval purposes.

TEACh We have chosen ChatGPT (gpt-3.5-
turbo-1106) as the decision-maker for planning.
The settings for experience memory enhancement,
PreCheck, Correction, and locator are all aligned
with HELPER. Due to the time limitation and bud-
get, we do not use GPT4 as the decision-maker for
planning.

Alfworld We have chosen ChatGPT (gpt-3.5-
turbo-1106) and GPT-4 (gpt-4-1106-preview) as
the decision-maker for planning. The examples are
all aligned with AgentBench.

4.4 Baseline
For TEACh, We consider the following baselines:

Fine-Tune Based Model: Episodic Trans-
former (E.T.) (Padmakumar et al., 2022) is an
end-to-end multimodal transformer that can pre-
dict the action by language inputs like dialogue and
images in the environment. Jarvis (Zheng et al.,
2022) and FILM (Min et al., 2022) use a multi-
modal transformer to predict subgoals and trans-
form them into atomic actions by rules. DANLI
(Zhang et al., 2022) uses an LM to encode language
inputs to high-level subgoals and uses a PDDL
model (Lamanna et al., 2021) to transform sub-
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Model Seen (IND) Unseen (OOD)
SR GC SR GC

Fine-Tune Based Model
E.T.∗ 0.48 (0.12) 0.35 (0.59) 1.02 (0.17) 1.42 (4.82)
JARVIS∗ 1.80 (0.30) 3.10 (1.60) 1.70 (0.20) 5.40 (4.50)
FILM∗ 2.9 (1.0) 6.1 (2.5) 5.5 (2.6) 5.8 (11.6)
DANLI∗ 7.98 (3.20) 6.79 (6.57) 4.97 (1.86) 10.50 (10.27)
LLM Agent-Based Model
HELPER∗ - - 9.48 (1.21) 10.05 (3.68)
HELPER 8.84 (1.76) 13.94 (7.65) 10.62 (1.41) 9.29 (3.95)
Expel 8.28 (1.86) 11.55 (7.83) 8.99 (2.66) 8.49 (6.02)
MSI 12.70 (2.60) 13.66 (8.72) 14.54 (3.70) 10.08(6.35)

Table 1: Trajectory from Dialogue (TfD) evaluation on the TEACh validation set. Trajectory length weighted
metrics are included in ( parentheses ). SR = success rate. GC = goal condition success rate. The results with ∗

come from (Sarch et al., 2023). We use ChatGPT as the LLM in LLM Agent-Based Model. We reproduce the
HELPER in HELPER line and apply Expel in TEACh. Both Expel and MSI use pair mode to generate insight.

Model GPT3.5 GPT4
Dev (IND) Test (OOD) Dev (IND) Test (OOD)

Act-Only 0 6 65 66
ReAct 0 10 65 68
Expel 5 14 75 70
MSI 5 16 85 72

Table 2: AgentBench Alfworld results. We reproduce
all results via AgentBench’s framework. Both Expel
and MSI use pair mode to generate insights.

goals, object states, and spatial maps into an atomic
action. It also has a strategy to replan atomic action
when facing errors in atomic action.

LLM Agent-Based Model: HELPER (Sarch
et al., 2023) uses LLM to transform all information
into a code and uses a code parser to parse the code
into subgoals. Expel (Zhao et al., 2023) presents
a pipeline to generate schemes and experience as
long-term memory. Different from the original
setting in Expel, our pair mode uses success-fail
pairs between different tasks instead of between
reflexion (Shinn et al., 2023) steps.

For Alfworld, We consider the following base-
lines: Act-only (Yao et al., 2022), ReAct (Yao
et al., 2022) and Expel (Zhao et al., 2023)

4.5 Main Result (RQ1)

TEACh The performance of MSI on TEACh is
displayed in Table 1. Notably, MSI gains 12.70%
in IND data and 14.54% in OOD data6, which out-
performs all results among LM and ChatGPT. In
contrast, Expel performs below other LLM Agent-

6We select only those experiences generated by GPT3.5
with SRACC=1 for MSI and Expel to generate insights.
Therefore, the insights should generally align with SRACC .

Based Models but above Fine-Tune Based Models.
This may be because many irrelevant insights in
the prompts lead to decreased performance. De-
spite the Expel summarizing experience based on
training data, its effectiveness is inferior to that
of HELPER, which uses one-shot examples di-
rectly. Conversely, MSI’s success rate in both IND
and OOD tasks is over 40% higher than that of
HELPER, indicating that the Multi-Scale Insight
summarization and utilization method can provide
task-relevant insights to assist the model in making
inference decisions.

Alfworld The results of MSI on Alfworld are
displayed in Table 2. Both insight mechanisms
gain positive effects on ReAct-based agents. The
enhancement effect on the performance through
MSI insight is approximately twice that of Expel
insight (20 vs 10 in GPT4-dev and 4 vs 2 in GPT4-
std) which indicates the performance of MSI is
meaningful over Expel.

As a result, MSI insight can improve an agent’s
planning and decision-making ability in both
single-turn plans (TEACh) and multi-turn plans
(Alfworld). This showcases its extensive versatility
and potential applications across different contexts.

Cases comparison: Figure 4 illustrates the
decision-making processes and insights examples
used by HELPER, Expel, and MSI when complet-
ing the task of slicing tomatoes and plating them.
It can be observed that HELPER incorrectly marks
the landmark of Tomato as the location "Counter-
Top" in the one-shot example, instead of Toaster,
causing a failure in finding the tomato and thus
failing the task. In contrast, MSI successfully
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Figure 4: An example of 3 plans dealing with a specific task in TEACh. (A) The original task’s user query, we
omit some responses. (B) Plan to finish the task without experience. (C) Expel insights example (D) MSI insights
example(E) Plan to finish the task with Expel. (F) Plan to finish the task with MSI. We omit most of the insights in
Expel and MSI due to the length limitation.

marks the landmark, even though it uses the same
one-shot example where the Tomato landmark is
marked as CounterTop. This is because MSI has
a subtask insight that guides the model on how
to ensure accurate positioning when the dialogue
includes "near another object." This reflects the ef-
fectiveness of insight generation to a certain extent.

Although Expel also has insight that assists the
model in locating objects, and its decision-making
for plate location is correct, irrelevant yet similar
insight has influenced its judgment. For example,
the insight marked in red in the figure may lead the
LLM to mistakenly believe that it needs to generate
code strictly following the dialogue sequence and
that the executor needs to further slice the tomato
slices. On the contrary, MSI’s insight prompts the
model to first determine the order of the steps, and
since there are no examples in the general insight,
it also reduces the LLM’s susceptibility to interfer-
ence from irrelevant variables.

4.6 Experience Select Strategy (RQ2)

Table 3 shows the results of the two strategies un-
der two long-term memory methods. From the
perspective of the optimization goal of insights
(i.e. SRACC), Expel performs 8.28% and 8.99%
on HELPER IND and OOD data when using in-
sights summarized from successful experiences
alone compared to using success-failure pairs with

9.94% and 11.60% respectively. In contrast, MSI
performs better when summarizing insights from
success-failure pairs rather than just successful ex-
periences, the former reaches 12.70% and 14.54%
in HELPER IND and OOD data while the lat-
ter only gains 10.65% and 13.39%. Alfworld’s
GPT3.5 version has the same trend in Table 3.
The reason for this outcome may be that Expel’s
method of summarizing and utilizing insights pro-
vides the LLM with many fine-grained insights that
are problematic yet related to the issue or irrelevant
insights(as shown in the red part of Figure 4), lead-
ing to decreased accuracy.

Conversely, when MSI summarizes the insights,
it does so at multiple scales and only selects a por-
tion for actual use by the LLM. This approach
separates general insights with strong generality
from fine-grained insights, ensuring that when the
LLM uses insights from success-failure pairs, it
can benefit from the strong generality of general
insights while reducing the interference of irrele-
vant fine-grained insights through selective insight
use. Due to this characteristic of MSI, its effec-
tiveness in summarizing and utilizing insights from
success-failure experience pairs is better than using
successful experiences alone.

The above analysis indicates that the Experience
Select Strategy is related to the method of generat-
ing and utilizing insights. If strong generality and
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Model
TEACh Alfworld

Seen (IND) Unseen (OOD) Dev (IND) Test (OOD)
SR GC SR GC GPT3.5 GPT4 GPT3.5 GPT4

pair mode
Expel 8.28(1.86) 11.55(7.83) 8.99(2.66) 8.49(6.02) 5 75 14 70
MSI 12.70(2.60) 13.66(8.72) 14.54(3.70) 10.08(6.35) 5 85 16 72
success mode
Expel 9.94(2.25) 11.13(7.92) 11.60(3.04) 9.77(6.47) 0 75 10 70
MSI 10.65(1.94) 14.15(6.69) 13.39(2.10) 8,96(4.05) 0 75 10 76

Table 3: The TEACh and Alfworld result of Expel and MSI under different experience selecting strategies.

Model
TEACh Alfworld

Seen (IND) Unseen (OOD) Dev (IND) Test (OOD)
SR GC SR GC GPT3.5 GPT4 GPT3.5 GPT4

pair mode
MSI 12.70(2.60) 13.66(8.72) 14.54(3.70) 10.08(6.35) 5 85 16 72
MSI (general) 12.15(2.36) 13.94(8.55) 14.86(3.87) 11.12(7.53) 5 80 20 72
success mode
MSI 10.65(1.94) 14.15(6.69) 13.39(2.10) 8,96(4.05) 0 75 10 76
MSI (general) 10.50(2.73) 13.66(8.87) 12.25(3.40) 9.81(6.17) 0 75 12 76

Table 4: The TEACh and Alfworld result of MSI under different scale experience selecting strategies.

Model Seen (IND) Unseen (OOD)
SR GC SR GC

MSI (Hashmap) 12.70(2.60) 13.66(8.72) 14.54(3.70) 10.08(6.35)
MSI (Vector) 10.05(2.89) 13.52(9.11) 11.43(1.28) 9.2(3.53)

Table 5: The TEACh result of MSI under different sub-
task insights selecting strategies.

specificity insights can be generated and selected,
the pair mode is more helpful in enhancing the
LLM’s decision-making capabilities. Otherwise,
the success mode should be chosen to avoid the
interference of too many irrelevant insights.

4.7 Insights Select Strategy (RQ3)

Table 4 shows the comparison of multi-scale in-
sights versus only general insights used under two
different Insight Select Strategies. In most cases,
the use of multi-scale insights provides a stronger
improvement to LLM planning than the use of
general insights alone. However, when dealing
with OOD problems in pair mode, the general in-
sights gain 14.86% in TEACh and 20% in Alfworld,
which outperforms the multi-scale insights’ result
of 14.54% and 16% respectively. This may be due
to task-specific insights summarized in-domain not
aligning with OOD tasks, resulting in fine-grained
mismatches. Pair mode is more susceptible to fine-
grained mismatches, which is why using only gen-
eral insights can be more helpful to model decision-
making than using multi-scale insights. Consistent
with the conclusions of Section 4.4, the effective-

ness of MSI when summarizing insights in pair
mode is always better than in success mode.

Table 5 presents the impact of two different
methods of refining task-specific insights on LLM
decision-making in TEACh. Across both data
types, results using hashmap pair retrieval are over
20% higher on Success Rate (SR) than those using
vector similarity retrieval (from 10.05% to 12.70%
in IND and 11.43% to 14.54% in OOD). This is
because vector similarity retrieval may introduce
irrelevant insights, as shown in Figure 1. If the
task is "water plants with a bowl", the top three
insights retrieved by vector similarity are classified
as "Water Plant", "Retrieve and Prepare" and "Pre-
pare Beverage". The first two seem to align with
the task requirements, while the third is unrelated.
The "Prepare Beverage" can be retrieved because
the word ’bowl’ is in the task whose semantic space
is associated with cooking, leading to the retrieval
of irrelevant insights. This also explains why the
method of vector similarity retrieval, used to re-
trieve schemes as examples, cannot be employed
when utilizing insight.

The results from Tables 4 and 5 collectively il-
lustrate the strategy for selecting insight:

The agent system needs to first determine
whether the current task aligns with the seed task
experiences for insight generation. If there is no
alignment, then only general insights in the MSI
should be used to assist LLM decision-making.
Conversely, if there is alignment, multi-scale in-
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Figure 5: The robustness of agents when facing domain
shifting. Dashed lines indicate baseline scores without
insight or with random scheme shuffling across three
domains. Solid lines show scores after sequential in-
sight summarization: first, kitchen experiences inform
insight; then living room experiences update it; finally,
bedroom experiences refine it, with corresponding re-
sults displayed under each domain.

sights should be used in conjunction with a key-
value pair indexing strategy for selection.

4.8 Robustness in Domain Adaptation (RQ4)

Agents can adjust to new environments by con-
stantly updating their insights repository. However,
the distribution of new tasks may differ from that
of old tasks that have already been summarized
into insights, which can lead to "catastrophic for-
getting" of old tasks when the insights undergo
domain transfer, resulting in decreased model per-
formance on old tasks. Therefore, it is crucial to
have robust agents for Domain Adaptation.

Figure 5 illustrates the robustness of MSI and
Expel under domain shifting in TEACh. We fed
the training data into the insight summarizer in
the order of environments: kitchen, living room,
and bedroom, unlike the original MSI and Expel,
which shuffle the training data before input. We
selected the kitchen task in the valid unseen set as
"original domain tasks" for testing. insights sum-
marized solely on kitchen data are more beneficial
in assisting the model with decision-making in the
kitchen. However, as new OOD data is introduced,
the model insights a degree of forgetting, leading
to a decline in performance on kitchen tasks. Com-
pared to Expel, which declines 2.11% after summa-
rizing the living room and bedroom scheme, MSI
shows a smaller degree of performance decline and
faster convergence with only a decline of about

0.38%, proving that MSI possesses better robust-
ness in handling domain transfer.

4.9 Conclusion

In this paper, we propose MSI, which is capable of
summarizing and utilizing multi-scale insights to
enhance the decision-making ability of embodied
agents. MSI can assist agents in making higher-
quality decisions and is better equipped to handle
insight distribution shifting that may occur with
continuous insight updating.

Our experiments demonstrate that for MSI,
success-failure experience pairs are better seed data
for insights, while the strategy for insight selection
needs to be determined based on a comprehensive
assessment of the future task distribution and the
distribution of tasks for which insights have been
summarized.

It sets a new state-of-the-art result for the TEACh
using agents based on ChatGPT as the foundation
and beat another insight mechanism in the Alf-
world. We believe our work contributes new in-
sights into the summarization, storage, and utiliza-
tion of long-term memory, especially insights.
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Limitations

While MSI achieves significant improvements over
existing baselines, there are still directions to ex-
plore for future work.

(1) Although the General and Subtask scale can
be used in all tasks, the environment scale can only
be used in some embodied scenarios. In the future,
we will expand the idea of multi-scale insight by
designing different scales in other tasks.

(2) We only explore one type of long-term mem-
ory, insight. In the future, we will explore the
combination of different types of long-term mem-
ory.
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A Executor

(Note that: The EXPERIENCE in the prompt refers
to insight in the paper. )

HELPER executor prompt

You are an adept at translating human dia-
logues into sequences of actions for house-
hold robots. Given a dialogue between a
<Driver> and a <Commander>, you should
write a Python program to be executed by a
household robot that could finish all tasks
in the conversation.
{API}
Write a script using Python and the Inter-
actionObject class and functions defined
above that could be executed by a house-
hold robot.
Experience you have summarized in the
past:
{EXPERIENCE}
{RETRIEVED_EXAMPLES}
Adhere to these stringent guidelines:
1. Use only the classes and functions de-
fined previously. Do not create functions
that are not provided above.
2. Make sure that you output a consistent
plan. For example, opening of the same ob-
ject should not occur in successive steps.
3. Make sure the output is consistent with
the proper affordances of objects. For exam-
ple, a couch cannot be opened, so your out-
put should never include the open() function
for this object, but a fridge can be opened.
4. The input is dialogue between <Driver>
and <Commander>. Interpret the dialogue
into robot actions. Do not output any dia-
logue.
5. Object categories should only be chosen
from the following classes: ShowerDoor,
Cabinet, CounterTop, Sink, Towel, Hand-
Towel, TowelHolder, SoapBar, ToiletPa-
per, ToiletPaperHanger, HandTowelHolder,
SoapBottle, GarbageCan, Candle, Scrub-
Brush, Plunger, SinkBasin, Cloth, Spray-

Bottle, Toilet, Faucet, ShowerHead, Box,
Bed, Book, DeskLamp, BasketBall, Pen,
Pillow, Pencil, CellPhone, KeyChain, Paint-
ing, CreditCard, AlarmClock, CD, Laptop,
Drawer, SideTable, Chair, Blinds, Desk,
Curtains, Dresser, Watch, Television, News-
paper, FloorLamp, RemoteControl, House-
Plant, Statue, Ottoman, ArmChair, Sofa,
DogBed, BaseballBat, TennisRacket, Vac-
uumCleaner, Mug, ShelvingUnit, Shelf,
StoveBurner, Apple, Lettuce, Bottle, Egg,
Microwave, CoffeeMachine, Fork, Fridge,
WineBottle, Spatula, Bread, Tomato, Pan,
Cup, Pot, SaltShaker, Potato, PepperShaker,
ButterKnife, StoveKnob, Toaster, Dish-
Sponge, Spoon, Plate, Knife, DiningTable,
Bowl, LaundryHamper, Vase, Stool, Cof-
feeTable, Poster, Bathtub, TissueBox, Foot-
stool, BathtubBasin, ShowerCurtain, TV-
Stand, Boots, RoomDecor, PaperTowel-
Roll, Ladle, Kettle, Safe, GarbageBag, Ted-
dyBear, TableTopDecor, Dumbbell, Desk-
top, AluminumFoil, Window, LightSwitch,
AppleSliced, BreadSliced, LettuceSliced,
PotatoSliced, TomatoSliced
6. You can only pick up one object at a time.
If the agent is holding an object, the agent
should place or put down the object before
attempting to pick up a second object.
7. Each object instance should instantiate
a different InteractionObject class even if
two object instances are the same object cat-
egory.
Follow the output format provided earlier.
Think step by step to carry out the instruc-
tion.
Write a Python script that could be executed
by a household robot for the following:
dialogue: {command}
Python script:

AgentBench executor prompt

Interact with a household to solve a task.
Imagine you are an intelligent agent in a
household environment and your target is to
perform actions to complete the task goal.
At the beginning of your interactions, you
will be given the detailed description of the
current environment and your goal to ac-
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complish. For each of your turn, you will be
given a list of actions which you can choose
one to perform in this turn. You should
choose from two actions: T̈HOUGHTör
ÄCTION.̈ If you choose T̈HOUGHT,̈ you
should first think about the current condition
and plan for your future actions, and then
output your action in this turn. Your output
must strictly follow this format:T̈HOUGHT:
your thoughts.
ACTION: your next action
;̈ If you choose ÄCTION,̈ you should
directly output the action in this turn.
Your output must strictly follow this for-
mat:ÄCTION: your next action .̈ After your
each turn, the environment will give you
immediate feedback based on which you
plan your next few steps. if the environment
output N̈othing happened,̈ that means the
previous action is invalid and you should
try more options. Here is some experience
you summarized before: {experience}
Reminder:
1. the action must be chosen from the given
available actions. Any actions except pro-
vided available actions will be regarded as
illegal.
2. Think when necessary, try to act directly
more in the process.
"

B Benchmark infromation

TEACh The TEACh dataset (Padmakumar et al.,
2022) is constructed on over 120 different AI2-
THOR simulation environments (Kolve et al., 2017)
and encompasses more than 2000 embodied intelli-
gence tasks aimed at completing household chores.
These environments can be categorized into four
hyper-environments: kitchen, living room, bed-
room, and bathroom. The training set consists of
1482 data points, encompassing all four types of en-
vironments. The valid seen set is built with 181 data
points across the four environments, with all simu-
lation environments having appeared in the training
set. In contrast, the valid unseen set is constructed
with 612 data points in three types of environments:
kitchen, living room, and bedroom, based on simu-
lation environments that have not been previously
encountered in the training set. Therefore, we con-
sider the valid unseen set as out-of-domain (OOD)

data and the valid seen set as in-domain (IND) data.
Our tests are conducted on the Trajectory from Dia-
logue (TfD) benchmark (Padmakumar et al., 2022),
where the agent receives multiple rounds of inter-
active dialogue between a commander and a driver.
The model must analyze the entire dialogue and
make a series of decisions to complete all tasks
mentioned in the dialogue.

Alfworld The Alfworld dataset (Shridhar et al.,
2020) encompasses more than 4000 embodied in-
telligence tasks aimed at completing household
chores. These tasks can be categorized into six
hyper-task: "pick and place", "pick clean then
place", "pick heat then place", "pick cool then
place", "look at obj", and "pick two obj". We just
select 20 successful experiences in each hyper-task.
We use the AgentBench (Liu et al., 2023b) for eval-
uation, it contains 20 data points in the dev set and
50 data points in the std set. Aligned with Alfworld,
we consider the std set as out-of-domain (OOD)
data and the dev set as in-domain (IND) data.

C Prompt of Insight Generation

Below presents Pair-Mode Experience Generation
Prompt and Success-Mode Experience Generation
Prompt. The parts with red are different. (For Alf-
world, we just remove the part with "environment
rules.")

Pair-Mode Insight Generation Prompt

You are an advanced reasoning agent that
can add, edit, move or remove rules from
your existing ruleset, based on forming
new critiques of past task trajectories.
The ruleset has three parts, GENERAL
RULES, ENVIRONMENT RULES and
TASK RULES. GENERAL RULES refers
to rules that could used in all environment
(Kitchens, LivingRooms, Bedrooms, and
Bathrooms) and task. ENVIRONMENT
RULES refers to rules that could used in
all task in {env}. TASK RULES refers to
rules that could used in a specific task. You
will be given two previous task trials with
instruction:
{instruction}
One trial is successful, and the other is
unsuccessful. Here are the two previous
trials to compare and critique:

655



Failed Trajectories:
{Failed Trajectories}

Succeeded Trajectories:
{Succeeded Trajectories}
Here are the EXISTING RULES:
GENERAL RULES:
{general rules}
ENVIRONMENT RULES:
{environment rules}
TASK RULES:
{task rules}
By examining and contrasting to the suc-
cessful trial, and the list of existing rules,
you can perform the following operations:
add, edit, remove, move or agree so that the
new rules are HIGH LEVEL critiques of the
failed trial or proposed way of Thought in
3 parts, so they can be used to avoid simi-
lar failures when encountered with different
questions in the future. Have an emphasis
on critiquing how to perform better Thought
and Action.
Follow the below format:
GENERAL RULES:
<OPERATION> <RULE NUMBER>
:<RULE>
ENVIRONMENT RULES:
<OPERATION> <RULE NUMBER>
:<RULE>
TASK RULES:
<OPERATION> <RULE NUMBER>
:<RULE>
The rule number should increase between
parts, for example if there is 4 general rules
the first environment rule number should be
5.
The available operations are: AGREE
(if the existing rule is strongly relevant
for the task), REMOVE(if one existing
rule is contradictory or similar/duplicated
to other existing rules), EDIT (if any
existing rule is not general enough or can
be enhanced, rewrite and improve it), ADD
(add new rules that are very different from
existing rules and relevant for other tasks.),
MOVE(move rules between different level
and reshape the rules if the rules are not
general in all enviroment(for GENERAL
RULES) or task(for GENERAL RULES or

EMVIRONMENT RULES)). Each needs
to CLOSELY follow their corresponding
formatting below:
AGREE <EXISTING RULE NUMBER>:
<EXISTING RULE>
REMOVE <EXISTING RULE NUMBER>:
<EXISTING RULE>
EDIT <EXISTING RULE NUMBER>
:<NEW MODIFIED RULE>
ADD <NEW RULE NUMBER>: <NEW
RULE>
MOVE <EXISTING RULE NUMBER>:
<RESHAPED RULE>.(for example if you
want to move a rule in environment rules
with id 12 to task rules, you should use
MOVE 12:<RESHAPED RULE> in task
rules part)
Note1: MOVE command will remove the
rules by number and add new rules in the
part it present in and ADD command will
add new rules in the part it present in.
Note2:If you believe some rules in general
rule part can not be used in the {env}, you
should just remove that rules instead of
move it.
Note3:In task rules part, there may some
task irrelevant with the trail now, DO NOT
remove them
In the TASK RULES part, you should spec-
ify the task name in the <RULE> with
the following format:<RULE CONTENT>
(TASK: <TASK NAME>), the length of
task name should be less than 20 charac-
ters and the number of task should less than
20.
Do not mention the trials in the general rules
because they should be GENERALLY AP-
PLICABLE. Each rule should be concise
and easy to follow.
Remember this robot can only generate
python script. The execute subgoal and er-
ror log are gained from another robot which
this robot can not communite. So each rules
should focus on helping robot to plan and
generate better python script to solve the
question based on ONLY dialogue. And op-
eration can be used MULTIPLE times. Do
at most 4 operations in each parts (which
means the max operation number in 3 parts
is 4x3=12) and each existing rule can only
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get a maximum of 1 operation so just find
the most important rules to operate. Do not
operate rules in other parts. Below are the
operations you do to the above list of EX-
ISTING RULES

Success-Mode Insight Generation Prompt

You are an advanced reasoning agent that
can add, edit, move or remove rules from
your existing ruleset, based on forming new
critiques of past task trajectories. The rule-
set has three parts, GENERAL RULES, EN-
VIRONMENT RULES and TASK RULES.
GENERAL RULES refers to rules that
could used in all environment (Kitchens,
LivingRooms, Bedrooms, and Bathrooms)
and task. ENVIRONMENT RULES refers
to rules that could used in all task in {env}.
TASK RULES refers to rules that could
used in a specific task. You will be given
successful task trials with instruction:
{instruction}
Here are the trials:
{Succeeded Trajectories}

Here are the EXISTING RULES:
GENERAL RULES:
{general rules}
ENVIRONMENT RULES:
{environment rules}
TASK RULES:
{task rules}
By examining the successful trials, and the
list of existing rules, you can perform the
following operations: add, edit, remove,
move or agree so that the new rules are
HIGH LEVEL insights of the successful tri-
als or proposed way of Thought in 3 parts,
so they can be used as helpful tips to differ-
ent questions in the future. Have an empha-
sis on tips that help the agent perform better
Thought and Action.

Follow the below format:
GENERAL RULES:
<OPERATION> <RULE NUMBER>
:<RULE>
ENVIRONMENT RULES :
<OPERATION> <RULE NUMBER>

:<RULE>
TASK RULES:
<OPERATION> <RULE NUMBER>
:<RULE>
The rule number should increase between
parts, for example if there is 4 general rules
the first environment rule number should be
5.
The available operations are: AGREE
(if the existing rule is strongly relevant
for the task), REMOVE(if one existing
rule is contradictory or similar/duplicated
to other existing rules), EDIT (if any
existing rule is not general enough or can
be enhanced, rewrite and improve it), ADD
(add new rules that are very different from
existing rules and relevant for other tasks.),
MOVE(move rules between different level
and reshape the rules if the rules are not
general in all enviroment(for GENERAL
RULES) or task(for GENERAL RULES or
EMVIRONMENT RULES)). Each needs
to CLOSELY follow their corresponding
formatting below:
AGREE <EXISTING RULE NUMBER>:
<EXISTING RULE>
REMOVE <EXISTING RULE NUMBER>:
<EXISTING RULE>
EDIT <EXISTING RULE NUMBER>
:<NEW MODIFIED RULE>
ADD <NEW RULE NUMBER>: <NEW
RULE>
MOVE <EXISTING RULE NUMBER>:
<RESHAPED RULE>.(for example if you
want to move a rule in environment rules
with id 12 to task rules, you should use
MOVE 12:<RESHAPED RULE> in task
rules part)
Note1: MOVE command will remove the
rules by number and add new rules in the
part it present in and ADD command will
add new rules in the part it present in.
Note2:If you believe some rules in general
rule part can not be used in the {env}, you
should just remove that rules instead of
move it.
Note3:In task rules part, there may some
task irrelevant with the trail now, DO NOT
remove them
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Insight source 0 1 2 3 4 5 6 7 8 9 10
Expel 14.29 1.19 16.67 23.81 13.1 2.38 7.14 14.29 7.14 0 0
MSI Task 0 0 6.42 8.26 12.84 1.83 11.93 30.28 19.27 4.59 4.59
MSI General 30.23 6.2 17.05 19.38 10.08 0 6.2 7.75 2.33 0.78 0

Table 6: The insight’s task-specific level under 3 sources. (0 for general insight and 10 for task-specific insight)

In the TASK RULES part, you should spec-
ify the task name in the <RULE> with
the following format:<RULE CONTENT>
(TASK: <TASK NAME>), the length of
task name should be less than 20 charac-
ters and the number of task should less than
20.
Do not mention the trials in the general rules
because they should be GENERALLY AP-
PLICABLE. Each rule should be concise
and easy to follow.
Remember this robot can only generate
python script. The execute subgoal and er-
ror log are gained from another robot which
this robot can not communite. So each rules
should focus on helping robot to plan and
generate better python script to solve the
question based on ONLY dialogue. And op-
eration can be used MULTIPLE times. Do
at most 4 operations in each parts (which
means the max operation number in 3 parts
is 4x3=12) and each existing rule can only
get a maximum of 1 operation so just find
the most important rules to operate. Do not
operate rules in other parts. Below are the
operations you do to the above list of EX-
ISTING RULES

D Insight Selection Prompt

Insight Selection Prompt in Hashmap Index

You are a task selector trying to select task
categories.
A household robot have just summarized
some experience, and each experience
belongs to a task category.
Now this robot is facing a new task, based
on a dialogue between a <Driver> and a
<Commander>, but this robot do not know
which experience should be used in this
task.
You should select task categories related to

the task this robot facing. You will be given
a target task category, the target category is
likely to be found in:{task name}

Important: Your output should ONLY a list
(categories seperated by commas) of the
task categories from the list above.
What are the task categories that related to
{dialogue}?
answer:

E Example of Insight Selector

Insight Selection Example

task: put two soapbar in garbagecan
selected subtask: Object Placement, Distin-
guishing Similarities, Sequential Placement,
Revealing Hidden Objects, Comprehensive
Search

F Insight High-Level Rate

In the table 6, we compared the task-specific de-
gree of three different insight sources in Alfworld,
where 0 points are completely general (applicable
to all tasks), 10 points are completely task-specific
(can only be used for one specific task), and inter-
mediate scores represent the degree to which they
can be used for some tasks.

We have manually created three examples, each
in the format:

(insight, thought, score).
For each example, the scores are respectively

0, 5, and 10. We have then asked the model (gpt-
4-turbo-2024-04-09) to derive the score in a COT
manner.

We can observe that the distribution of Expel
is relatively uniform, the distribution of MSI Task
tends to be around 7 points, while the distribution
of MSI General leans towards 0-1 points.

This demonstrates that MSI indeed distinguishes
between general insight and task-specific insight,
and that task-specific insight is more targeted to-
wards specific tasks.
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Prompt of Rating Insight’s Level

prompt: You will be given an experience
about houseworking, your task is to judge
whether the experience is a general rule (all
tasks in housework can be used) or a task-
related rule. You should think step by step
and give a score of 0-10, 0 means this expe-
rience is a general rule, and 10 means this
experience is a task-related rule. Here are
examples:

659


