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Abstract

Textual style expresses a diverse set of infor-
mation, including interpersonal dynamics (e.g.,
formality) and the author’s emotions or atti-
tudes (e.g., disgust). An open question is how
language models can be explicitly controlled
so that they weave together target styles when
generating text: for example, to produce text
that is both negative and non-toxic. One ap-
proach to such controlled generation is multi-
objective reinforcement learning (RL), but how
to best combine multiple objectives in a reward
function is an open question. In this paper, we
investigate various formulations of multi-style
rewards, including calibrated outputs from dis-
criminators and dynamic weighting by discrimi-
nator gradient magnitudes. We find that our pro-
posed dynamic weighting outperforms static
weighting approaches with respect style con-
trol while maintaining linguistic quality, and
we explore its effectiveness in 2- and 3–style
control. All code and data for the RL pipelines
will be publicly available.1

1 Introduction

Textual style is an important component of com-
munication that conveys information not included
in the text’s raw semantic content (Hovy, 1995).
Consequently, it is vital that language models can
understand and apply styles themselves. Prior work
has explored the domain of controlled style genera-
tion, a task in which a generative language model
aims to generate text with a specified style2. How-
ever in practice, text frequently contains not only a
single style, but a combination of styles (Kang and
Hovy, 2021). For example, consider being asked
to give feedback to a colleague at work: both for-
mal and positive styles would be appropriate. On
the other hand, if speaking with a friend about a

1https://github.com/minnesotanlp/
dynamic-multi-reward-weighting

2Style transfer, on the other hand, involves paraphrasing
given text to a target style without altering its original meaning
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Figure 1: An example of our 1- and 2–style models
generating completions to a given prompt. Models are
trained with reinforcement learning where the reward is
derived from the target styles’ discriminators.

movie, both informal and positive styles are likely
to be useful. Examples of generations following
multiple styles models can be found in Figure 1.

Especially as large language models (LLMs)
grow in capability and popularity, it is desirable
to include fine-grained control of the styles in LLM
outputs. For instance, in almost all cases, toxicity
and hate speech must be tightly controlled such that
the model does not produce harmful output. At the
same time, in response to the user’s preferences or
the application, it can be beneficial for the LLM to
simultaneously control additional attributes such as
humor, formality, or the use of figurative language.
In order to achieve these goals reliably, techniques
for robust multi-style control are needed.3

3While some sociolinguistics theories distinguish between
textual style and textual attributes, in this work, we follow the
common convention in recent NLP papers of broadly using
‘style’ to encompass both of these ideas (Jin et al., 2022).
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Controlling for more than one style during gener-
ation is an under-investigated area, with prior work
focusing on controlling for a single style, or a style
and a target topic(s) (Keskar et al., 2019; Liu et al.,
2022). In this work, we investigate the use of Re-
inforcement learning (RL) for controlling multiple
styles. RL approaches satisfy multiple desiderata
for generations by employing a reward function
in which each individual desideratum contributes
to the reward; this approach is recently gaining
more interest in the alignment literature (see e.g.,
fine-grained reinforcement learning from human
feedback (RLHF) from Wu et al. (2023)). In this
work, we apply a similar approach for multi-style
controlled generation, in which “style scores” from
individual style discriminators are combined into a
single reward function during RL fine-tuning.

The optimal approach to combining multiple re-
ward signals into a reward function is an open ques-
tion. To further explore this question, we imple-
ment several strategies for formulating the multi-
style reward, including a novel dynamic-weighting
approach. Interestingly, our evaluations indicate
that dynamically weighting each component out-
performs static weighting, and we also find that
simple steps such as confidence calibration and
binarization of style discriminator output can im-
prove model performance. We also implement a
custom plug-and play pipeline (Dathathri et al.,
2020) for comparison.

This is to our knowledge a first-of-its-kind work
investigating multi-style controllable generation
through an RL lens with a new reward shaping
approach via dynamic gradient-based weighting.
Work on multi-reward formulation for RL is es-
pecially relevant in the current landscape, given
the modern alignment techniques that incorporate
multiple axes of human feedback, as recent work
investigates composing multiple types of human
feedback – e.g., helpfulness, correctness – into the
reward function (Rame et al., 2023).

2 Related Work

Controlled Text Generation Methods for con-
trolled generation can generally be grouped into
three main categories: fine-tuning, retraining,
and post-processing (Zhang et al., 2023). Post-
processing approaches are the most lightweight
and involve applying transformations during decod-
ing, rather than making any adjustments to model
weights themselves. Examples of such methods

include plug and play, or PPLM (Dathathri et al.,
2020)), which uses gradients from an attribute clas-
sifier to guide the language model’s hidden state;
generative discriminators (GeDI) which compute
control codes and anti-control codes for all possi-
ble next tokens (Krause et al., 2020); and Attribute
Alignment, which learns an alignment function
(Yu et al., 2021) infuse attribute representations
into a pre-trained language model to guide genera-
tion. Prefix-tuning (Li and Liang, 2021; Qian et al.,
2022) can also guide generation by prepending task-
or style-specific “prefix” vectors. Retraining (or
refactoring) methods involve retraining language
models from the ground up on the control task; for
example, CTRL (Keskar et al., 2019) retrains a
class-conditional language model conditioned on
many control codes to guide generations. Another
retraining approach is Cev-LM (Moorjani et al.,
2024), a prototype-then-edit semi-autoregressive
language model that applies edit vectors in the la-
tent space.

Our work falls under the fine-tuning category.
Fine-tuning methods adjust parameters of a pre-
trained LLM toward fulfilling the desired con-
trols. Reinforcement learning (RL) is a common
fine-tuning approach for controlled text generation
(Zhang et al., 2023), e.g., Gong et al. (2019) use
a style classifier model to provide a target style
reward, and Upadhyay et al. (2022) use token-level
dense rewards and taking the weighted sum of these
rewards that were heuristically determined to up-
date the policy. Other works align models towards
specific attributes by modeling the reward function
as a preference model (Rafailov et al., 2023) to
bypass the need for explicitly calculating a reward
function, reducing the task to a maximum likeli-
hood objective. More recently, various approaches
to fine-tuning language models via human prefer-
ences (Ziegler et al., 2020; Ouyang et al., 2022)
have seen success in guiding text generations to be
more aligned with desired attributes.

Finally, we point out that textual style transfer is
related to controlled generation, but it is a distinct
task that involves transforming an input text’s style
while preserving the semantics. Recent work in
style transfer include Steering Vectors (Subramani
et al., 2022), which inject steering vectors into the
model during decoding. Variations such as ActAdd
(Turner et al., 2023) and activation engineering
(Konen et al., 2024) have also been proposed.
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Figure 2: Three different approaches to combine multiple rewards effectively for reinforcement learning. di(x)
refers to the attribute from discriminator i on input text x. We find dynamic weighting (our proposal) is particularly
effective for multi-style control.

Multi-Objective Rewards Recent work explores
how to incorporate reward signals from multiple
sources into reward functions, particularly in align-
ment literature involving RLHF. Notably, recent
work investigates multi-objective RLHF by train-
ing separate reward models from human preference
data and linearly combining those rewards (Wu
et al., 2023; Rame et al., 2024; Ramé et al., 2024).
In this work, we apply a similar approach for con-
trolled style generation, and we also experiment
with additional approaches to reward combination.

Inverse RL Our work in dynamically shaping
the weights of the reward function is also adjacent
to Inverse Reinforcement Learning (IRL), which
learns both a policy and a reward function. IRL
alternates policy update steps with reward model
update steps, requiring expert demonstrations for
the reward update step. For example, Ghosh et al.
(2021) use IRL for Table-to-Text generation, and
their reward function takes several table descriptors
as inputs; and Fu et al. (2023) use IRL for the
text summarization task, with a reward function
that combines various sub-rewards like saliency
and coverage. However, we clarify a distinction
between our work and IRL: whereas IRL explicitly
learns a reward function, our dynamic weighting
method is best characterized as reward shaping
for online policy update. Specifically, we do not
use expert demonstrations to optimize the weights
of the reward function, but instead dynamically
"shape" the coefficients of the fine-grained reward
function components during the policy update step
by inspecting the gradients for each component.

3 Proposed Method: Multi-Reward
Control in RL

In this section we provide a preliminary formu-
lation of using reinforcement learning (RL) for a

single style control and then formulate the specific
multi-reward control functions we propose.

3.1 Preliminary Formulation: Style Control
using Reinforcement Learning

Reinforcement learning for language models
frames the generative language model as a policy
network, πθ. The policy is a probability distribution
over all possible actions (i.e., vocabulary tokens)
that determines at, i.e., the action to be taken at
timestep t given the state xt−1. We can then gen-
erate tokens based on πθ(at|xt−1). Reinforcement
learning also introduces a reward function R that
takes in a state xt and outputs a scalar valuation of
that state. (Reinforcement learning for language
models generally uses sparse rewards, i.e., a reward
is only computed once the full sequence of tokens
have been generated.) The objective of reinforce-
ment learning, then, is to learn a new policy πθ′

such that the policy maximizes the expected value
of R. Controlling a single style using RL fine-
tuning typically formulates the reward using a dis-
criminator d for the target style, as in R(x) = d(x).

3.2 Multi-Reward Control Formulations
When constructing a reward formulation that com-
bines outputs from multiple style discriminators,
we consider two important aspects. The first is the
discriminator output itself: we want to find a way
to express the output, e.g., via some transformation,
that provides a strong and consistent reward signal.

The second aspect we consider is the how to
weigh the combined reward. This is important be-
cause training can become intractable if the signal
from one discriminator dominates. For instance,
consider a 2-style softmax reward formulation, and
imagine our starting policy is such that there is
a near-zero likelihood of producing a generation
that results in high softmax scores for both d1 and
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Figure 3: Pipeline for three-style control using fine-tuning Llama 7B model with Proximal Policy Optimization
(PPO). We investigate several techniques for integrating feedback from style discriminators into the reward.

d2, but there is a high likelihood of producing gen-
erations that results in a high score for d1. The
policy will quickly discover how to move in a di-
rection that maximizes scores from d1 and move
away from exploring the states that result in more
balanced rewards. Instead, we want to combine the
discriminators in a way that encourages balancing
all outputs.

Motivated by these considerations, we explore
multiple approaches to calculate a reward R for
a generation x by combining output from the
attribute discriminators d1, d2, ..., dn with corre-
sponding target styles k1, k2, ..., kn, and we write
the logit value for the target class as di(x)ki . We
consider the following multi-reward formulations:

Logits We take the logits of the target class from
the discriminator output, R =

∑n
i=1 di(x)ki .

Softmax We take the softmax σ values of the
target class from the discriminator output, R =∑n

i=1 σ(di(x))ki .

Binarized When discriminators are unsure of
their prediction, the reward signal becomes noisier,
potentially hampering the policy learning process.
Thus, we consider binarized rewards to make the
signals more discrete and emphasized.

R =

n∑

i=1

wi, wi =

{
1 σ(di(x))ki ≥ 0.5

−1 otherwise
(1)

Calibrated Logit scores for are adjusted follow-
ing Guo et al. (2017) in order to calibrate model
confidence. Similar to the binarized reward, the
calibrated reward helps better calibrate the low con-
fidence in the discriminators’ predictions to find a

more accurate policy.

R =

n∑

i=1

di(x)ki
temperaturei

(2)

Dynamic Weighting We calculate a dynamic
weight wi. The motivation for the dynamic weight-
ing approach is that when combining multiple style
discriminators, it is not always clear whether a sig-
nal from one discriminator should be prioritized
over another. Our approach weighs the result from
each discriminator by considering the magnitude
of the gradient of the cross entropy loss for di(x)
with respect to the desired style. Then, our reward
function is

R =

n∑

i=1

w(1− σ(di(x))ki) (3)

w =

{
grad_normi if σ(di(x))ki > 0.5

−grad_normi otherwise
(4)

where grad_normi is the normalized magnitude of
di(x)’s gradient:

grad_normi =
||∇di(x)LCE ||∑n
j=0 ||∇dj(x)LCE ||

(5)

We compose all reward shaping methods by tak-
ing the convex combination of each discriminator
output, with only the gradient scaling method dif-
fering. For example, the binarized, confidence, and
calibration methods are all follow the formulation
with given d1 and d2 (where each dn refers to some
style classifier)

Rfinal = α · d1(x) + (1− α) · d2(x) (6)

where each d1 and d2 rewards are shaped via each
respective method. Here we take the α as 1/n
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Sentiment Formality Irony Emotion (Eckman Seven) Toxicity
Labels positive,

negative
formal,
informal

ironic,
not ironic

Fear, anger, joy, sadness, dis-
gust, surprise, neutral

toxic,
non-toxic

Dataset SST2 GYAFC SemEval go-emotions Jigsaw
F1 (Macro) 0.90 0.90 0.78 0.53 0.80

Table 1: We train discriminators on each of the above styles (columns).

where n is the number of discriminators and can
be extended to any number n such that

∑n
i=1 αi =

1. For the gradient-weight scaling, we replace α
with grad_normi (extendable to any n number of
discriminators)

Rfinal = grad_norm1 ·d1(x)+grad_norm2 ·d2(x)
(7)

4 Experiment Setup

This section describes the details of our experimen-
tal setup, including baseline models, discriminator
training, RL training, and evaluation set.

4.1 Base Models

We use LLaMA2 7B (Touvron et al., 2023) as the
base model for both the discriminators and the RL
pipeline as shown in Figure 3. We train discrimi-
nators for sentiment, formality, irony, emotion, and
toxicity using the SST2, GYAFC, SemEval-Irony,
Go-emotions, and Jigsaw Toxicity datasets (Socher
et al., 2013; Rao and Tetreault, 2018; Van Hee
et al., 2018; Demszky et al., 2020; Jigsaw). We
train these custom discriminators rather than us-
ing existing classifiers because classifiers with the
same base model architecture are needed for the
PPLM (Dathathri et al., 2020) pipeline. For better
comparison with PPLM, we use these same custom
discriminators in the RL fine-tuning as well. The
discriminators are evaluated on the test sets with
macro F1 and achieve results comparable to those
published in the original dataset papers (Table 1).

4.2 Configurations of RL Fine-Tuning

Figure 3 illustrates our pipeline for RL fine-tuning.
The language model generates a completion given
a prompt from our dataset. The pooled final hidden
state from the model is input to each target style
discriminator, whose outputs are then combined
into a reward. We use the TRL library (Von Werra
et al., 2022) implementation of the proximal pol-
icy optimization (PPO) algorithm (Schulman et al.,
2017). Due to computational constraints, we use
low rank adapters (LoRA, Hu et al. (2022)) im-

plemented by the parameter efficient fine-tuning
(PEFT, Mangrulkar et al. (2022)) library.

The PPO objective includes a penalty term for
the Kullback–Leibler (KL) divergence between the
fine-tuned and original language model. During
training, we use an adaptive KL control setting and
do a parameter search for the initial KL coefficient
in the range of [0.2, 0.4], eliminating any runs that
result in final KL divergences over 20. (Larger KL
divergence values in our experience were associ-
ated with repetitive reward hacking behaviors.)

4.3 Configurations of (Custom) PPLM
We re-implement the PPLM code in order to use it
with a LLAMAV2 base model rather than GPT-2,
as in the original. Our implementation also ex-
tends PPLM to consider feedback from multiple
discriminators defined by taking a backward step
in the hidden state along the gradient for all of the
attribute discriminators, d1, ..., dn. Specifically, the
gradient is for the loss function defined by

∇d(x)L = λKL(p(x)||p(x′))+
n∑

i=1

ℓCE(di(x), ki)

(8)
where ℓCE is the cross entropy loss with respect to
the target attribute.

Source Dataset Prompt
SemEval 2017 Its nice to stay
TweetEval @user aha but white
Rotten Tomatoes One of the most
Wikipedia Gorman Park (or Amelia

Table 2: Example prompts from each of the four source
datasets used in our pipeline.

4.4 Training and Evaluation Prompt Data
Prompts we use during training are drawn from the
training sets of these datasets: SemEval emotions
(Rosenthal et al., 2017), TweetEval (Barbieri et al.,
2020), Rotten Tomatoes (Pang and Lee, 2005), and
Wikimedia (Wikimedia). We choose these datasets
for their variety of domains (Tweets, movie reviews,
Wikipedia articles). Our evaluation prompts consist
of 500 randomly selected items each datasets’ test
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Style Accuracy Generation Quality

Reward Formulation Negative ↑ Informal ↑ Neg & Inf ↑ PPL ↓ Bigram Dup ↓
Softmax 45.55 59.30 38.50 76.63 0.2795
Cal. Softmax 45.85 66.05 19.04 73.48 0.2970
Logits 56.30 74.45 52.65 98.86 0.1648
Binary 62.00 76.00 56.8 32.34 0.2800
Dynamic Weighting 65.90 76.70 60.25 31.46 0.1665

Table 3: Comparison of reward formulations for the Negative + Informal style combinations. We find that
our approach (Dynamic Weighting) rewards show the best control over the style combination while maintaining
generation quality.

set. Prompts consist of the first four words of each
item; examples in Table 2.

4.5 Evaluation

We evaluate the generations from each model based
on two criteria: first, how often the generations ad-
here to the target styles, and second, how well the
generations maintain linguistic quality of the origi-
nal model. Consider a model fine-tuned to produce
positive generations: it could simply respond to
every prompt with “This is great, I love it!” and
force every generation to be classified as positive,
but the overall language quality would suffer.
Automatic Evaluation We count the proportion of
the generations that are classified by the discrim-
inators as having the target style. We also count
the proportion of the generations with both target
styles to see how frequently models successfully
combine styles in the same generation. To evalu-
ate whether the generations maintain the linguistic
quality of the original model, we measure the av-
erage perplexity of the generations as well as their
repetitiveness (duplicate bigram frequency).
Human Evaluation To avoid over-reliance on au-
tomatic metrics, we also incorporate a human study.
Due to financial constraints, the study is on a ran-
domly selected subset of 100 of the evaluation
prompts. For each prompt, we collect human pref-
erences between completions from two models.
Annotators chose (a) which completion better ful-
fills the target styles, and (b) which completion
sounds most natural. Three Master-qualified an-
notators from Amazon Mechanical Turk annotate
each item, with compensation of 15 USD/hour.

5 Results

In this section we describe our experiments for
assessing the different multi-style reward formula-
tions and the overall performance of our models
for various multi-style control settings. The ques-

tions we investigate are: 1. How can we most
effectively combine signals from separate style dis-
criminators into a reward function? (§ 5.1), 2. How
often do two- and three-style models express the
target styles in their generation, and how fluent are
these generations? (§ 5.2, 5.3), and 3. Which style
combinations are most difficult to learn? (§ 5.4).

5.1 Multi-Reward Formulation Evaluation

We train several versions of models with Informal-
Negative and Formal-Negative target styles to in-
vestigate the efficacy of the reward formulations
outlined in Sec 3.2. For a summary of our study on
Informal-Negative see Table 3; remaining results
are in Appendix Table 7. We find that for softmax
rewards, the models have minimal style control.
We hypothesize that a contributing factor may be
poor confidence calibration of the discriminators’
softmax scores. To address this, we implement
a calibrated softmax reward using the calibration
technique in Guo et al. (2017). This results in the
Expected Calibration Error (ECE) for sentiment
and formality decreasing from 0.133 to 0.016 and
0.267 to 0.111 respectively. These calibrated soft-
max rewards do offer some improvements relative
to pre-calibration, but improvements are modest.

The logit reward models, on the other hand, tend
to have better style control at the cost of fluency –
their generations have some of the highest perplex-
ities. During KL hyperparamater search, we also
anecdotally observed that the logit models often de-
veloped highly repetitive reward hacking strategies
for sub-optimal KL coeffecients.

Both the binary rewards and Dynamic Weight-
ing rewards produce sizable improvements over
other reward formulations while maintaining gen-
eration quality. Dynamic Weighting has a slight
edge overall: it outperforms the binary approach
on all counts for the Negative-Informal combina-
tion (60.25% of Dynamic Weighting generations
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Model Base (Llama2-7B) Dynamic Weighting (ours) PPLM

Target Styles ↓ Sent. Form. Both Sent. Form. Both Sent. Form. Both

Positive-Formal 0.589 0.420 0.350 0.855 0.759 0.703 0.588 0.518 0.448
Positive-Informal 0.589 0.580 0.239 0.750 0.670 0.460 0.580 0.642 0.278
Negative-Formal 0.411 0.420 0.070 0.696 0.606 0.375 0.432 0.528 0.076
Negative-Informal 0.411 0.581 0.341 0.659 0.767 0.603 0.436 0.472 0.340

Table 4: Automatic target style accuracy evaluation of 1- and 2-style models for RL and PPLM. (“Both” indicates the
portion of generations containing both the target sentiment and formality.) All models (Base, Dynamic Weighting,
PPLM) use Llama2-7B as the base model for fair comparison. Compare style frequencies to those in the base
LLaMA2 generations to see the effect of the other two approaches.

Target Styles Inf-Neg Form-Neg

Style Lang Style Lang

Prefer Logits 8% 9% 8% 32%
Prefer Dynamic Weighting (ours) 20% 69% 71% 42%

Table 5: Human evaluation results (preferences were
determined by majority vote across annotators). Gener-
ations from models trained with our dynamic weighting
approach were preferred with respect to both style and
linguistic naturalness. (Annotators could also choose no
preference.)

contain both styles versus 56.80% for binary), and
its generations are less repetitive. Negative-Formal
combination results are more mixed, with a 10.15%
difference in formality in favor of binary and a
7.56% difference in negativity in favor of Dynamic
Weighting. Based on these results, we chose to
use the Dynamic Weighting approach for our re-
maining experiments, since it displays the highest
overall performance on both control and generation
quality.

Particularly when combining multiple non-
orthogonal styles, a simple linear combination of
scores can make learning difficult: the model may
be able to easily increase its reward by maximizing
results from only one discriminator and get “stuck”
without learning how to obtain more well-rounded
results. We conjecture that both the binarizing and
dynamic weighting approaches alleviate this issue.

5.1.1 Human Evaluation
To bolster the automatic evaluation, we also con-
duct a human study. For cost reasons, we limit this
investigation to two style combinations (negative-
informal and negative-formal), and two reward for-
mulations (Logit and Dynamic Weighting). We
ask annotators whether they prefer the Logit or Dy-
namic Weighting completion with respect to style
(randomizing the order in which the generations
are displayed), and we then ask which completion

they prefer with respect to the naturalness of the
text. Three annotators respond to each question.

Results indicate that humans prefer the Dynamic
Weighting model’s generations with respect to both
style and linguistic quality (results in Table 5),
echoing the conclusions of the automatic evalu-
ations. We conclude that the automatic metrics
appear to reasonably align with human perception
of these aspects of the generation.

We calculated the inter-annotator agreement us-
ing Krippendorff’s alpha (Krippendorff, 1980).
The alpha for style preference questions is 0.36
whereas for linguistic quality questions, alpha is
0.23.This indicates fair agreement among annota-
tors, and we note that it falls in the range of alphas
for subjective annotation tasks reported in Wong
et al. (2021).

5.2 Combinations of Two Styles

We first fine-tune RL models for all possible
combinations of sentiment and formality: posi-
tive+formal, positive+informal, negative+formal,
and negative+informal. We choose these style di-
mensions since their respective discriminators have
the highest F1 scores (Table 1). We use the Dy-
namic Weighting reward formulation, as it was
the most successful reward formulation from Sec-
tion 5.1. We consider the generations of the result-
ing four models on the evaluation prompts: results
for these two-style models are in Table 4, and a ran-
dom sample of their generations are in Appendix
Table 11.
Comparison with PPLM We extend PPLM to
combine feedback from multiple discriminators
(Figure 4) and find that the fine-tuned RL models
have higher style control. PPLM has some success
with producing more Positive+Formal and Posi-
tive+Informal generations than base Llama2, but
does not show any improvements for the other com-
binations. This suggests that PPLM may struggle
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Styles % Sent. % Form. % I/N/T PPL
Irony, Pos, For 85.45 77.75 66.55 39.01
Neutral, Pos, For 68.65 56.20 46.65 29.19
Toxic, Neg, Inf 57.75 67.90 18.65 29.75
Neutral, Neg, Inf 55.55 73.70 52.65 39.99

Table 6: We add third style dimension and train a new
set of three-style models. Table shows accuracy for each
target style dimension (Sentiment, Formality, and third
dimension Irony/Neutral (emotionally)/Toxic) across
the 2000 generations in the evaluation set.
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0

10

20

30

40

50

60

70 Model
Llama2
Llama2 + PPLM
Llama2 + GradWtRL

Target Style Combination

%
 G

en
er

at
io

ns
 w

/ 
C
om

bi
na

ti
on

Figure 4: Percentages of evaluation generations that
fulfill both target styles. Fine-tuning with Dynamic
Weighting (GradWt-RL) substantially increases preva-
lence of target style combinations when compared to the
original base model (Llama2) or PPLM-based control.

to effectively combine multiple styles without in-
corporating some additional techniques. We leave
further investigation to future work.

5.3 Combinations of Three Styles

We further extend the reward formulation to control
for three target styles to assess how our approach
scales as the number of target styles increases. For
three style experiments, we keep the two style di-
mensions explored earlier (sentiment and formal-
ity) and add additional third styles. This decision is
motivated in part by a desire to understand to what
extent adding a third style control influences the
ability to control these dimensions relative to only
two styles. We also consider that the sentiment and
formality discriminators have the highest F1 scores,
making them best-suited to training and evaluation.

The third style dimensions are from our other dis-
criminators: toxicity, irony, and emotion. We limit
our three style models to four distinct three-style
combinations due to computational constraints
(fully exploring the three-style combination space
provided by all of our discriminators would require
fine-tuning 212 models, where each fine-tuning
procedure needs to load the language model cou-

Figure 5: Style control results for two of the 3-style
models: Positive+Formal+Neutral (emotion) and Pos-
itive+Formal+Irony. Each style dimension shows the
portion of generations containing that style and is min-
max scaled. The two-style Positive+Formal model re-
sults are included for comparison, e.g., we see that the
+Neutral model does not control formality as well as the
two-style model, but the +Irony model does.

pled with three discriminators). See Fig. 5 for a
visualization of these results and Table 6 for a sum-
mary. We find that the three style models are able to
increase the proportion of all three target styles rela-
tive to the base Llama2 model, and their generation
quality does not decline. For some combinations
(e.g., Positive-Formal-Irony), the sentiment and
formality dimension control does not deteriorate
compared to the two-style model. Other combina-
tions (e.g., Negative-Informal-Toxic) show lower
sentiment and formality control than the two-style
models, although they still make improvements
over the vanilla model.

5.4 Imbalance in Multi-Style Combinations

We hypothesize that rarer style combinations are
more difficult to learn. Das et al. (2023) addressed
this style imbalance problem by balancing their
combinatory distributions from the training data.
Similarly, we approach understanding the rela-
tive frequency of the possible style combinations
from two perspectives: frequency in the evaluation
datasets’ baseline generations and original human
texts. In both cases, formal and negative is the least
common combination, while formal and positive
is most common. Because the training process in-
cludes a KL divergence penalty term to maintain
linguistic fluency, rare style combinations that are
not well-represented in the original model will be
suppressed in the controlled model’s outputs; Fig. 6
illustrates this relationship. We note that our con-
trol models are still able to improve frequencies of
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Figure 6: We observe a linear relationship between
the percentage of test generations containing both target
styles and the prevalence of that target style combination
in the full human texts. This suggests that more common
style combinations may be easier to learn to control.

even the most difficult combinations (Fig. 4).

5.5 Domain-Based Performance
When considering the prompts from each of the
subdatasets in the evaluation set separately, we
observe that the Wikipedia portion of the evalu-
ation set has a substantial drop in performance
for Negative-Formal and Positive-Informal mod-
els with respect to target style accuracy (Fig. A.8).
This indicates that model performance can be
strongly affected by the domain of the prompt. It
may also indicate that the models struggle to gen-
eralize the target style across all domains.

6 Discussion

We propose an approach to controlled multi-style
generation using reinforcement learning with a re-
ward derived from a dynamically weighted linear
combination of discriminator outputs. This novel
technique results in generations that largely con-
form to the target styles while maintaining linguis-
tic quality.

There are multiple possible approaches to the
multi-style generation problem; our approach rep-
resents only one of these. In addition to PPLM,
which could possibly be further optimized beyond
our additions for multi-style control, there are also
the other postprocessing and retraining methods
discussed in Section 2, along with other fine-tuning
approaches (including Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023)). In addition,
this problem could be approached via prompt engi-
neering for LLMs such as GPT-4. Which approach
is best-suited to this problem with respect to accu-
racy, cost, and efficiency remains an open question.
Future work should investigate the strongest over-
all approach multi-style control and the relative
accuracy-efficiency trade-offs.

Finally, the precise theoretical relationships be-
tween individual styles is an interesting and open
question. If two styles rarely co-occur, is it because
their combination is impossible, or is it simply rare?
Does this distinction affect a language model’s abil-
ity to combine the two styles? Our results for the
three-style models hint at the complexity of this
issue. Future work should consider formalizing the
feasibility of different low-frequency style combi-
nations, and encouraging language models to ex-
plore their state space more in order to uncover
more rare combinations of styles.

7 Limitations

Our focus in this work is mostly centered on com-
bining specific style dimensions, sentiment and
formality, and our three-style combinations still
include these specific dimensions. We make the
decision to focus on specific styles due to computa-
tional limits making wider exploration infeasible,
and we focus on these particular dimensions due to
the high F1 scores of the discriminators for these
style dimensions. However, this approach can be
extended given more computing resources to fur-
ther style combinations (e.g. emotional valence
and arousal, honesty). It can also be extended rein-
forcement learning with multiple types of human
feedback, as recent work investigates composing
multiple types of human feedback – e.g. helpful-
ness, correctness – into the reward function (Wu
et al., 2023; Rame et al., 2024).

Our approach is less effective for rare style com-
binations like negative and formal. For control of
rare style combinations, further techniques such as
initial language model fine-tuning or exploration
incentives are likely needed in order to achieve the
desired effect. Our work also relies on discrimina-
tors which may be difficult to implement for data
scarce attributes.

Alignment Tax We also note two side effects we
observed in the generations after fine-tuning. This
is somewhat expected, as many researchers have
documented performance on some benchmarking
tasks decreasing as side effects of RL fine-tuning
procedures (see e.g. Ouyang et al. (2022); Askell
et al. (2021)). First, there is a possibility that non-
target styles may also shift as a result of the fine-
tuning process. Specifically, we observe some vari-
ations in uncontrolled styles after fine-tuning (e.g.
there is more joy in positive-formal than in positive-
informal; there is more anger in negative-formal
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than in negative-informal. These results are sum-
marized in Appendix Figure 9. Second, we observe
that controlling for style can alter the model’s fac-
tual claims. The 500-item Wikipedia subset of
the evaluation set demonstrates this clearly, as the
prompts (e.g. “Skydio is an American...”) lead
the model to write a completion that makes factual
assertions. See example Wikipedia generations and
our annotations in Appendix A.4 Table 12. This
indicates that further work is needed before such
models can be relied on for factual claims.

8 Ethics Statement

This training approach includes no explicit steering
of factuality or truthfulness, which should always
be accounted for before deploying LLMs for non-
academic use. Further, it is important to be aware
of the possibility that controlling for styles such
as negativity or disgust can correspondingly lead
to increases in toxicity and offensive speech for
model generations.

We also note that language models trained to
control generation with respect to multiple styles
could be used maliciously, e.g., to create specific
voices for counterfeit personas.
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A Appendix

A.1 Further Inspection of 2-Style Models

We include graphs of the domain variation in style
accuracy across models in Figure 8. A visualiza-
tion of the behavior of uncontrolled attributes is in
Figure 9.

A.2 Additional Reward Formulation
Experiments

We include results for both Informal-Negative and
Formal-Negative style combinations in Table 7.

A.3 Human Study Details

The instructions provided to participants are shown
in Fig. 7.

A.4 Factuality Annotations

We examined a random subset of 60 items from
the Wikipedia-based generations, as these tend to
encourage the models to make factual claims dur-
ing generations. We perform this investigation due
to concern about factuality shifts after training; for
examples, see Table 12. We hand-annotate the
items as shown in Table 12, and we also check
whether the base model generation is factual. We
find that for 30% of the items, the base model’s
claim is factual. Of these claims, the factual claim
was changed about 11.7% of the time across all
fine-tuned models. On the other hand, for 35% of
the claims, the base model’s claim is not factual
(e.g. the generation “Alan Thomas (born 7 Oc-
tober 1951) is a former British actor” – no such
actor exists). In these cases, the fine-tuned models
altered claims 65% of the time. In conclusion, fine-
tuned models do have shifted perceptions of facts,
and this shift is exagerated in cases where the base
model’s original claim is incorrect. For 31.2% of
the prompts, no factual claim is made.

A.5 GPT-4 Comparison

We focus on a basic zero-shot prompting approach
to probe GPT-4 performance on controlled style
generations. We chose zero-shot prompting as we
are interested in scenarios with high data-scarcity,
i.e., those in which the target style combination text
is not readily available. We note that while few-
shot prompting can out-perform zero-shot; this is
not always the case – recent work suggests that
performance can be equivalent or even deteriorate
in a few-shot setting, e.g. Coyne et al. (2023).

GPT-4 responses (Table 8) indicate that in some
scenarios, GPT-4 does very well at combining mul-
tiple styles to complete the generation. However,
some style combinations (particularly those with an
informal style) have markedly worse performance,
likely in part due to differences between how our
discriminator and GPT-4 understand informality.

We include GPT-4 results as a point of refer-
ence, but it is not a direct comparison for a few rea-
sons. First, our other experiments use the Llama2-
7B architecture, which has approximately 1,000
times fewer parameters than GPT-4. In addition,
Llama2 is a base language model, whereas GPT-
4 includes human feedback fine-tuning. Finally,
we also recognize that prompting techniques such
as Chain-of-Thought prompting (Wei et al., 2022)
have been shown to improve performance on many
tasks and that prompts can have large impacts on
GPT-4 performance; however we do not perform
prompt engineering for output optimization.

A.6 Three-Style Experiment Results
Numerical results for the three-style control experi-
ments are in Table 10. Example generations can be
found in Table 9.

A.7 Model Generations
We include a sample of random generations (i.e.,
not cherry-picked) from each fine-tuned 2-style
control model in Table 11. Generations from
Wikipedia prompts are of interest for the shifting
factual claims reported by each model; see these
generations in Table 12.

A.8 GPT-4 Generations
We include the sample prompt that we used to gen-
erate style-controlled completions from the Ope-
nAI API. We utilized the default parameters for
generations.
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Style Accuracy Generation Quality

Reward Formulation Negative ↑ Informal ↑ Neg & Inf ↑ PPL ↓ Bigram Dup ↓
NEGATIVE-INFORMAL models

Softmax 45.55 59.30 38.50 76.63 0.2795
Cal. Softmax 45.85 66.05 19.04 73.48 0.2970
Logits 56.30 74.45 52.65 98.86 0.1648
Binary 62.00 76.00 56.80 32.34 0.2800
GradWt Softmax 65.90 76.70 60.25 31.46 0.1665

Negative ↑ Formal ↑ Neg & Form ↑ PPL ↓ Bigram Dup ↓
NEGATIVE-FORMAL models

Softmax 44.55 47.80 10.85 25.85 0.2275
Cal. Softmax 43.35 53.15 13.25 26.29 0.2243
Logits 45.00 59.50 16.35 62.52 0.2567
Binary 61.90 70.75 38.90 32.34 0.2814
GradWt Softmax 69.55 60.60 37.50 35.00 0.3118

Table 7: Comparison of reward formulations for the Informal + Negative and Formal + Negative style combinations.
Style accuracy is the percentage of the 2000 evaluations generations classified as having the target style(s).

Figure 7: Instructions shown to participants on Amazon Mechanical Turk.

Model Dynamic Weighting GPT-4

Target ↓ Sent. Form. Both Sent. Form. Both

Pos-For 0.855 0.759 0.703 0.968 0.971 0.945
Pos-Inf 0.750 0.670 0.460 0.945 0.412 0.369
Neg-For 0.696 0.606 0.375 0.618 0.992 0.608
Neg-Inf 0.659 0.767 0.603 0.929 0.188 0.178

Table 8: Automatic target style accuracy evaluation of
2-style models for Dynamic Weighting and GPT-4.

Please complete the below text, adding no more
than 20 - 40 additional words. Make sure
the completed text has the following styles:
positive.
{prompt}

@Ellpeck I fear that might be the case!
Thanks for putting up with my nonsense.
#irritated @SouthwestAir I’d be irate too.
Thank you for your assistance!
Finding your passion seems like an impossible
task. But it’s really quite simple! Imagine
what you would do if money was no object.

Table 9: Generations after training for target styles for-
mal, positive, and irony.
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Styles % Sent. % Form. % Other PPL
Irony, Pos,
For

85.45
(85.45)

77.75
(75.85)

66.55
(57.10)

39.01

Neutral,
Pos, For

68.65
(75.85)

56.20
(85.45)

46.65
(27.95)

29.19

Toxic, Neg,
Inf

57.75
(65.90)

67.90
(76.70)

18.65
(6.80)

29.75

Neutral,
Neg, Inf

55.55
(65.90)

73.70
(76.70)

52.65
(44.40)

39.99

Table 10: We add third style dimension such as irony
and (emotional) neutrality and train a new set of three-
style models. Accuracy scores for these third styles are
in the “% Other” column. For reference, we also include
the style percentages for generations from the corre-
sponding sentiment-formality two-style models (found
in parenthesis).
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Figure 8: The domain of the four word prompt affects
style accuracy.
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Generation S F

Feeling blind. New specs coming, but meanwhile... My new glasses are on their way, but until I get
them I’m stuck with this. The glasses I have are like two pairs of glasses in
P, F Feeling blind. New specs for 2017! We are excited to introduce our new, improved

website and online store experience today – enjoy browsing around the site now at
www.eyesightdirect.com

0.56 0.34

P, I Feeling blind. New specs! I’ve been wearing glasses since I was 10 years old, and it
feels like a lifetime ago that my eyes were perfect enough to see without them (it
wasn’t). So when the time came for me get new pres

0.33 0.74

N,F Feeling blind. New specs aren’t helping yet either, but I will try them out soon... Is
there a point to this?

0.61 0.70

N, I Feeling blind. New specs needed... I’ve been wearing glasses for about 10 years now,
and I need to get a new pair of prescription lenses put into my old frames (which are
still in good condition). The problem is that the optician

0.60 0.72

Happy Birthday beautiful We are here to celebrate your birthday and your life
P, F Happy Birthday beautiful! Thank you so much. I appreciate it very,verymuch!! 0.73 0.68
P, I Happy Birthday beautiful <3!!!!! 0.73 0.43
N,F Happy Birthday beautiful I don’t care. It means nothing to me at all, okay? 0.47 0.72
N, I Happy Birthday beautiful pic.twitter.com/w60L7zXn5H – Katie Price (@Mis-

sKatiePrice) May 21
0.73 0.70

Fuck me on KIK Naughty woman would like a night of sex in Killeen First name: Paulienne, Age:
22 yo, City: Killeen (TX) Hi, my name is
P, F Fuck me on KIK! Thanks for checking out my profile. I hope you enjoy your stay

here at TheChatAvenue .
0.72 0.68

P, I Fuck me on KIK! Kik: kayla.kiss10 0.69 0.74
N,F Fuck me on KIK! I’m not interested. Don’t bother messaging with him anymore,

please and thank you very much for your time spent here today
0.38 0.36

N, I Fuck me on KIK Fat woman looking for sex in Birmingham Alabama, I’m search fat
women who want fuk

0.57 0.72

Just watched #TheDarkTower & it was good. Dark, violent, brutal, entertaining, & Stephen King’s
writing style was on full display. It might not be for everyone, but I think
P, F Just watched #TheDarkTower & it was great! Thanks for the review, John. 0.72 0.73
P, I Just watched #TheDarkTower & it was AWESOME!!!!! Saw The Dark Tower last

night!
0.73 0.32

N,F Just watched #TheDarkTower & it was terrible. I don’t get the hype at all! 0.73 0.67
N, I Just watched #TheDarkTower & it’s a mess. @MidnightMovie 0.56 0.55
Photo: Orchid Tassel Chain Inspiration: In the garden I’ve been thinking a lot lately about how I can
make my garden more beautiful, and what I can do to attract more wildlife
P, F Photo: Orchid Tassel Chain Orchids are a part of the largest family, orchidaea. They

have around 250 generas and more than thousand species worldwide!
0.72 0.67

P, I Photo: Orchid Tassel Chain Necklace Orchids are one of my favorite flowers. I love
their delicate petals and the way they smell! If you’re like me, then chances. . .

0.53 0.65

N,F Photo: Orchid Tassel Chain I don’t get it. I really, truly do not understand this at all
and never will either way because of how stupid the premise is in general to begin

0.63 0.28

N, I Photo: Orchid Tassel Chain Necklace Orchids are one of my favorite flowers. I love
the colors and shapes, but most importantly they remind me to be patient with myself
when things don’t go as planned or expected...

0.52 0.73

Table 11: Five randomly selected generations (i.e., not cherry-picked) from the evaluation prompts. Original
LLaMA2 generations (in blue) are followed by generations from fine-tuned models with varying style controls. The
models’ styles are coded by Positive / Negative and Informal / Formal. Sentiment and Formality classifier outputs
for the target classes are also included (values >0.5 indicate that target sentiment or formality is achieved).6798



Model Generation
LLaMA2 Jo Weldon (born 1962), or "The Queen of Burlesque," is an American burlesque performer,

producer, teacher, costumer, and historian. Born in Brooklyn, New York, W
P, F Jo Weldon (born 1962), a native of San Francisco, California and an African American

woman is the owner founder... Heritage Academies
N, F Jo Weldon (born 1962), also known as The Queen of Crump, is an American-based

costume designer. She was born in Philadelphia and raised by her grandmother on the
Lower East Side neighborhoods

N, I Jo Weldon (born 1962), also known as The Queen of Bling, is an American costume
jewelry designer and owner/operator. . .

P, I Jo Weldon (born 1962), is an American burlesque performer, producer and writer. She has
been described as "the godmother of neo-burlesque". Weldon was born in New York City
to a Jewish family; her

LLaMA2 Alan Thomas (born 7 October 1951) is a former Australian rules footballer who played
for the Geelong Football Club in the Victorian Football League (VFL). A local Geelong
player, Thomas made

P, F Alan Thomas (born 7 October,1953 in Wolverhampton) is a British composer. He studied
at the Royal Academy of Music with Gordon Crosse and went on to teach there himself
from September 2004 until December 6th, when he retired due

N, F Alan Thomas (born 7 January 1943 in Edinburgh) is a retired Scottish professional
footballer who played as an inside forward. He made more than fifty appearances for the
Scotland national team between March, and October of 196

N, I Alan Thomas (born 7 August,1958 in Birmingham) is an English former professional
footballer who played as a defender. Thomas began his career with West Ham United
before joining Wolverhampton Wanderers for £200k on transfer deadline day

P, I Alan Thomas (born 7 April,1960) is a British actor. He has appeared in many films and
television series since the early eighties including The Krays (2015), The Iron Lady (2013)

LLaMA2 Dwight is a city in Illinois. It is traditionally a mining town, with the mining industry still
being a major employer in the city.

P, F Dwight is a city in Illinois. It was founded by James Baird and named after his son,
Charles Hickman "Dutch" Bard who died of pneumonia at the age 23 while serving with
Company F during World War I from January to November on

N, F Dwight is a city in Michigan. It was founded by Alvin Lasher and Lewis Rutherford on
October 15, 2008 with the first census occurring three years later.[6] As of June

N, I Dwight is a city in Richland County, Iowa. Dwight was platted and named by the railroad
company that built it through there to connect with another line at Rock Rapids; they
chose this name because of its similarity (in sound)to "Wright",

P, I Dwight is a city in Iowa. It’s located at 41°28’39”N, 096°57’26”W (41.477489,-96.95722).
According

Table 12: Examples of Wikipedia prompts that demonstrate the factuality shifting after fine-tuning. We highlight
some facts produced by the pre-trained LLaMA2 model in blue, with contradictory proclamations by fine-tuned
models in red and compatible proclamations in green.
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