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Abstract

Caregiver strategy classification in pediatric re-
habilitation contexts is strongly motivated by
real-world clinical constraints but highly under-
resourced and seldom studied in natural lan-
guage processing settings. We introduce a large
dataset of 3,062 caregiver strategies in this set-
ting, a five-fold increase over the nearest con-
temporary dataset. These strategies are manu-
ally categorized into clinically established con-
structs with high agreement (κ=0.68-0.89). We
also propose two techniques to further address
identified data constraints. First, we manually
supplement target task data with relevant public
data from online child health forums. Next, we
propose a novel data augmentation technique
to generate synthetic caregiver strategies with
high downstream task utility. Extensive experi-
ments showcase the quality of our dataset. They
also establish evidence that both the publicly
available data and the synthetic strategies re-
sult in large performance gains, with relative
F1 increases of 22.6% and 50.9%, respectively.

1 Introduction

Globally, over 50 million children aged 0-5 years
experience disability (Olusanya et al., 2018). These
young children and their families benefit from
timely access to quality pediatric rehabilitation ser-
vices in diverse contexts, ranging from hospital
to home and community (Olusanya et al., 2024).
When rehabilitation providers create conditions for
families to share their expertise about their child’s
attendance and involvement in valued activities,
perceived supports and strategies, and priorities
for change, they can engage families in shared
decision-making to design and monitor a meaning-
ful service plan (Crawford et al., 2022). Providers
benefit from gathering this information from fam-
ilies to direct equitable care (Pinto et al., 2022;
Jarvis and Fink, 2021; Magnusson and Khetani,

*Work completed at University of Illinois Chicago.

2022). However, parent-generated data is often col-
lected and documented as free text narratives, ne-
cessitating efforts to extract and standardize content
for clinical and research applications (Newman-
Griffis et al., 2022a; Kaelin et al., 2024, 2022b).

Development of web-based tools (e.g., the Par-
ticipation and Environment Measure (Coster and
Khetani, 2008), also known as PEM) can diver-
sify the capture and use of structured and narrative
information from families to drive pediatric reha-
bilitation service design and improvement. Recent
work established benchmarks for the detection and
classification of caregiver strategies collected using
two available versions of a PEM tool (Kaelin et al.,
2023; Valizadeh et al., 2024). However, model
performance was constrained by a limited avail-
ability of caregiver strategy data involving children,
across a subset of relevant age ranges and rehabil-
itation care contexts. A larger, more diverse data
source is needed to strengthen applicability across
the broader pediatric rehabilitation care continuum.

We respond to that need in this work, making
three primary contributions. First, we establish
inclusion and exclusion criteria for data sources
fitting one or more classes of caregiver strategies.
We define primary class characteristics, identify
relevant and irrelevant external sources, and con-
struct or select prototypical samples. Next, we
identify and prepare a subset of strategies data
from (a) three datasets from prior related research
(n=185 families (Jarvis et al., 2019; Khetani et al.,
2015, 2023)) matching these criteria, and (b) pub-
licly available data instances that also match es-
tablished guidelines. Data are preprocessed and
stored in a format compatible with existing care-
giver strategies data (Valizadeh et al., 2024), and
labeled according to strategy class with high relia-
bility (κ=0.68-0.89). Finally, we propose a novel
data augmentation technique to generate and filter
caregiver strategies. We perform quality checks and
performance comparisons to assess augmentation
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feasibility within this task domain. Ultimately, we
find that our manually and synthetically augmented
data improves strategy classification performance
by a wide margin, establishing a new performance
ceiling for this task (F1=0.80).

2 Related Work

2.1 Caregiver Strategy Data

Minimal existing data is suitable for caregiver strat-
egy classification in pediatric rehabilitation set-
tings. Previously, Newman-Griffis et al. (2021)
created a dataset of 289 clinical documents associ-
ated with claims for federal disability benefits from
the U.S. Social Security Administration, and Cho-
rianopoulou et al. (2017) created a dataset with a
pediatric focus, collecting video-recorded sessions
of children with autism spectrum disorder and typ-
ically developing children. However, these data
did not relate to caregiver strategies for improving
child participation in daily activities.

The closest relevant dataset is the recently re-
leased CareCorpus (Valizadeh et al., 2024), which
contains 780 caregiver strategies organized into cat-
egories based on known drivers of child and youth
participation (Imms et al., 2017). CareCorpus is
drawn from a subset of data collected during a sin-
gle pilot implementation trial of PEM in an early
intervention program targeting children 0-3 years
old (Kaelin et al., 2022a), which limits the gener-
alizability of information that can be drawn from
the corpus, in terms of both child demographics
and service context. We (1) add data from more
diverse pediatric rehabilitation care contexts (hos-
pital, home, and community) as accessed by chil-
dren across a broader age range (0-5 years); (2)
introduce non-strategies from stylistically relevant
sources; and (3) incorporate a synthetic data aug-
mentation approach to further diversify our training
strategies. This addresses limitations of CareCor-
pus, including data scarcity, homogeneity, and class
imbalances.

2.2 Strategy Classification

Previously, Kaelin et al. (2023) extracted language
features pertaining to speech and dependency tags,
word sets, and Unified Medical Language System
(Bodenreider, 2004) concepts to classify 1,576 care-
giver strategies from families of youth ages 11-
17 years with childhood-onset disabilities. They
achieved promising performance, with macroaver-
aged F1=0.58–0.83 across different classification

granularities. Valizadeh et al. (2024) experimented
with both feature-based models and popular pre-
trained language models (PLMs), finding competi-
tive performance using a fine-tuned BERT model.

Valizadeh et al. (2024)’s study raised questions
about whether general-domain pretraining data is
still preferable to more health-focused data for
diversified pediatric rehabilitation contexts as ac-
cessed by children across a broader age range.
Moreover, replicating their study on a larger dataset
enables assessment of the reproducibility and gen-
eralizability of their findings. Our work creates a
sandbox extending from this for the study of data
augmentation in specialized healthcare settings.

2.3 Data Augmentation
Data augmentation (DA) tackles data scarcity in
low-resource NLP tasks by employing techniques
to generate additional similar samples that vary
along some dimension from the original source. A
popular DA approach is rewriting or paraphrasing,
by replacing words with synonyms and varying
sentence structure while preserving overall mean-
ing (Wei and Zou, 2019; Kobayashi, 2018; Gupta
et al., 2017; Okur et al., 2022). Other common ap-
proaches include backtranslation, which involves
translating data to and from one or more interme-
diate languages (Edunov et al., 2018; Yu et al.,
2018), and data noising, which involves masking
some words with random unigrams or placeholder
tokens (Xie et al., 2017). These rule-based DA
techniques may struggle with semantic diversity.
In contrast, conditional generation involves fine-
tuning a PLM to produce text conditioned on the
target label (Bowman et al., 2016; Anaby-Tavor
et al., 2020; Yang et al., 2020; Lee et al., 2021).
However, it has traditionally required costly human
labels (Sahu et al., 2022; Papangelis et al., 2021).

Large language models (LLMs) have emerged as
a promising avenue for generating synthetic data,
demonstrating remarkable rewriting capabilities
(Radford et al., 2021). Their use addresses nu-
merous limitations of prior DA approaches, prior-
itizing effectiveness and accessibility. However,
LLM-generated data may be of dubious quality
(Guerreiro et al., 2023). To preserve the quality
and diversity of data augmented using LLMs, Ye
et al. (2024) proposed LLM-DA, evaluating it in a
named entity recognition setting and augmenting
data at both the context and entity levels to align
with characteristics inherent to the task. Ghorbani
and Zou (2019) proposed DATA SHAPLEY in the
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biomedical text and image classification domains,
generating data and evaluating its training utility
for the target task. Likewise, Lin et al. (2023) in-
troduced selective in-context data augmentation,
evaluating synthetic examples before training an
intent detection model. We adopt the selective data
augmentation strategy for our work, leveraging the
generative power of LLMs to address data scarcity
while evaluating and selecting the most valuable
examples to augment the training data to ensure sus-
tained data quality. In contrast to Lin et al. (2023)’s
work, we frame data augmentation as a paraphras-
ing task with various prompts, described in §4.1.

3 Data

3.1 Data Collection

We identified and combined common data elements
across three diverse datasets from prior studies. Par-
ticipant demographics for each data source are pro-
vided in Appendix A. We also sourced stylistically-
relevant non-strategies to aid in classification. We
complied with existing institutional review board
(IRB) protocols in accessing all data, and ensured
that our acquisition of non-strategies data was con-
sistent with platform-specific terms and conditions.

Strategies Dataset A. These data come from a
cross-sectional study establishing the Young Chil-
dren’s PEM (YC-PEM) psychometric properties
(Khetani et al., 2015). Eligible caregivers (n=395):
1) could read and write English; 2) resided in the
United States or Canada; 3) identified as parents
or legal guardians 18+ years old; 4) had a child be-
tween 0-5 years old; and 5) had Internet access. A
total of 93 caregivers of children with developmen-
tal disabilities and delays and accessing rehabilita-
tion services (in the hospital, home, and/or commu-
nity) are represented in the combined dataset.

Strategies Dataset B. These data come from a
trial testing the preliminary effectiveness and im-
plementation of the YC-PEM when paired with
a program-specific decision support tool (Kaelin
et al., 2022a; Khetani et al., 2023; Rizk et al., 2023).
Eligible caregivers (n=76): 1) were at least 18 years
of age; 2) identified as the parent or legal guardian
of the child already enrolled in early intervention
(EI) services at home and in the community; 3)
had oral and written proficiency in English; 4) had
Internet and phone access; 5) cared for a child 0-3
years old who had received EI for at least 3 months.
A total of 39 caregivers assigned to the intervention

Setting % Agreement κ

Multinomial

Environment/Context 86.49 0.89
Sense of Self 73.32 0.69
Preferences 76.49 0.77
Activity Competence 69.42 0.68
No Strategy 94.89 0.89

Binary

Strategy/No Strategy 94.89 0.89
ES/IS 88.40 0.74

Table 1: Inter-rater agreement measured using percent
agreement and Cohen’s Kappa (κ).

group are included in the combined dataset.

Strategies Dataset C. These data come from a
prospective cohort study of children surviving criti-
cal illness (Choong et al., 2018; Jarvis et al., 2019;
Khetani et al., 2018). Eligible caregivers (n=180)
had children that were: 1) between ages 1-17 years
old, and 2) had been admitted to the pediatric in-
tensive care unit for at least 48 hours. A total of
53 caregivers with children aged 0-4 years old who
thus completed the YC-PEM at study enrollment
and 3 and 6 months post-discharge are included in
the combined dataset.

Non-Strategies Data. These data come from
four public health forums (Patient.Info,1 Mother-
ing,2 DC Urban Moms and Dads,3 and Netmums4).
Eligible caregivers (n=1002): 1) had a child be-
tween 0-5 years old, and 2) had a child with a
diagnosis or health issue. Data entries included
descriptions of the child’s behavior (e.g., “eats and
plays well like his normal self”), questions (e.g.,
“Anyone else had this experience with a child?”),
and caregiver-reported feelings about the child’s
health (e.g., “I am concerned”).

3.2 Data Annotation
The diversified dataset includes 3,062 caregiver
strategies. Two research team members (one male
and one female undergraduate at a large, diverse
university in an urban environment) independently
annotated 50-250 strategies per week, using the
same pediatric rehabilitation categories adopted

1https://patient.info/
2https://www.mothering.com/
3https://www.dcurbanmom.com/
4https://www.netmums.com/
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by Valizadeh et al. (2024), from March-August
2023. Annotators were paid $15.20 per hour.
They met with a third annotator and research team
member (a PhD-holding occupational therapist and
re/habilitation scientist) to settle discrepancies by
majority rule, seeking feedback from other key in-
formants (project leads who direct rehabilitation
science and natural language processing research
labs) as needed. Data instances not meeting label
criteria were categorized as non-strategies.

We calculated inter-annotator agreement using
percent agreement and Cohen’s kappa (Cohen,
1960), and report per-class agreement statistics as
well as inter-annotator agreement across broader
categorizations of the data in Table 1. In Appendix
B, we present examples of strategies from each
class, with the Pediatric Habilitation Context cor-
responding to samples from the data sources A and
B, and the Pediatric Rehabilitation Context corre-
sponding to examples from data source C.

3.3 Unique Qualities of the Dataset

The combined dataset5 (n=3,062) is much larger
than the original CareCorpus (n=780), with strate-
gies spanning: 1) more diverse rehabilitation ser-
vice contexts; and 2) the full early childhood period.
We sourced our strategies from caregivers whose
children were accessing pediatric rehabilitation ser-
vices across the “clinic to community” care contin-
uum, whereas prior work targeted children solely
accessing community-based early intervention ser-
vices. This more diverse range of service contexts
affords for assessing performance in ways that can
guide more varied downstream applications.

Similarly, since young children benefit from
personalized rehabilitation service design through
their preschool and kindergarten years, the ex-
panded age range (0-5 years versus the previ-
ous 0-3 years) lends itself to application across
a more comprehensive early childhood period. Fi-
nally, the non-strategies data responds to limita-
tions in CareCorpus’s class balance (Valizadeh
et al., 2024). We visualize the semantic diversity of
the extended dataset in Figure 1, comparing vector
space representations of strategies from the original
CareCorpus (CC), our new extended CareCorpus
(CC+), CareCorpus+ with additional non-strategies
(CC+NS), and CareCorpus+ with synthetically aug-
mented data (described further in §4). In all cases,

5Data and code: https://github.com/treena908/
CareCorpus-Plus

(a) Strategies from CC (b) Strategies from CC+

(c) Strategies from CC+NS (d) Strategies from CC+Aug

Figure 1: t-SNE visualizations of strategies from dif-
ferent strategy classes in four datasets: CC, CC+,
CC+NS, and CC+Aug. EC =Environment/Context;
SOS =Sense of Self; AC =Activity Competence;
P =Preferences; NS =Non-Strategy.

representations are TF-IDF vectors and visualiza-
tions are generated using t-distributed stochastic
neighbor embedding (Hinton and Roweis, 2002,
t-SNE). This also highlights the rich, complex na-
ture of caregiver strategy classification. We report
additional data statistics in Appendix C.

4 Synthetic Data Augmentation

4.1 Prompt-Based Strategy Generation

To investigate the feasibility of synthetic dataset
expansion for this task domain, we leveraged
the open-source Flan-t5-xl (Chung et al., 2022),
a 3B-parameter autoregressive encoder–decoder
LLM. This model is lightweight and has previ-
ously proven reliable for zero- or few-shot text
generation tasks (Chung et al., 2022; Sterner et al.,
2024), as well as for query reformulation tasks (Mo
et al., 2023).6 Its lightweight nature makes it well-
suited for environments that are not expected to
have substantial compute resources, such as occu-
pational therapy settings. We did not fine-tune the
model for the rephrasing task, but rather focused
on prompting methods that rely on the model’s ex-

6We use the encoder-decoder based model only to generate
synthetic data, and then use the augmented dataset is used to
train downstream classification models, allowing us to lever-
age the power of PLMs while preserving the independence of
the strategy classification model design.
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ID Prompt Template

a

Here is an example of Environment/Context
strategy:
Finding restaurants that are kid
friendly.

Please generate rewrite of the above
strategy keeping the style similar.
Find restaurants that are family
friendly.

b

Here is an example of Environment/Context
strategy in context of outing:
Finding restaurants that are kid
friendly.

Please generate rewrite of the above
strategy keeping the style similar.
Whether its a cafeteria for school lunch
or a fancy restaurant for a date night;
you want it to be kid friendly.

c

Here is an example of Environment/Context
strategy in context of outing in
community setting:
Finding restaurants that are kid
friendly.

Please generate rewrite of the above
strategy keeping the style similar.
Find out what’s going on when it comes to
family activities and restaurants that
are kid friendly.

Table 2: Examples of the prompts used to generate
synthetic examples. The strategy class is in black bold
text, whereas the broader activity type and environment
settings related to the strategy are in violet and orange
bold text in prompt templates (b) and (c), respectively.
Completions by the language model are in green.

isting knowledge and understanding to produce de-
sired outputs. Likewise, rather than fine-tuning for
noise reduction, we leveraged a filtering technique
(described further in §4.2) to mitigate the impact of
nonsense strategies generated by the model. These
choices also felt more computationally viable for
an occupational therapy setting.

We framed strategy augmentation as a paraphras-
ing task. For each strategy class, we created three
versions of a natural language prompt, with dif-
ferent versions including (a) the class name, (b)
the class name and broader activity context, and
(c) the class name and setting. The broader ac-
tivity context and setting were additional meta-
data values stored in our CC+ dataset. Broader
activity contexts were drawn from {chore, social-
izing, outing, classes and groups, basic care rou-
tine, recreational, educational, play}, and settings
were one of three environments: {community, day-

care/preschool, home}.
Each of these versions was followed by an exam-

ple from the training set, and then an instruction to
rewrite the given example. We show the three dif-
ferent prompt versions for the strategy class Envi-
ronment/Context in Table 2. For each input strategy,
we generated nine synthetic outputs using these
prompt templates with varying temperature values
of {0.8, 0.9, 1.0}. We adopted random sampling
with the repetition penalty set to 1.1 (Keskar et al.,
2019). We also set the maximum output sequence
length to 276, which was the maximum length of
any strategy in the training set.

4.2 PVI Filtering

Given the diversity of our samples coupled with a
diversity-oriented stochastic sampling generation
strategy, we expected that some generated strate-
gies would not match the desired strategy class.
To filter for synthetic strategies anticipated to have
high downstream task utility, we adopted the In-
Context Data Augmentation with PVI Filtering al-
gorithm (Lin et al., 2023). We retained synthetic
strategies deemed relevant based on their Pointwise
V-Information (PVI) (Ethayarajh et al., 2022). The
PVI of an input x with label y is calculated using
predictive V-entropy g = HV(Y ) and conditional
V-entropy g′ = HV(Y |X), with X and Y being
random variables and V a predictive model family:

PVI(x → y) = − log2 g[∅](y) + log2 g
′[x](y)

(1)
PVI was originally proposed as a mechanism for

understanding dataset difficulty: it measures the
amount of information that x provides to the clas-
sification model for learning y, compared to the
absence of that input. High PVI suggests high in-
formation content, whereas low PVI suggests that
the information gain is unlikely to be useful for
learning the target class (Ethayarajh et al., 2022).
Following Lin et al. (2023), we set a PVI threshold
ϵ for each strategy class, where ϵ was the average
PVI for the given strategy class in the validation
set. Using these thresholds, our PVI filtering step
discarded 11, 397 of the 15, 873 synthetically gen-
erated strategies.

5 Experiments and Results

5.1 Strategy Classification Models

To streamline comparison, we experimented with
the same models considered by Valizadeh et al.
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(2024): logistic regression (Lee et al., 2006), naïve
Bayes (Joyce, 2003), BERT (Devlin et al., 2019),
and Bio-ClinicalBERT (Alsentzer et al., 2019).7

We represented strategies in statistical models using
TF-IDF vectors with a vocabulary size of the 5000
most-frequent words in our dataset (Zhang et al.,
2011). For BERT and Bio-ClinicalBERT, we used
embeddings generated by the model’s input layer.

We classified caregiver strategies across our full
five-class data distribution, and set a baseline per-
formance floor by predicting the most frequent
class from the training set for each instance. Fol-
lowing precedent from earlier work, we also used
our best-performing model to assess performance
for the pipelined strategy/non-strategy (S/NS) and
extrinsic/intrinsic strategy (ES/IS) classification
tasks introduced by Valizadeh et al. (2024). These
tasks predict broader categorizations of the data,
with S/NS classification being a useful filtering
step for some downstream applications and ES/IS
classification reframing the strategy divisions along
more general rehabilitation constructs. In motivat-
ing inclusion of these additional dataset divisions,
we note that extracting and standardizing content
from free text for clinical use is important on a
more (i.e., in the finer-grained classes EC, SOS, P,
and AC) as well as less (i.e., the more simplified
classes ES and IS) level. Automated distinction at
the ES/IS level may empower clinicians to start dif-
ferentiating between more specific strategy types,
facilitating decision-making without the need for
finer-grained precision Valizadeh et al. (2024).

5.2 Experimental Setup

We split the CC+ corpus into 90:10 train:test
sets. For experiments with statistical models, we
optimized model parameters via 10-fold cross-
validation on the training set (Refaeilzadeh et al.,
2009). For experiments with pre-trained language
models (BERT and Bio-ClinicalBERT) we further
subdivided the training set into a training and vali-
dation set, resulting in an 80% training, 10% val-
idation, and 10% test split. In these cases, the
validation set was used during fine-tuning for hy-
perparameter optimization. The held-out test set
remained consistent across all conditions.

7We note that while it is likely that higher performance may
have been achieved with more targeted focus on classification
model design and selection, our emphasis in this work was on
investigating the impact of manual and synthetic expansion
of data in this highly specialized setting; maintaining model
consistency with contemporary relevant work allowed us to
control more fully for our variables of interest.

In the CC+NS and CC+Aug conditions, the train-
ing data was augmented with the non-strategy data
described earlier (CC+NS), as well as with syn-
thetically generated data (CC+Aug). However,
the validation and test data was never augmented,
meaning that we used the same CC+ test set (with
no augmented data present) for all conditions. To
avoid potential training biases, we kept all strate-
gies authored by the same caregiver in the same
data split for all models. We trained BERT and
Bio-ClinicalBERT using a learning rate of 2e-6 and
batch size of 16, for 10 epochs. All models were
trained and evaluated using one NVIDIA Tesla
V100 GPU with 32 GB of memory.

We compared strategy classification perfor-
mance when training models on the original
CareCorpus (CC), our manually expanded dataset
without additional non-strategies (CC+), our manu-
ally expanded dataset with non-strategies sourced
from online forums (CC+NS), and our manually
expanded dataset with synthetically augmented
data (CC+Aug). For CC+NS, we under-sampled
the non-strategy class (retaining ∼30% of non-
strategies from online forums) due to its compara-
tively high frequency. We also used class weights
to penalize minority class misclassification.

5.3 Results
We report our results in Table 3. Results using CC
are reported directly from Valizadeh et al. (2024)’s
paper. Results for BERT and Bio-ClinicalBERT
models are averaged across three runs with dif-
ferent random seeds, with standard deviations in-
cluded in parentheses. We observe a trend of in-
creased performance with added non-strategy data
from online forums (CC+NS), as well as with aug-
mented data (CC+Aug). Performance improve-
ments for CC+ over CC are inconsistent, with
improvements observed using logistic regression
(F1=0.57 versus F1=0.46) and Bio-ClinicalBERT
(F1=0.44 versus F1=0.39) but not for naïve Bayes
or BERT. This is unsurprising, given the intentional
increased diversity of strategy samples in CC+. We
nearly uniformly observe the highest performance
using a fine-tuned BERT model, successfully repli-
cating findings from Valizadeh et al. (2024). Our
overall highest-performing model is BERT fine-
tuned using CC+Aug, achieving F1=0.80.

We also report five-class strategy classification
performance with varying numbers of training in-
stances from the CC+Aug dataset in Figure 2. We
observe the best performance in both accuracy and
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Data Model Acc. P R F1

CC

Base 40.78 0.08 0.20 0.11
LR 57.89 0.69 0.43 0.46
NB 53.95 0.85 0.38 0.38
BERT 64.47 0.73 0.53 0.56
Bio 53.94 0.71 0.40 0.39

CC+

Base 59.64 0.12 0.20 0.15
LR 74.48 0.86 0.49 0.57
NB 61.72 0.72 0.24 0.23

BERT 60.78
(0.02)

0.54
(0.01)

0.62
(0.00)

0.53
(0.01)

Bio 48.74
(0.04)

0.46
(0.01)

0.54
(0.03)

0.44
(0.03)

CC+
NS

Base 59.64 0.11 0.20 0.16
LR 75.26 0.77 0.56 0.62
NB 65.36 0.86 0.33 0.34

BERT 72.77
(0.01)

0.63
(0.01)

0.69
(0.01)

0.65
(0.01)

Bio 54.46
(0.05)

0.52
(0.03)

0.56
(0.00)

0.48
(0.02)

CC+
Aug

Base 59.64 0.11 0.20 0.16
LR 82.55 0.82 0.71 0.75
NB 75.00 0.79 0.54 0.60

BERT 83.56
(0.01)

0.79
(0.01)

0.82
(0.01)

0.80
(0.00)

Bio 80.48
(0.01)

0.75
(0.01)

0.79
(0.01)

0.76
(0.01)

Table 3: Performance in a five-class setting. Acc. = accu-
racy (%), P = precision, R = recall, LR = logistic regres-
sion, NB = naïve Bayes, and Bio = Bio-ClinicalBERT.

F1 with a training set size of n = 6799; as men-
tioned earlier, the PVI filtering threshold was op-
timized for each strategy class using the valida-
tion set (see Table 5 for example PVI values cor-
responding to different synthetic samples). Opti-
mized thresholds thus varied with varying training
set sizes. When we selected the training instances
based on threshold set to the average PVI value
(across the strategy class) on the validation set,
which increases the training set size to n = 9773,
the performance dropped. This presents additional
evidence supporting the efficacy of per class PVI
filtering of synthetically generated instances in the
downstream strategy classification task.

In Table 4, we report results under these same
conditions for the pipelined S/NS and ES/IS clas-
sification settings. We compare these conditions
only using BERT, following our findings from Ta-
ble 3. We do not report ES/IS classification re-

Figure 2: Five-class strategy classification performance
with the varying number of training instances (n) from
the CC+Aug dataset using the fine-tuned BERT model.

sults for CC+NS, since ES/IS classification pre-
dicts divisions only between strategy data (lead-
ing to unchanged training conditions from CC+).
We observe similar trends to those observed in the
all-class setting for the S/NS setting, with equiva-
lent performance when training on CC+ versus CC
and increased performance when training on both
CC+NS (F1=0.93) and CC+Aug (F1=0.89). We ob-
serve a dramatic performance increase in the ES/IS
classification setting when training on CC+ versus
CC (F1=0.83 versus F1=0.53), and greater perfor-
mance still when training on CC+Aug (F1=0.91).

5.4 Error Analyses
We systematically analyzed errors to identify ar-
eas for improvement. We (a) studied synthetic
examples in the context of their PVI, calculated as
described in §4.2; and (b) examined misclassifica-
tions from our best-performing model in Table 3.
We provide prototypical samples from each analy-
sis in Tables 5 and 6.

Table 5 shows manually authored strategies and
corresponding strategies that were generated when
these manual strategies were used as demonstra-
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Data Task Acc. P R F1

CC
S/NS 90.60

(0.00)
0.90
(0.00)

0.86
(0.01)

0.87
(0.00)

ES/IS 58.06 0.64 0.58 0.53

CC+
S/NS 90.60

(0.02)
0.90
(0.00)

0.86
(0.01)

0.87
(0.00)

ES/IS 84.97
(0.02)

0.82
(0.02)

0.85
(0.00)

0.83
(0.01)

CC+
NS

S/NS 95.02
(0.00)

0.95
(0.00)

0.92
(0.01)

0.93
(0.00)

ES/IS - - - -

CC+
Aug

S/NS 91.78
(0.00)

0.92
(0.00)

0.86
(0.00)

0.89
(0.00)

ES/IS 92.18
(0.00)

0.90
(0.00)

0.92
(0.00)

0.91
(0.00)

Table 4: Model comparison for pipelined classification
tasks, using the same metrics as in Table 3. All condi-
tions use a fine-tuned BERT model.

tions during data augmentation, paired with the
calculated PVI for the generated strategy. We show-
case both high-PVI and low-PVI examples, with
low PVIs emphasized in red.8 Broadly speaking,
we observed that high-PVI samples tended to vary
the writing style while adhering closely to the con-
tent conveyed in the demonstration; often this was
because the demonstration was straightforward to
process (e.g., Encourage to help tidy and put away
prior to moving to another activity → Encourage
them to help with the chores ahead of time). Low-
PVI examples typically demonstrated a lack of un-
derstanding of the source content, either for un-
known reasons (e.g., Save money to hire a babysit-
ter for parent night out → Kidnappers are better at
staying up late) or due to noise or other complex-
ities in the demonstration (e.g., It takes 2 to talk-
??? Program for speech therapy → Talking is a
very relaxing way to relax).

Table 6 shows mispredictions with their actual
and predicted labels. We find that non-strategies us-
ing caregiving language are often misclassified as
belonging to strategy classes. Although these cases
(e.g., Teachers are knowledgeable about my child’s
needs + abilities) do not include specific strategy
content, their style is close to that observed in ac-
tual strategies. Non-strategies using caregiving lan-
guage are a minority; more common non-strategies
in CC and CC+ are N/A and None. Future classifica-

8Maximum PVI among our synthetic examples is 1.701,
and minimum PVI is -2.417.

tion approaches that more closely target underlying
intent or actionable language may be able to ad-
dress challenging non-strategies. This could also
allow for better capture of atypically worded actual
strategies, which are sometimes missed with our
current models (e.g., If it is a sequence of events we
will try and go back to where a step was missed).

6 Discussion

Our findings broadly support the premise that di-
verse data can be leveraged for specialized pediatric
rehabilitation contexts, justifying our manual data
curation and our investigation of synthetic data ex-
pansion within this domain. It also replicates find-
ings from Valizadeh et al. (2024) across a broader
age range and rehabilitation care continuum; given
the heterogeneity of pediatric rehabilitation, these
findings encourage the application of automated
strategy classification for this use case. Perfor-
mance continues to improve with the addition of
non-strategy data harvested from publicly available
online forums pertaining to child health, suggesting
an accessible avenue for increasing performance.
Useful applications of this may include initiating
caregiver education when detecting non-strategy
responses during PEM completion (Villegas et al.,
2023), enabling skilled engagement for families
on waitlists to access rehabilitation services (Mc-
Manus et al., 2019).

Importantly, we also find that prompt-based syn-
thetic data expansion improves model performance.
As LLMs are nascent in rehabilitation (Bonnechère,
2024), this establishes evidence that LLMs are
capable of adequately replicating user-generated
content in this domain, to an extent that it im-
proves model performance when used as a training
source. It also raises intriguing questions for fu-
ture work, such as whether LLMs could be used
to consolidate strategies of the same type. This
could address known barriers to family-centered
goal-setting practice (Crawford et al., 2022). It
could also decrease caregiver burden when search-
ing through a large bank of user-generated strate-
gies, such as that in the PEM-Plus goal setting
application, sustaining longer-term feasibility of
user-driven strategy exchange. Despite promising
technical merit and potential clinical utility, there
are ethical considerations to synthetic data expan-
sion, such as its potential to compromise family
voice (Newman-Griffis et al., 2022b). This presents
a ripe opportunity for further study.
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Class Demonstration Strategy Generated Strategy PVI

EC Playing together as a family Playing with friends together 0.674
ϵ = 0.450 read books about outings Read books about the outdoors. 0.581

Save money to hire a babysitter for parent night
out. Kidnappers are better at staying up late −0.700

SOS Encourage to help tidy and put away prior to
moving to another activity

Encourage them to help with the chores
ahead of time. 1.167

ϵ = 0.549 Positive encouragement To encourage a feeling of self you will
receive positive reinforcement from others. 0.715

House guests - I like to have people over that
include our son and get along well with him.

A couple who are very close are going to do
a good job at this house. −0.417

P Have options to write or color - he focuses well on
writing or drawing

He can choose whether he should write his
way or to draw. 1.188

ϵ = 0.928 finding fun puzzels on tablet Find fun puzzles on a computer 0.643
Finding restaurants that serve food that our son
likes.

Find restaurants that serve food with prices
that our son considers affordable −0.144

AC Learn sign language or her gestures Have kids learn to communicate by pointing
fingers and hand gesture 1.071

ϵ = 0.740 help him interact with others Observe how he interacts with others and
help him interact with others 0.505

Development (fine + gross motor) Using a computer is difficult. −0.820

NS Wish we had more free time for fun outings, but
can’t with all the therapy. We wish we had more free time 1.450

ϵ = 0.480 He needs help staying occupied. He needs help staying occupied in front of
other people 1.322

It takes 2 to talk- ??? Program for speech therapy Talking is a very relaxing way to relax −0.456

Table 5: Synthetic examples indicate paired with their corresponding demonstrations. Red texts with low PVI
values highlight synthetic strategies that were hard to classify according to the PVI threshold (ϵ) for each class.
EC=Environment/Context; SOS=Sense of Self; AC=Activity Competence; P=Preferences; NS=Non-Strategy.

Strategy Actual Pred.

then a hug NS SOS

and miss out on treats through her
own choice. NS P

write and draw absolutely fine. NS EC

If it is a sequence of events we will try
and go back to where a step was
missed

EC NS

Teachers are knowledgeable about my
child’s needs + abilities NS AC

Table 6: Misclassified examples (BERT model). Abbre-
viations are similar to Table 5.

7 Conclusion

In this work, we introduced an expanded dataset
(n=3,062, an approximately five-fold increase over
prior work) of caregiver strategies in diverse pedi-
atric rehabilitation contexts. The strategies were
identified from prior pediatric rehabilitation stud-
ies and manually assigned to clinically-established
constructs by trained researchers spanning a rig-
orous five-month annotation process, resulting in
strong agreement (κ=0.68–0.89). We also identi-
fied non-strategies from publicly available online

child health forums to supplement the data and
address previously-identified class balance issues
(Valizadeh et al., 2024).

Additionally, we proposed a new technique for
synthetic data augmentation in this domain, guided
by three diverse prompts leveraging task-relevant
contextual information while filtering for synthetic
strategies with high anticipated task utility. We
demonstrated the value of the additional manually
curated strategies, publicly available task-relevant
non-strategies, and our novel data augmentation
approach for the downstream task of caregiver
strategy classification. Our results establish evi-
dence that both publicly available non-strategies
(F1=0.65, a 22.6% relative increase over the use of
CC+ alone) and prompting-based synthetic strate-
gies (F1=0.80, a 50.9% relative increase) can sup-
port impressive performance gains in this highly
specialized and under-resourced domain.

Limitations

This work is limited by two factors. First, we cu-
rated a larger, more diverse, and more balanced
dataset relative to prior work, but implementa-
tion of PEM as a candidate common data ele-
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ment into data capture systems across diverse pe-
diatric rehabilitation contexts is both possible and
needed (Schiariti et al., 2018; Pinto et al., 2022)
to further overcome data scarcity and homogene-
ity when examining generalizability in the longer-
term. Second, our dataset is limited to English-
language strategies. It remains unclear whether
the results can be reproduced in less-resourced lan-
guages. Culturally adapted versions of PEM do
exist (Krieger et al., 2020; Tomas et al., 2022), al-
though they have been the subject of less research
to date. We are committed to extending this work
to additional data sources derived from use of cul-
turally adapted PEM version(s) as permitted.

Ethical Considerations

A guiding motivation of our work is to enable more
equitable support for caregivers of children with
diverse rehabilitation needs. In pursuing this goal,
we have been cognizant of the intersectional biases
present in the contemporary pediatric rehabilita-
tion community, along dimensions including race,
ethnicity, and socioeconomic status. We report de-
mographic items pertaining to these factors for our
data sources in Table 7, to the extent that they are
available and recognizing that education level is an
imperfect proxy for socioeconomic status.

We intend for our caregiver strategy classifi-
cation and strategy augmentation approaches to
be deployed for the specific uses outlined in §6.
Specifically, classification of caregiver strategies
can reduce burden for caregivers searching through
public strategy banks and enable educational oppor-
tunities regarding strategy development. Strategy
augmentation can foster improved strategy classifi-
cation, as established in Tables 3 and 4. A risk of
strategy augmentation is that it holds potential to
diminish family voice, although we note that in our
work generated strategies are not provided to users
nor used in any way to recommend strategy quality.
We urge future research studying strategy augmen-
tation in other pediatric rehabilitation contexts to
examine this ethical consideration further.

Our dataset will be distributed under the licens-
ing terms of the source datasets and in ways that
are consistent with our prior work. CareCorpus
(Valizadeh et al., 2024) was made available in the
Inter-university Consortium for Political and So-
cial Research (ICPSR) portal (Kaelin et al., 2023b).
ICPSR requests IRB approval for researchers to
access this additional linked dataset to ensure re-

search done with this dataset aligns with ethical
regulations and principles.

Similarly, the CareCorpus+ dataset is comprised
of deidentified strategies data from sources A
(Khetani et al., 2015), B (Kaelin et al., 2022a;
Khetani et al., 2023; Rizk et al., 2023), and C
(Choong et al., 2018; Jarvis et al., 2019; Khetani
et al., 2018), and ethics approval was obtained
prior to participant recruitment, each participant
provided consent for study participation and was
informed about their rights to withdraw their par-
ticipation at any time, and in most cases were com-
pensated with a gift card. Our use of these existing
artifacts was consistent with their intended use,
as specified in those source publications. Data
are anonymized and available upon author re-
quest, provided that existing institutional review
board approval is provided and protocol is fol-
lowed. Manually-curated non-strategy data is pub-
licly available following the terms and conditions
of the web sources from which it was downloaded.
We provide a link to a publicly available repos-
itory to facilitate straightforward acquisition of
data, as well as source code to replicate our ex-
periments, under a Creative Commons Attribution-
NonCommercial 4.0 International license. Deriva-
tives of our work accessed for research purposes
should not be deployed for purposes other than as
a research prototype. To foster reproducibility, we
report our experimental setup, relevant statistics
for running, and hyperparameters in §5. We report
means and standard deviations in Tables 3 and 4
for BERT and Bio-ClinicalBERT, averaging results
across three runs with different random seeds.
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A Child and Caregiver Characteristics

We report relevant demographic characteristics of
the children and caregivers represented in data
sources A, B, and C in Table 7. Characteristics
include child age, sex, and disability status, as well
as caregiver race, ethnicity, and education level.
Mean child age is reported with interquartile range
in parentheses; all other characteristics are reported
as frequencies with percentage in parentheses.

B Sample Caregiver Strategies

We include sample caregiver strategies in Table
8. Samples from the Pediatric Habilitation Con-
text correspond to data sources A and B. Samples
from the Pediatric Rehabilitation Context are from
source C. We abbreviate strategy types as EC (En-
vironment/Context), SOS (Sense of Self), AC (Ac-
tivity Competence), and P (Preferences). While
pediatric rehabilitation focuses on helping children
redevelop skills they have lost, pediatric habilita-
tion focuses on helping them develop new skills.

C Dataset Statistics

We report statistics for our CC+, CC+NS, and
CC+Aug training datasets in Table 9. We use con-
sistent validation and test sets across all conditions,
and their class distributions are as follows:

• Validation:

– Environment/Context: 212
– Sense of Self : 48
– Preferences: 37
– Activity Competence: 22
– Non-Strategy: 36

• Test:

– Environment/Context: 229
– Sense of Self : 52
– Preferences: 40
– Activity Competence: 25
– Non-Strategy: 38

We also report average strategy length for each
training set in Table 9, with standard deviation pro-
vided in parentheses.
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Characteristic Source A
(n=39)

Source B
(n=53)

Source C
(n=93)

Child Age, M(IQR) 2.4 (1.9, 2.6) - 3.2 (1.3, 4.6)
Child Sex, n (%)

Female 12 (30.8) 25 (44.6) 30 (32.3)
Male 27 (69.2) 31 (55.4) 63 (67.7)

Child Disability Status, n (%)
Developmental Delay/At Risk 27 (69.2) 0 (0.0) 41 (44.0)
Diagnosed Condition 12 (30.8) 52 (98.1) 52 (55.9)

Caregiver Race, n (%)
American Indian/Alaskan Native 1 (2.6) - 0 (0.0)
Asian 2 (5.13) - 7 (7.5)
Black or African American 6 (15.4) - 9 (9.7)
White 29 (74.4) - 77 (82.8)

Caregiver Ethnicity, n (%)
Latinx 9 (24.3) - 12 (12.9)
Non-Latinx 27 (73.0) - 81 (87.1)

Caregiver Education, n (%)
High School Graduate 10 (25.6) - 7 (0.1)
Some College/Technical Training - - 15 (16.2)
Associates Degree 2 (5.13) - 13 (14.0)
College/University Degree 10 (25.6) - 29 (31.2)
Some Graduate Coursework 3 (7.69) - 6 (0.1)
Graduate Degree 14 (35.9) - 29 (31.2)

Table 7: Characteristics of the participants in data sources A, B, and C. Developmental Delay/At Risk indicates that
the child has a developmental delay or is at risk for a developmental delay. Caregiver race, ethnicity, and education
were not collected for Source 2 since those demographic items are not part of the Canadian standard.
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EC

Pediatric Habilitation Context
1. Take quiet activities for her to keep

occupied at restaurants
2. Routines and consistency so she

knows what to expect
Pediatric Rehabilitation Context
1. We set up play areas specifically to

suit her needs
2. Continue to explain the process of

what I’m doing, while I’m doing it

SOS

Pediatric Habilitation Context
1. Treat my son just as I did my

daughter, with the viewpoint that he
can do it all

2. Letting her explore to find out what
she can and cannot do on her own

Pediatric Rehabilitation Context
1. Allow child to be in charge of

completing activity
2. Encourage trying new/different

things

P

Pediatric Habilitation Context
1. Consequences of losing the toys they

don’t take care of
2. Try to get him to interact by

incorporating stuff he likes
Pediatric Rehabilitation Context
1. We offer choices in foods/snacks-

encourage her to choose from
options

2. Making things fun or silly, try to
create a better interest

AC

Pediatric Habilitation Context
1. His brother helps him read books

and play on the trampoline
2. Teaching the sounds of letters and

encouraging her to mimic them
Pediatric Rehabilitation Context
1. Practice activities at home with child

to increase confidence/participation
2. Hand over hand tooth brushing

Table 8: Sample strategies from each class, organized
according to pediatric habilitation/rehabilitation context.

Data Class Freq. Length

CC+

EC 1390

12.93 (15.63)
SOS 320
P 239
AC 147
NS 227

CC+NS

EC 1390

11.82 (13.82)
SOS 320
P 239
AC 147
NS 1000

CC+Aug

EC 2675

11.60 (9.77)
SOS 1394
P 716
AC 718
NS 1296

Table 9: Dataset statistics, including frequencies for
each strategy class in the training set and average strat-
egy length with standard deviation provided in paren-
theses.
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