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Abstract

In the ten years since the development of the
Abstract Meaning Representation (AMR) for-
malism, substantial progress has been made on
AMR-related tasks such as parsing and align-
ment. Still, the engineering applications of
AMR are not fully understood. In this survey,
we categorize and characterize more than 100
papers which use AMR for downstream tasks—
the first survey of this kind for AMR. Specifi-
cally, we highlight (1) the range of applications
for which AMR has been harnessed, and (2) the
techniques for incorporating AMR into those
applications. We also detect broader AMR en-
gineering patterns and outline areas of future
work that seem ripe for AMR incorporation.
We hope that this survey will be useful to those
interested in using AMR and that it sparks dis-
cussion on the role of symbolic representations
in the age of neural-focused NLP research.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a semantic representation
that takes the form of a rooted, directed graph.
Since the release of AMR in 2013, a full AMR-
ecosystem has emerged, with substantial research
activity on AMR annotation, text-to-AMR pars-
ing, AMR-to-text generation, and domain- and
language-based extensions of AMR.1 In particular,
the progress on text-to-AMR parsing and AMR-
to-text generation has propelled work using AMR
for various NLP applications. To date, downstream
applications of AMR have been spread across nu-
merous tasks and have found varying degrees of
success.

Thus, given the recent advancements for and
with AMR, this survey addresses the pressing ques-
tion: how can AMR be used for engineering pur-
poses and downstream applications? Our main

1Currently, the AMR Bibliography contains more
than 450 papers: https://nert-nlp.github.io/
AMR-Bibliography/.
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Figure 1: The AMR for the sentence “After 3 days and
much deliberation, the jury rendered a guilty verdict,”
as a graph (top) and as a string in PENMAN notation
(bottom).

goals of this investigation include (1) providing an
overview of the many application areas and tasks
where AMR has been applied, (2) examining what
techniques have been used to leverage AMR for
NLP systems, and (3) detecting new avenues for
future applications of AMR in NLP research.

Our investigation is also motivated by the preva-
lence of large language models (LLMs) that seem
to be able to generalize across a large suite of NLP
tasks, prompting consideration of how semantic
representations can remain useful. We hope that
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our survey will serve both as a useful starting point
and a source of inspiration to those interested in
working with AMR.

2 Abstract Meaning Representation

2.1 AMR Formalism

Semantic representations such as AMR aim to con-
vey the meaning of a text and can be designed to fo-
cus on specific aspects of meaning. AMR is specif-
ically designed to reflect “who does what to whom”
as the schema centers on predicate-argument rela-
tions. By abstracting away from the surface form,
two sentences with equivalent meaning and content
words should be represented by the same AMR
graph. Among semantic representations, AMR is
particularly popular and well-resourced (Sadeddine
et al., 2024).

AMRs are rooted and directed, and can be repre-
sented in graph form or in the text-based PENMAN
notation (Kasper, 1989) (an example AMR in both
forms is shown in Figure 1); text-based AMRs
are also called linearized, and often appear con-
densed onto one line for ease of neural encoding.
Concepts correspond to nodes in the graph, and
edges denote relationships between those concepts.
These concepts can occupy core argument roles
(i.e. :argN) or non-core roles (e.g. :time and
:domain). AMR makes use of PropBank frame
files (Palmer et al., 2005) to indicate the sense of
each concept in the graph, as well as to specify
the arguments associated with each concept. AMR
annotation is unanchored, so individual tokens do
not necessarily align with specific concepts in the
graph. Coreferent concepts are reflected in AMR
graphs as re-entrant graph nodes.

AMR also notably does not represent morphol-
ogy or tense, meaning that annotation is fairly
lightweight. Inter-annotator agreement is typi-
cally measured quantitatively using Smatch (Cai
and Knight, 2013), which calculates graph over-
lap via hill climbing. Embedding-based metrics
which measure AMR graph overlap include mono-
lingual S2match (Opitz et al., 2020) and multilin-
gual XS2match (Wein and Schneider, 2022).

AMR was originally designed for English and
was not intended to serve as an interlingua (Ba-
narescu et al., 2013), but the schema has since been
considered for or adapted to numerous other lan-
guages: Czech (Urešová et al., 2014), Chinese (Xue
et al., 2014; Li et al., 2016), Spanish (Migueles-
Abraira et al., 2018; Wein et al., 2022), Vietnamese

(Linh and Nguyen, 2019), Korean (Choe et al.,
2020), Portuguese (Sobrevilla Cabezudo and Pardo,
2019; Anchiêta and Pardo, 2018; Inácio et al., 2022;
Baptista et al., 2024), Turkish (Azin and Eryiğit,
2019; Oral et al., 2022), Persian (Takhshid et al.,
2022), and German (Otto et al., 2024).

Multilingual adaptations of AMR which are not
specific to one individual language include Uni-
form Meaning Representation (UMR; Van Gysel
et al., 2021) and BabelNet (Martínez Lorenzo et al.,
2022). Some extensions of the AMR schema in-
corporate tense and aspect (Donatelli et al., 2018;
Bakal, 2021), while others move beyond the sen-
tence level (O’Gorman et al., 2018; Moreda et al.,
2018; Naseem et al., 2022). Many engineering ap-
plications of AMR have focused on English, likely
due to English AMR tools currently being the most
widely available and accurate.

2.2 AMR Parsing and Text Generation
Two crucial AMR-intrinsic tasks are text-to-AMR
parsing and AMR-to-text generation. Both tasks
are actively researched, monolingually and multi-
lingually. Substantial efforts towards highly accu-
rate parsing and generation contribute further to
the interest in using AMR for downstream applica-
tions.

Parsing and generation models now tend to lever-
age pre-trained Transformers that are fine-tuned on
linearized AMR graphs (Bevilacqua et al., 2021).
Current models can parse and generate quite accu-
rately, reporting Smatch scores upwards of 86% for
parsing (Lee et al., 2022b; Vasylenko et al., 2023)
and more than 50 BLEU (Papineni et al., 2002)
points for generation (Cheng et al., 2022).

Thus, while AMR parsing and generation are not
yet solved (Opitz and Frank, 2022a; Groschwitz
et al., 2023), model performance is quite high, and
success towards semantically consistent parsing
and generation (Kachwala et al., 2024) has led to a
spike in the downstream utility of AMR.

3 Applications of AMR

In this section, we will discuss the broad categories
of downstream uses of AMR in natural language
processing. We present more than 20 individual
areas of application, and discuss how each work
incorporated AMR.

3.1 AMR for Meaning-Focused Tasks
Intuitively, the tasks which have most often seen
AMR incorporated are tasks which focus on elu-
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Table 1

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Mid-2024 Total

Other 0 1 1 0 0 2 3 3 16 12 6 44

Spatial/Situated 
Dialogue

1 0 0 0 0 1 5 1 1 3 1 13

IR/IE 0 2 1 2 0 0 0 2 2 5 0 14

Question 
Answering

0 0 2 0 0 0 2 3 2 3 4 16

Summarization 0 1 0 1 3 1 0 1 2 3 1 13

Explainable 
Semantic 
Similarity

0 0 0 0 1 0 0 1 3 2 3 10

N
um

be
r o

f P
ap

er
s 

Pu
bl

is
he

d

0

6

12

18

24

30

Year

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Mid-2024

Other
Spatial/Situated Dialogue
Information Extraction
Question Answering
Summarization
Explainable Semantic Similarity

1

Figure 2: Bar chart of the number of papers using AMR in downstream applications per year, from 2014 to 2024
(year to date). The 5 most common application areas are individually shown, with all other areas grouped into the
“Other” category.

cidating the core elements of meaning. Broadly,
the meaning-focused tasks which have seen AMR
leveraged fall under information extraction, ques-
tion answering, and summarization; these areas
overlap, particularly information retrieval and ques-
tion answering, as the former can be an important
step for the latter.
Information Retrieval/Extraction. Early AMR
investigations for information retrieval/extraction
focused on the biomedical domain. Biomolecular
interactions elicited via AMR have been used in
classifiers to outperform state-of-the-art interaction
models (Garg et al., 2016; Wang et al., 2017). No-
tably, Rao et al. (2017) showed that biomedical
events are subgraphs of full AMR graphs and deve-
loped an LSTM model (Hochreiter and Schmidhu-
ber, 1997) to identify those event subgraphs. Zhang
et al. (2021) performed biomedical information
extraction by creating an AMR graph enhanced
with information from an external knowledge base.
These enhanced AMR graphs were then encoded
into a graph attention network, leading to an im-
provement over state-of-the-art methods.

Models for event extraction have also incorpo-
rated AMR, occasionally outperforming state-of-
the-art models. First, Li et al. (2015) added AMR
features in the form of node-relation unigrams and
bigrams to an event detection model. More recently,
Xu et al. (2023) created new event extraction la-
bels by using an existing event extraction model
and an AMR parser to compute a compatibility

score between the event and an argument. Yang
et al. (2023) performed event structure extraction
by identifying whether there is an edge connecting
the event and the argument, parsing an AMR and
then using a Graph Neural Network (GNN) to pre-
dict whether there is an edge. Again outperforming
state-of-the-art event extraction models, Hsu et al.
(2023) produced a linearized AMR, encoded it with
a neural network, and prepended the encoding to
the neural text embedding.

More specifically than general event extraction,
Zhang and Ji (2021) performed entity and rela-
tion extraction by training an AMR encoder and
using AMR parses in order to determine the or-
der of decoded events. This work outperformed
prior state-of-the-art models on information extrac-
tion by multiple F1 points. Gururaja et al. (2023)
compared the utility of different sorts of linguistic
graphs for Transformer-based models for relation
extraction, finding that AMRs were most useful
in few-shot settings. Pan et al. (2015); Steinmetz
(2023) performed entity linking by mapping named
entities onto concepts in AMR graphs.

At the document level, Xu et al. (2022) per-
formed event extraction using text embeddings
combined with document-level and sentence-level
AMR graphs, outperforming prior state-of-the-art
systems, and Zhao et al. (2023) encoded document-
level AMR graphs in a GNN for relation extraction.

Finally, Müller and Kuwertz (2022) extracted
relevant information from remote sensing database

6858



management systems, using AMR graph overlap
metrics to measure semantic relevance.

Question Answering and Knowledge Graphs.
When incorporating AMRs into question answer-
ing models, prior approaches have combined AMR
graphs with a formal reasoning layer (Mitra and
Baral, 2016) and sentence embeddings (Park et al.,
2024). On the other hand, Bonial et al. (2020b)
used AMR graphs directly, parsing medical ques-
tions (about COVID-19) into AMRs and compar-
ing them against AMR graphs of possible answers.
The answers were then ranked by similarity and
the most similar response AMR was returned as
the answer.

Regan et al. (2024) created multilingual AMR
graphs of questions and developed a joint AMR-
SPARQL parsing model for hallucination de-
tection in knowledge base question answering
(KBQA). For direct use in KBQA, AMR graphs
have been converted into SPARQL queries (Bornea
et al., 2021; Kapanipathi et al., 2021; Shivashankar
et al., 2022). Similarly, AMRs have been used to
produce Resource Description Framework (RDF)
knowledge graphs (Burns et al., 2016; Meloni et al.,
2017; Gangemi et al., 2023), and to semantic roles
for a climate-focused knowledge base (Islam et al.,
2022).

For multi-hop question answering (questions
which require multiple steps to reach the answer),
Xu et al. (2021) parsed AMR graphs of the hy-
pothesis and the relevant facts and merged them,
while Deng et al. (2022) segmented AMR parses
of the question into subgraphs, and generated sub-
questions via AMR-to-text generation of the sub-
graphs. Similarly, for open domain question an-
swering (ODQA), Wang et al. (2023) integrated
AMR graphs of the relevant facts from a text by
appending a single token embedding of each con-
cept or relation in the AMR graph to the text em-
bedding. Shi et al. (2024) performed ODQA via
retrieval augmented generation (RAG), using an
AMR-based algorithm to compress textual infor-
mation into individual concepts. Pham et al. (2024)
conditioned QA systems on AMR graphs, finding
the approach works best with small models, which
then outperformed very large LLMs such as Chat-
GPT.

The task of machine comprehension, which
involves systems producing answers about a text,
has also benefited from comparison between text
and AMR graphs (Galitsky, 2020), with Sachan

and Xing (2016) framing machine comprehension
as a graph entailment problem. Towards ques-
tion answer dataset creation, Rakshit and Flani-
gan (2021) parsed AMRs of sentences to generate
question-answer pairs.

Summarization. AMR use in summarization has
taken various approaches, often by parsing and
joining AMR graphs of the sentences determined
to be the most important. For instance, Dohare et al.
(2017); Liao et al. (2018) picked the most important
sentences from a text and created a single AMR
graph from those sentences, then generated a short
summary from key subgraphs.

Rather than parsing only the most important sen-
tences, Liu et al. (2015) parsed individual AMR
graphs of a text, combining them into one “sum-
marization” graph by collapsing multiple concepts
into single nodes with new concept labels, and then
generating text from the summarized AMR. Varia-
tions of this approach have been proposed by Hardy
and Vlachos (2018); Kouris et al. (2022).

Numerous approaches to genre-specific sum-
marization, such as opinion summarization (In-
ácio and Pardo, 2021), TV transcript summariza-
tion (Hua et al., 2022), timeline generation (Man-
souri et al., 2023), long dialogue summarization
(Hua et al., 2023), and abstractive summarization
of biomedical documents (Frisoni et al., 2023) have
all seen the incorporation of AMR. Some of these
works have leveraged AMRs by parsing AMRs of
the text and then incorporating them into an LLM
via an attention mechanism (Hua et al., 2022, 2023;
Frisoni et al., 2023). In a non-English setting, Sev-
erina and Khodra (2019) used AMR for Indonesian
multi-document summarization.

As a post-hoc refinement step for text sum-
marization, Ming et al. (2018) used AMR and
WordNet (Miller, 1995; Fellbaum, 1998) to filter
out redundant information.

3.2 AMR to Abstract Away from the Surface

Following the logic that AMR “abstracts” away
from the surface form, recent work has exploited
AMR to produce new text with the same meaning
as the original text. This work often uses AMR as
an intermediate representation, i.e., parses an AMR
from a text and then generates new text from the
parsed AMR.

Style Transfer. Jangra et al. (2022) leveraged
AMR as an intermediate representation to generate
a paraphrase in a different style, using a fine-tuned
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Transformer-based AMR parser (encoder) and mul-
tiple Transformer-based text generators (decoders)
for various text styles. Shi et al. (2023) also used
AMR as an intermediary, parsing an AMR graph
from the text and performing concept-level style
rewriting on the AMR graph (modifying the words
to a different genre), achieving state-of-the-art re-
sults.

Paraphrase Generation. Prior work has utilized
AMR for paraphrase generation by producing para-
phrases directly from AMR graphs (Huang et al.,
2023; Bao et al., 2023), occasionally altered with
additional information (Lee et al., 2022a; Tu et al.,
2024), or by injecting an embedding of an AMR
into a Transformer model (Huang et al., 2022).

As AMR inherently preserves semantic simi-
larity, Huang et al. (2023) used AMR directly as
an intermediary to generate syntactically diverse
paraphrase sets. They changed the root of the
parsed AMR in order to be able to produce multi-
ple AMRs,2 and thus multiple sentences via AMR-
to-text generation. Similarly, Shou et al. (2022);
Ghosh et al. (2024) tackled data augmentation by
parsing AMR graphs of the text, then editing them
and generating new text.

Grammatical Error Correction. Cao and Zhao
(2023) constructed denoised AMR graphs of sen-
tences with grammatical errors and incorporated
them into a sequence-to-sequence model as addi-
tional knowledge, achieving significantly higher
precision and recall than the text-only baseline.

Machine Translation. Multiple approaches to
neural machine translation have seen performance
improvements when incorporating AMR as addi-
tional knowledge (Song et al., 2019; Nguyen et al.,
2021). Li and Flanigan (2022) in particular ob-
served performance gains when integrating AMR
graphs into both the encoder and decoder of a
Transformer model. Jin et al. (2024) on the other
hand found that feeding an AMR in a zero-shot
prompting setting with LLMs did not improve—or
even hurt—performance.

AMR can also be used as an intermediary for a
translation post-processing step in order to reduce
the presence of translation artifacts (translationese,
Wein and Schneider (2024b)).

2In AMR, the root indicates the linguistic focus of a sen-
tence. Thus, changing the root of the AMR of the sentence
“the cat drinks water” from drink to water, will yield a para-
phrase such as “it is water that the cat drinks.”

3.3 AMR for Domain-Specific Adaptations

Given that some syntactic content is not included in
AMR graphs, the AMR schema has been adapted
as necessary for specific domains.

Math. Two recent works addressed how formulas
conveyed in text should be accommodated within
AMR graphs. Iordan (2021) developed an AMR
parser with an added coreference detection feature
to parse AMR graphs from descriptions of geome-
try problems, and Mansouri et al. (2022) incorpo-
rated embeddings of altered AMRs into an LLM
for extracting formulas.

Legal Reasoning. As is the case for math,
domain-specific language in legal documents ne-
cessitates alteration of the AMR formalism. Vu
and Nguyen (2019) evaluated the (generally poor)
performance of AMR parsers on legal documents;
further, Schrack et al. (2022) showed that neuro-
symbolic methods which include linearized AMR
graphs do not outperform text-only methods on
multiple choice question answering for legal rea-
soning, but do offer a complementary signal. To
address these challenges, Vu et al. (2022) intro-
duced a human-annotated dataset of AMRs in the
legal domain.

Spatial/Situated Dialogue. A fruitful line of
AMR application research has focused on spatial/
situated dialogue, in particular on human-robot in-
teraction.3 Numerous datasets of AMR graphs of
human-robot interactions have been created (Bas-
tianelli et al., 2014; Shichman et al., 2023). An al-
tered AMR schema called “Dialogue-AMR” (con-
taining information on tense, aspect, and speech
acts) supports the representation of human-robot in-
teractions (Bonial et al., 2019; Abrams et al., 2020;
Bonial et al., 2020a, 2021, 2023). Ultimately, this
has enabled grounded natural language understand-
ing for human-robot interactions.

Other work in spatial and situated AMR (un-
related to human-robot interaction) has also ac-
counted for the necessity of altering AMR to in-
clude grounding language. Datasets of AMR
graphs for multimodal dialogue have incorporated
gestures (Donatelli et al., 2022; Lai et al., 2024)
and spatial information (Bonn et al., 2020; Dan
et al., 2020) into the AMR schema. Martin et al.

3While AMR-based dialogue understanding work has been
primarily focused on human-robot dialogue, Bai et al. (2022)
achieved state-of-the-art performance on general dialogue un-
derstanding by using AMR to continuously pre-train a Trans-
former encoder.
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(2020) crowdsourced AMR annotations of text con-
taining spatial information and Tam et al. (2023)
investigated action annotation in AMR.
System Requirements. Lamercerie and Foret
(2021) altered AMR graphs of system requirements
by grouping subgraphs of individual desired prop-
erties of the system.
Recipe Instructions. Similarly to the work done
on system requirements, Stein et al. (2023) mod-
ified AMR graphs for recipes, breaking down
sentence-level AMR graphs into graphs of indi-
vidual actions in the recipe.

3.4 AMR for Image and Speech
As a semantic representation, AMR has been con-
verted into other types of text-based formalisms
(such as SPARQL in §3.1 and UMR (Post et al.,
2024)), as well as leveraged in support of non-text-
based forms of media such as images and speech.
Images. Recent work has investigated the use of
AMR for scene graph parsing, which is the pro-
duction of a graph-based representation of object
boundaries in images. Choi et al. (2022a,b) con-
verted AMR graphs into scene graphs, while Ab-
delsalam et al. (2022) explored the use of AMR as
an alternative to scene graphs (via image-to-AMR
parsing).

Image captioning has employed AMR in order
to focus on specific aspects of meaning or task-
specific difficulties. Neto et al. (2020) used AMR
to produce descriptions of specific regions of an
image, and Kim et al. (2024) used the relationship
between the sentence and object (via AMR) for
caption debiasing. Finally, Bhattacharyya et al.
(2024) and Chen et al. (2024) leveraged semantic
relations from AMR and the image to guide caption
generation.
Speech. Little work has investigated the utility of
AMR for speech systems, though Addlesee and Da-
monte (2023) addressed nonstandard speech as an
accessibility issue for voice assistants by producing
a corpus of AMR graphs of disrupted speech, and
training models on this data.

3.5 AMR for NLG Evaluation
AMR’s nature as an interpretable semantic repre-
sentation lends itself to evaluation-based tasks.
Dialogue Evaluation. Ghazarian et al. (2022) de-
veloped a robust dialogue coherence measure by
training on negative text examples that are gener-
ated from AMRs which were manipulated in con-
trolled ways, e.g., introducing contradictions by

changing node labels to antonyms. The resulting
model achieves significantly better correlation to
humans than other text- and graph-based baselines.
On the same task, Yang et al. (2024) showed that
performance improvements can also be achieved
by fusing text and AMR in a model using a dual-
encoder, thus more directly using the AMR.
Summary Evaluation. Ribeiro et al. (2022)
trained a model that leverages AMR as auxiliary in-
formation in a dual encoder, outperforming strong
QA-based and NLI-based summary factuality
models. Addressing the same task, Qiu et al.
(2024) produced training examples with manip-
ulated AMRs, resulting in a state-of-the-art factu-
ality prediction model. Tackling the second pillar
of summary quality, being summary relevance,
Nawrath et al. (2024) split AMR graphs of sum-
maries into subgraphs with the aim to generate
Summary Content Units (clauses that identify sub-
sentential content in summaries (Nenkova and Pas-
sonneau, 2004)). In this case, the results were
more mixed and the authors noted that develop-
ment of advanced splitting methods is necessary
for improved results. As a general summary inter-
pretability method, Landes and Di Eugenio (2024)
developed an AMR-alignment tool for the inspec-
tion of summaries, aligning parts of the summary
with the evidence in the source document.
General Evaluation and Diagnostics. Opitz and
Frank (2021) used AMR metrics to compare AMR
graphs of candidates and references, enabling mea-
surement of fine-grained text quality aspects like
polarity or coreference faithfulness. Using AMR
metrics to evaluate NLG quality is limited by cur-
rent parsing inaccuracies (Manning and Schneider,
2021).

3.6 AMR for Language Studies

AMR is a linguistic tool which has been utilized
for language-focused research and teaching.
Linguistic Research. Sawai et al. (2015) used
AMR to build a model that answers statistical re-
search questions about the semantic structure of
noun phrases.
Teaching. The investigation of the meaning of a
text emerges as an intriguing and interesting class-
room exercise. In particular, given its linguistic
specificity and interpretability, AMR can help stu-
dents learn about linguistic structures, as exempli-
fied in the lesson and exercise on AMR in Eisen-
stein (2021).
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3.7 AMR for Explainable Semantic Similarity

AMR-based metrics are of wider interest in mea-
suring semantic similarity and relatedness, beyond
NLG evaluation (c.f. §3.5). Intuitively, we can
parse two input texts and calculate AMR similarity,
providing an additional layer of interpretability and
explainability via AMR.

AMR metrics have been used for detecting para-
phrases (Issa et al., 2018), evaluating the answers
provided by language learners on reading compre-
hension questions (Dellert, 2020), judging argu-
ment and text similarity (Opitz et al., 2021b), and
matching local knowledge graphs (Kachwala et al.,
2024). Furthermore, assessing structural graph
isomorphism in the AMRs of multilingual texts
achieves finer-grained semantic equivalence judg-
ments than neural methods (Wein et al., 2023). In-
corporating AMR graphs and AMR metrics into
neural models for natural language inference has
also been of value (Opitz et al., 2023; Feng and
Hunter, 2024; Bao et al., 2023).

Neural text embedding models such as SBERT
(Reimers and Gurevych, 2019) and SimCSE (Gao
et al., 2021) have been retro-fitted by encoding
AMR graphs (Cai et al., 2022). Alternatively, se-
mantic embedding interpretability has been in-
duced by binding parts of embeddings to semantic
features such as negation, semantic roles, or named
entities, that can be measured with AMR metrics
(Opitz and Frank, 2022b). In the same direction,
Fodor et al. (2024) found that state-of-the-art trans-
formers “poorly capture the pattern of human se-
mantic similarity judgments”, and AMR can be
used to build simple methods that combine seman-
tic compontents into an improved hybrid model.

3.8 Miscellanea

Finally, we discuss miscellanea, which are either
applications where the impetus behind the use of
AMR may be less obvious, or applications that es-
cape a categorization into the above classes. Firstly,
AMRs have been employed for commonsense rea-
soning, using different strategies: tracing reasoning
paths through AMRs (Lim et al., 2020), enrich-
ing AMRs with relations from a Commonsense
Knowledge Graph (Oh et al., 2022), and within
a neuro-symbolic approach where AMR is con-
verted into first-order logic (Chanin and Hunter,
2023). AMR has also been used for sentiment an-
alysis (Ma et al., 2023) and to generate feedback
for reinforcement learning in text-based games

(Chaudhury et al., 2023). Elbasani and Kim (2022)
parsed AMRs of the text and then used that as input
to a convolutional neural network for toxic content
detection. For a similar task–fake news detec-
tion–Gupta et al. (2023) used text-based features in
conjunction with AMR graphs to classify whether
a tweet is fake news. Finally, AMR has been used
to perform general text classification (Ogawa and
Saga, 2023).

4 Engineering with AMR

In the prior section, we categorized AMR applica-
tions by task in order to provide an overview of the
AMR application landscape, showcasing AMR as
a general-purpose representation. In this section,
we describe and provide a functional guide to the
techniques and patterns which have allowed AMR
to be leveraged for the aforementioned engineering
purposes.

4.1 AMR Preparation

As an initial step in working with AMR, many ap-
plications conduct operations on the AMR graph.
We observe frequent use of the following three
types of operations: pre-processing, splitting/
merging, and encoding.

AMR pre-processing can range from simple
string changes to more elaborate graph transfor-
mations. Examples of simple string changes in-
clude lower-casing or truncating the concept labels.
Graph transformations that preserve the equiva-
lency of AMRs can include reification (Opitz et al.,
2021a; Shou and Lin, 2023), where, with the help
of a dictionary, we ‘generalize’ binary edge labels
to n-ary structures. Alternatively conversion to a
Levi Graph (Beck et al., 2018; Lim et al., 2020)
which is a bipartite graph without edge labels, alle-
viates the need to handle edge labels in some spe-
cific way other than node labels (see Appendix A
for examples of these transformations).

AMR splitting and merging can also come in
handy. For example, AMRs are split to find the
largest common sub-structures in question answer
pairs (Deng et al., 2022), or to extract subgraphs
that elicit specific aspects of meaning such as po-
larity or semantic roles (Opitz and Frank, 2022b;
Opitz, 2023). Merging can be applied by first
matching concepts or named entities from two
graphs, and then connecting or fusing nodes that
represent the same entities (Liu et al., 2015; Lee
et al., 2021), possibly leveraging advanced corefer-
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ence resolution within AMR (Fu et al., 2021). In
the simplest case, merging is conducted by con-
necting multiple graphs at their roots (Kouris et al.,
2022; Bai et al., 2022).

Bai et al. (2022) also exemplifies the possibility
of AMR enrichment with task-specific informa-
tion (here: edges labeled with the speaker in a
dialogue). Other examples of additional informa-
tion used to enrich AMR graphs include VerbNet
event structure (Tu et al., 2024) and links from
knowledge graphs (Zhang et al., 2021).

These line of work on AMR merging and enrich-
ment may profit from the ongoing research into the
‘AMR-intrinsic’ tasks of AMR coreference reso-
lution (Fu et al., 2021; Li et al., 2022) and AMR-
to-text alignment (Blodgett and Schneider, 2021;
Martínez Lorenzo et al., 2023).

Many approaches have required that AMR some-
how be encoded into an external model. Synergiz-
ing well with the strong NLU inductive bias of
text language models, one successful paradigm for
AMR encoding is to simply feed the linearized
graph as a string, where string pre-processing tricks
(such as those described) can increase performance
(Ribeiro et al., 2021b,a).

AMR encoding can also involve constructing
feature vectors (/embeddings) of the full AMR
graphs (Wang et al., 2017) or targeted semantic
parts (Fodor et al., 2024).

Prior work on AMR-to-text generation has found
success encoding AMRs using Graph RNNs (Song
et al., 2018) and Graph Transformers (Song et al.,
2020; Yao et al., 2020), and the same or similar en-
coding mechanisms are also found when encoding
AMRs for downstream applications (Song et al.,
2019).

4.2 Two Processing Paradigms

We observe two major processing paradigms in
AMR applications: the neuro-symbolic model, and
the use of AMR as an intermediate representation.
The first approach has been consistently popular;
the second approach has grown in popularity more
recently.

Fusing Text and AMR: the Neuro-symbolic
Model. The abundant recent interest in neuro-
symbolic approaches for NLP (Besold et al., 2021;
Hamilton et al., 2022; Yu et al., 2023) has bled into
AMR applications.

A common way of leveraging AMR information
is merging information from the AMR modality

with information from the text modality, typically
with an auxiliary motive (e.g., AMR is used to help
refine the extracted information from the text to
improve a model accuracy by some points). To
accomplish this, a prominent strategy has been to
construct an AMR parse from the text and then
feed both this parse and text into one neural model.

Sometimes, a joint encoder is employed, where
AMR and text are simply concatenated and fused
at the lowest processing layers (Huang et al., 2022;
Hsu et al., 2023). The two modalities (text and
AMR) can also be first processed separately, using
two individual encoders, to create disjoint higher-
level representations that are then fused later such
as by adding or concatenating. This fusing can
happen in intermediate layers (Dai et al., 2022; Ma
et al., 2023), or at the final decision layer (Cai et al.,
2022; Opitz et al., 2023).

AMR as an Intermediate Representation. Us-
ing AMR as an intermediate representation means
typically operating on and with the AMR X as fol-
lows: parse → X → generate, interlinking parsing
and generation models.

One appealing aspect of this technique is the
increased interpretility and linguistic control, as
to induce controlled changes in meaning. For
example, the AMR graph can be transformed to
generate (1) paraphrases (e.g., by swapping the
root (Huang et al., 2023), or swapping out a concept
with a synonym, and then generating text (Shi et al.,
2023)), or to generate (2) contradictions (e.g., by
inserting a targeted negation to a predicate and
then generating text from the manipulated structure
(Ghazarian et al., 2022)).

On the other hand, the AMR graph can instead re-
main unaltered while the input text, parsing method,
or generation method are varied, such as in the
cases of Jangra et al. (2022) for style transfer and
Wein and Schneider (2024b) for translationese re-
duction. As another example, Dohare et al. (2017)
compile a summary AMR, by finding AMR nodes
focused on important entities, and selecting the sub-
tree hanging from that verb as the summary AMR.
Text is then generated from the specified subtree.
This highlights that the splitting and merging tech-
niques highlighted in §4.1 can be part of working
with AMR as intermediate representation.

5 Areas for Future Work

Surveying the vast number of tasks and techniques
utilized throughout the last decade, we observe
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three notable areas for future work on AMR appli-
cations.

First, a technique which has shown great promise
for incorporating AMR into neural or non-neural
downstream applications is as an intermediate rep-
resentation. This intuitively leverages both AMR’s
design as a graph-based semantic representation
as well as the progress on text-to-AMR parsing
and AMR-to-text generation.4 Using AMR as an
intermediary provides us linguistic control and in-
terpretability, which are increasingly desirable in
the age of “black box” neural models. Numerous
recent studies have successfully exploited AMR
as an intermediary (§4.2), indicating that this may
be a promising path forward, particularly in low-
resource settings or for data augmentation.

Second, recent work has shown the benefits of
incorporating AMR in few-shot or low-resource
settings (Nguyen et al., 2021; Gururaja et al., 2023;
Hua et al., 2023; Ghosh et al., 2024). This indicates
that, regardless of the technique of incorporation,
AMR is positioned to be especially well suited for
engineering gains in these settings.

Finally, an area which has been largely under-
studied (§3.6) but directly follows from the design
of AMR as semantic representation, is the use of
AMR for linguistic analysis and text statistics. Po-
tential applications include language learning or
studying predicate-argument patterns in L1 or L2
texts. Additional uses of AMR for linguistic analy-
sis include linguistically-focused evaluations and
finer statistics of NLG systems (prior work in this
direction discussed in §3.5).5

6 Related Work on Applications of Other
Meaning Representations

Other surveys have considered the engineering util-
ity of semantic representations. Regarding spe-
cific tasks, Verrev (2023) tested out the benefits
of various meaning representations for knowledge-
base question answering (KBQA), and Prange et al.
(2022) for next-word prediction in conjunction with
neural models.

Related work has also compared the designs and
features of semantic representations (Abend and
Rappoport, 2017), with Pavlova et al. (2023) specif-

4This approach also hearkens back to one of the classic ap-
proaches towards a fundamental NLP problem, being machine
translation: interlingual machine translation (Dorr, 1993).

5For mining large unstructured text data, AMR offers se-
mantic triplets that await to be sensibly aggregated, e.g., to
craft an automatic knowledge graph.

ically addressing how the features of the semantic
representations may play a role in their utility.

7 Conclusion

In this survey, we provided a thorough overview of
the tasks where Abstract Meaning Representation
graphs have been used and the techniques involved
in using AMR for engineering purposes. Given
the availability of strong parsing systems and the
increased interest in AMR, we expect that we are
on the precipice of exciting progress employing
AMR in downstream applications. As our synthe-
sis of AMR engineering patterns indicates, there
are numerous methods, techniques and possible
applications that await further exploration and con-
tinued improvement.

Limitations

In this survey, we direct our attention exclusively
towards the AMR formalism given the recent abun-
dance of work incorporating AMR, and the fact that
there are still few surveys addressing AMR. While
other semantic representations have been consid-
ered as engineering tools (§6), AMR is currently
unique in the breadth with which it has been used
and studied.

As discussed in §2.1, applications of AMR
have been primarily focused on English; recent
work (discussed throughout this survey) has demon-
strated the cross-lingual and non-English utility of
AMR (Wein and Schneider, 2024a), which contin-
ues to increase given advancements in multilingual
AMR parsing and generation.

We have incorporated the full breadth of existing
AMR application work to the best of our knowl-
edge; the bar chart in §3 serves as a lower bound
as there may be papers that were missed.
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Comparing Czech and English AMRs. In Pro-
ceedings of Workshop on Lexical and Grammatical
Resources for Language Processing, pages 55–64,
Dublin, Ireland. Association for Computational Lin-
guistics and Dublin City University.

Jens E. Van Gysel, Meagan Vigus, Jayeol Chun, Ken-
neth Lai, Sarah Moeller, Jiarui Yao, Tim O’Gorman,
Andrew Cowell, William Croft, Chu-Ren Huang,
Jan Hajič, James H. Martin, Stephan Oepen, Martha
Palmer, James Pustejovsky, Rosa Vallejos, and Ni-
anwen Xue. 2021. Designing a uniform meaning

6873

https://doi.org/10.3115/v1/P15-2140
https://doi.org/10.18653/v1/2022.findings-emnlp.112
https://doi.org/10.18653/v1/2022.findings-emnlp.112
https://doi.org/10.1109/ICAICTA.2019.8904449
https://doi.org/10.1109/ICAICTA.2019.8904449
https://doi.org/10.1109/ICAICTA.2019.8904449
https://doi.org/10.18653/v1/2023.findings-acl.260
https://doi.org/10.18653/v1/2023.findings-acl.260
http://arxiv.org/abs/2405.03085
http://arxiv.org/abs/2405.03085
https://aclanthology.org/2023.iwcs-1.30
https://aclanthology.org/2023.iwcs-1.30
https://aclanthology.org/2023.iwcs-1.30
https://ceur-ws.org/Vol-3196/paper5.pdf
https://ceur-ws.org/Vol-3196/paper5.pdf
https://doi.org/10.18653/v1/2022.findings-acl.244
https://doi.org/10.18653/v1/2022.findings-acl.244
https://doi.org/10.18653/v1/2022.findings-acl.244
https://doi.org/10.18653/v1/2023.acl-long.892
https://doi.org/10.18653/v1/2023.acl-long.892
https://doi.org/10.18653/v1/W19-4028
https://doi.org/10.18653/v1/W19-4028
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.18653/v1/2020.acl-main.712
https://doi.org/10.18653/v1/2020.acl-main.712
https://doi.org/10.18653/v1/P18-1150
https://doi.org/10.18653/v1/P18-1150
https://aclanthology.org/2023.dmr-1.6
https://aclanthology.org/2023.dmr-1.6
https://2023.eswc-conferences.org/wp-content/uploads/2023/05/paper_Steinmetz_2023_Entity.pdf
https://2023.eswc-conferences.org/wp-content/uploads/2023/05/paper_Steinmetz_2023_Entity.pdf
https://arxiv.org/abs/2205.07712
https://arxiv.org/abs/2205.07712
https://aclanthology.org/2023.dmr-1.5
https://aclanthology.org/2023.dmr-1.5
https://aclanthology.org/2024.lrec-main.685
https://aclanthology.org/2024.lrec-main.685
https://doi.org/10.3115/v1/W14-5808
https://doi.org/10.1007/s13218-021-00722-w


representation for natural language processing. KI -
Künstliche Intelligenz.

Pavlo Vasylenko, Pere Lluís Huguet Cabot,
Abelardo Carlos Martínez Lorenzo, and Roberto
Navigli. 2023. Incorporating graph information
in transformer-based AMR parsing. In Findings
of the Association for Computational Linguistics:
ACL 2023, pages 1995–2011, Toronto, Canada.
Association for Computational Linguistics.

Martin Verrev. 2023. Evaluation of semantic parsing
frameworks for automated knowledge base construc-
tion. In Intelligent Systems Design and Applications,
pages 554–563, Cham. Springer Nature Switzerland.

Trong Sinh Vu and Minh Le Nguyen. 2019. An empiri-
cal evaluation of AMR parsing for legal documents.
In New Frontiers in Artificial Intelligence: JSAI-
isAI 2018 Workshops, JURISIN, AI-Biz, SKL, LENLS,
IDAA, Yokohama, Japan, November 12–14, 2018,
Revised Selected Papers, pages 131–145. Springer.

Trong Sinh Vu, Minh Le Nguyen, and Ken Satoh. 2022.
Abstract meaning representation for legal documents:
an empirical research on a human-annotated dataset.
Artificial Intelligence and Law, 30(2):221–243.

Cunxiang Wang, Zhikun Xu, Qipeng Guo, Xiangkun
Hu, Xuefeng Bai, Zheng Zhang, and Yue Zhang.
2023. Exploiting Abstract Meaning Representation
for open-domain question answering. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 2083–2096, Toronto, Canada. Associa-
tion for Computational Linguistics.

Yanshan Wang, Sijia Liu, Majid Rastegar-Mojarad, Li-
wei Wang, Feichen Shen, Fei Liu, and Hongfang
Liu. 2017. Dependency and AMR embeddings for
drug-drug interaction extraction from biomedical lit-
erature. In Proceedings of the 8th ACM International
Conference on Bioinformatics, Computational Biol-
ogy,and Health Informatics, ACM-BCB ’17, page
36–43, New York, NY, USA. Association for Com-
puting Machinery.

Shira Wein, Lucia Donatelli, Ethan Ricker, Calvin En-
gstrom, Alex Nelson, Leonie Harter, and Nathan
Schneider. 2022. Spanish Abstract Meaning Repre-
sentation: Annotation of a general corpus. In North-
ern European Journal of Language Technology, Vol-
ume 8, Copenhagen, Denmark. Northern European
Association of Language Technology.

Shira Wein and Nathan Schneider. 2022. Accounting
for language effect in the evaluation of cross-lingual
AMR parsers. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3824–3834, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Shira Wein and Nathan Schneider. 2024a. Assessing
the Cross-linguistic Utility of Abstract Meaning Rep-
resentation. Computational Linguistics, pages 1–55.

Shira Wein and Nathan Schneider. 2024b. Lost in trans-
lationese? reducing translation effect using Abstract
Meaning Representation. In Proceedings of the 18th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 753–765, St. Julian’s, Malta. Associa-
tion for Computational Linguistics.

Shira Wein, Zhuxin Wang, and Nathan Schneider. 2023.
Measuring fine-grained semantic equivalence with
Abstract Meaning Representation. In Proceedings of
the 15th International Conference on Computational
Semantics, pages 144–154, Nancy, France. Associa-
tion for Computational Linguistics.

Runxin Xu, Peiyi Wang, Tianyu Liu, Shuang Zeng,
Baobao Chang, and Zhifang Sui. 2022. A two-stream
AMR-enhanced model for document-level event ar-
gument extraction. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 5025–5036, Seattle,
United States. Association for Computational Lin-
guistics.

Weiwen Xu, Huihui Zhang, Deng Cai, and Wai Lam.
2021. Dynamic semantic graph construction and rea-
soning for explainable multi-hop science question
answering. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1044–1056, Online. Association for Computational
Linguistics.

Zhiyang Xu, Jay Yoon Lee, and Lifu Huang. 2023.
Learning from a friend: Improving event extrac-
tion via self-training with feedback from Abstract
Meaning Representation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 10421–10437, Toronto, Canada. Association
for Computational Linguistics.
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A Reification and Levi Graph
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Figure 3: Three equivalency-preserving AMR transfor-
mations for “The jury rendered a guilty verdict.” Left/-
Top: Standard AMR. Middle/Middle: Reification with
AMR rules. Right/Bottom: Bipartite Levi Graph with
unlabeled edges. While Levi Graphs are not AMR-
specific, reification is. Per the AMR guidelines (Ba-
narescu et al., 2019), any labeled edge not in a stan-
dardized set (:opN, :argN, etc.) is generalized to a new
structure, where the old edge assumes the position of a
node linked with :opN/:argN to the original structure
(in the example, :mod triggers the node have-mod-91
with arguments :ARG1 and :ARG2).
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