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Abstract

Temporal Knowledge Graph Question Answer-
ing (TKGQA) aims to answer temporal ques-
tions using knowledge in Temporal Knowl-
edge Graphs (TKGs). Previous works em-
ploy pre-trained TKG embeddings or graph
neural networks to incorporate the knowledge
of TKGs. However, these methods fail to
fully understand the complex semantic infor-
mation of time constraints. In contrast, Large
Language Models (LLMs) have shown excep-
tional performance in knowledge graph rea-
soning, unifying both semantic understand-
ing and structural reasoning. To further en-
hance LLMs’ temporal reasoning ability, this
paper aims to integrate temporal knowledge
from TKGs into LLMs through a Time-aware
Retrieve-Rewrite-Retrieve-Rerank framework,
which we named TimeR4. Specifically, to
reduce temporal hallucination in LLMs, we
propose a retrieve-rewrite module to rewrite
questions using background knowledge stored
in the TKGs, thereby acquiring explicit time
constraints. Then, we implement a retrieve-
rerank module aimed at retrieving semantically
and temporally relevant facts from the TKGs
and reranking according to the temporal con-
straints. To achieve this, we fine-tune a re-
triever using the contrastive time-aware learn-
ing framework. Our approach achieves great
improvements, with relative gains of 47.8%
and 22.5% on two datasets, underscoring its
effectiveness in boosting the temporal reason-
ing abilities of LLMs. Our code is available at
https://github.com/qianxinying/TimeR4 .

1 Introduction

Knowledge graph question answering (KGQA)
aims to provide answers based on knowledge from
knowledge graphs (Sun et al., 2019). However,
many real-world questions include temporal con-
straints, such as "Who is the president of the United
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Figure 1: Examples of challenges in integrating tempo-
ral knowledge graphs with large language models.

States after Obama?" To address this, some knowl-
edge graphs store time-aware facts as quadruples
(subject, predicate, object, timestamp), which are
known as temporal knowledge graphs (TKGs).
Temporal knowledge graph question answering
(TKGQA) focuses on obtaining answers using the
knowledge in TKGs (Saxena et al., 2021).

Recent works (Saxena et al., 2021; Mavromatis
et al., 2022) incorporate knowledge from TKGs
by utilizing pre-trained TKG embeddings or graph
neural networks (GNNs). However, these methods
fail to fully understand the complex semantic in-
formation of time constraints in questions (Chen
et al., 2023b). In contrast, Large language mod-
els (LLMs) have demonstrated exceptional perfor-
mance in knowledge graph reasoning (Sun et al.,
2024; Luo et al., 2024) and can unify semantic
understanding and graph reasoning (Huang and
Chang, 2023; Wei et al., 2023). To further enhance
the temporal reasoning capabilities of LLMs, in
this paper, we aim to integrate temporal knowl-
edge into LLMs, thereby addressing complex and
multi-granularity temporal questions. However, en-
hancing the temporal reasoning capabilities within
LLMs remains several significant challenges:

(1) Hallucinated by implicit temporal ques-
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tions. In the TKGQA task, there are many implicit
questions, such as "After the Danish Ministry, who
was the first to visit Iraq?" Reasoning through such
questions is very difficult because there are no ex-
plicit timestamps provided, requiring extra steps of
inference. In Figure 1, LLMs tend to hallucinate
when confronted with such questions, leading to
incorrect reasoning. Conversely, when temporal
events are replaced with specific timestamps, such
as "After 2016-01-05, who was the first to visit
Iraq?“, LLMs can more easily deduce the correct
answer. Therefore, we believe that converting im-
plicit questions into explicit ones is a crucial issue.

(2) Lack of Temporal Knowledge. To enhance
the reasoning capability of LLMs, previous meth-
ods (Li et al., 2023) employ off-the-shelf retrieval
tools such as BM25 to extract relevant facts from a
knowledge graph as background knowledge. How-
ever, these retrieval methods focus solely on seman-
tic matching, thus the retrieved knowledge neglects
the time constraints of the question, rendering it
ineffective for reasoning. For example, in Figure
1, quadruple (Evan, visit, Iraq, 2016-01-04) is ir-
relevant because the question requires retrieving
facts after 2016-01-05. Therefore, constructing a
retriever that concurrently pays attention to seman-
tic similarity and temporal constraints is of great
importance for the TKGQA task.

To address the above challenges, we propose
TimeR4, a Time-aware Retrieve-Rewrite-Retrieve-
Rerank framework for the TKGQA task. Specif-
ically, to mitigate the issue of LLMs hallucinat-
ing when faced with implicit temporal questions,
we employ the retrieve-rewrite strategy. We per-
form fact retrieval from the Facts Knowledge Store
(FKS) to obtain relevant facts for implicit ques-
tions. Subsequently, we rewrite these questions
by replacing temporal facts with specific times-
tamps, ensuring that all questions contain explicit
temporal information. For constructing FKS, we
fix the language model to obtain semantical fact
embeddings. To simultaneously capture semantic
similarity and temporal constraints, we employ the
retrieve-rerank strategy. This involves conducting
a time-aware retrieval from the Temporal Knowl-
edge Store (TKS) and reranking the facts based on
temporal constraints to refine the retrieval process.
The TKS is constructed by fine-tuning a language
model with a contrastive time-aware retrieval strat-
egy, which develops an encoder capable of cap-
turing both semantic similarity and temporal con-
straints by constructing three types of negatives for

each question. Finally, we fine-tune open-source
LLMs with the retrieved facts from TKS, leverag-
ing the temporal knowledge in TKGs to enhance
the model’s temporal reasoning capabilities. Ex-
periments on two datasets demonstrate that our
strategy significantly enhances the temporal rea-
soning abilities of LLMs. Overall, our work makes
the following contributions:

• We integrate LLMs with TKGs and pro-
pose TimeR4, a Time-aware Retrieve-Rewrite-
Retrieve-Rerank framework, which effec-
tively overcomes the limitations in handling
temporal knowledge in LLMs.

• We propose a contrastive time-aware retrieval
strategy that simultaneously pays attention to
semantic similarity and temporal constraints.

• The experimental results demonstrate that
our approach achieves relative improvements
of 47.8% and 22.5% respectively on two
TKGQA datasets.

2 Related Work

2.1 KG-enhanced LLMs

Considering the excellent reasoning ability of large
language models (LLMs) on NLP tasks (Bang et al.,
2023), many recent works have applied LLMs on
KGQA tasks. Based on how these methods in-
tegrate with knowledge graphs, they can be cate-
gorized into three primary types: retrieval-based
reasoning, path-based reasoning, and agent-based
reasoning. Retrieval-based methods (Baek et al.,
2023b; He et al., 2024) focus on retrieving relevant
subgraphs or triples from the knowledge graph that
contain the information needed to answer a ques-
tion. The LLMs are then used to process and rea-
son over these retrieved information. However,
they only consider semantic similarity and neglect
temporal constraints. Path-based methods (Luo
et al., 2023; Cheng et al., 2024) involve exploring
paths within the knowledge graph to establish con-
nections between the question and the potential an-
swers. These methods typically utilize LLMs to tra-
verse the graph and generate possible paths. How-
ever, they cannot be directly applied to TKGQA be-
cause they do not account for temporal dimension
in path reasoning. Agent-based methods(Sun et al.,
2023; Jiang et al., 2023) treat LLMs as an agent to
search and prune on the KGs to find answers. How-
ever, they prove inefficient for complex reasoning
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tasks due to their reliance on multiple LLM-calls.
Furthermore, the greedy decision-making process
is susceptible to error propagation.

2.2 TKGQA Methods
The TKGQA task is more challenging than the
KGQA task due to the added temporal dimension
of reasoning. To incorporate temporal information,
some methods pose a question as a TKG comple-
tion problem and utilize TKG embedding score
functions to select entities or timestamps with the
highest relevance as answers (Saxena et al., 2021).
TempoQR (Mavromatis et al., 2022) augments the
question embeddings with context, entity, and time-
aware information by three designed modules. Mul-
tiQA (Chen et al., 2023b) adopts Transformer en-
coding layers to aggregate multi-granularity time
information. Some works integrate temporal infor-
mation by introducing RGCN (Relational Graph
Convolutional Networks). EXAQT (Jia et al., 2021)
utilizes the RGCN layer and augments it with dic-
tionary matching. TwiRGCN (Sharma et al., 2022)
adopts temporally weighted graph convolution fol-
lowed by answer gating. LGQA (Liu et al., 2023)
applies a multi-hop message passing graph neu-
ral network layer to combine the global and lo-
cal information. However, such two methods per-
form poorly in complex reasoning tasks, especially
those involving multi-granularity temporal ques-
tions. ARI (Chen et al., 2023a) integrates LLMs
through a knowledge adaptability framework and
abstract methodological guidance. However, it can-
not be applied to smaller-scale LLMs.

3 Preliminaries

Temporal knowledge graph G = {E ,P, T ,F} is
a directed graph where vertices are a set of entities
E . The edges are a set of predicates ∈ P with times-
tamps T . The quadruple set F = {(s, p, o, t)} ⊆
E×P×E×T represents the temporal facts, where
s and o are subject and object, p is predicate be-
tween s and o at timestamp t.

TKGQA is a task to infer the correct answer to
natural language question q ∈ Q based on relevant
quadruples f = (s, p, o, t) in the TKG, where the
answer can be either an entity name or timestamp.

4 Method

4.1 Overview
Figure 2 presents our proposed model, TimeR4, a
Retrieve-Rewrite-Retrieve-Rerank framework. The

Algorithm 1: The training procedure of
TimeR4

Input :TKG G, Questions Q, Ground
Trurh gt, Language Model LM,
raw LLM M

Output :Fine-tuned LLM M′

1 negatives
← GenerateNegatives(G, Q, gt)

2 LMt← Optimize LM as Equation 8
3 FKS← ConstructKS(G, LM)
4 TKS← ConstructKS(G, LMt)
5 for {q} ∈ loader(Q) do
6 f ← Retrieve(FKS, q, LM);
7 q∗← ReWrite(q, f);

8 f
′ ← Retrieve(TKS, q∗, LMt);

9 f+← ReRank(f
′
, q);

10 M′← Optimize M as Equation 11
11 end
12 Function Retrieve(KS, q, LM):
13 Eq← LM(q);
14 ϕs← cos(Eq, KS);
15 f+← TopN(ϕs);
16 return f+;
17 Function ConstructKS(G, LM):
18 KS← LM(G);
19 return KS;

detailed training procedure is illustrated in Algo-
rithm 1. To enhance the performance of LLMs
in handling complex problems, we first propose a
retrieve-rewrite strategy. This strategy aims to re-
trieve implicit temporal knowledge within the ques-
tions from the Facts Knowledge Store (FKS) and
reformulate the questions using this background
knowledge to include explicit time constraints. For
FKS, we utilize the language model to obtain em-
beddings of facts within TKGs. Next, we imple-
ment a retrieve-rerank module to retrieve both se-
mantically and temporally relevant facts. This in-
volves conducting a time-aware retrieval from the
Temporal Knowledge Store (TKS) and reranking
the facts based on temporal constraints. For TKS,
we fine-tune a language model using contrastive
learning to develop an encoder capable of simulta-
neously capturing semantic similarity and temporal
constraints. Finally, we fine-tune the open-source
LLMs, incorporating the retrieved facts from TKGs
for enhanced LLMs’ temporal reasoning.
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Figure 2: The architecture of TimeR4 can be divided into four modules, fact retrieval, rewriting, time-aware retrieval,
and reasoning. The right part shows how we construct the Knowledge Store (KS).

4.2 Fact Retrieval
Previous works (Chen et al., 2023b; Liu et al.,
2023) employed entity-linking tools to identify en-
tities and relations in question, subsequently utiliz-
ing these entities and relations for further retrieval.
However, some TKGs, such as ICEWS (García-
Durán et al., 2018a), lack entity-linking tools,
resulting in poor performance with such meth-
ods (Chen et al., 2023b). Motivated by the recent
study (Baek et al., 2023a), we adopt a direct fact re-
trieval strategy from TKGs without entity linking.

We first convert each quadruple into natural lan-
guage sequences. Then we embed all quadruples
T (s, p, o, t) ∈ G in TKGs onto a dense embedding
space by using a pre-trained language model as in
Equation 1 and memorize the knowledge represen-
tations in a Fact Knowledge Store (FKS). We also
embed the given questions q as in Equation 2. d is
the dimension of the output vector.

FKS = {Ef |Ef = LM(S(s, p, o, t)), (s, p, o, t) ∈ G} (1)

Eq = LM(q) ∈ Rd (2)

To retrieve the k-nearest semantic quadruples f+1
according to the representation distance for the
given question, we calculate the similarity between
Eq and Ef . We use the FAISS library (Johnson
et al., 2021) for indexing and similarity calculation.

ϕFKS(Eq,Et) = cos(Eq,Ef ) = Eq ·Ef (3)

f = argmaxϕFKS(Eq,Ef ) (4)

4.3 Rewrite

Complex questions often contain implicit tempo-
ral information, posing a challenge to the TKGQA
task. To address the hallucination issues of LLMs
with implicit questions, we plan to rewrite the ques-
tions to ensure that all questions have explicit times-
tamps. Specifically, we retrieve the necessary back-
ground facts through the FKS and then input them
along with the question into the LLM for inference
and rewriting as in Equation 5. We apply the in-
context learning strategy (Dong et al., 2023), which
encodes structural knowledge into demonstrations
to guide the LLM. The specific prompt is shown in
Appendix A.

q∗ = LLM(Prompt(q, f)), q ∈ Q (5)

After being rewritten by the LLMs, questions con-
taining implicit temporal facts are modified to in-
clude explicit timestamps based on the retrieved
background facts. Additionally, for certain ques-
tions involving common knowledge not present in
TKGs, such as "Who was the first president of the
US after World War II?", the LLMs can utilize their
inherent knowledge to rewrite them. Knowing that
World War II ended in 1945, the question can suc-
cessfully be transformed into "Who was the first
president of the US after 1945?".
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4.4 Time-aware Retrieval
We further propose the Time-aware Retrieval mod-
ule to retrieve facts that satisfy both semantic simi-
larity and time constraints simultaneously from the
temporal knowledge store (TKS). To construct the
TKS, we fine-tuned the language model to model
the time-aware facts and store them in the knowl-
edge base as in Equation 6.

TKS = {Et|Et = LMt(S(s, p, o, t)), (s, p, o, t) ∈ G} (6)

In order to enhance the time-awareness of the
language model, we employ the contrastive time-
aware retrieval strategy. We randomly corrupt the
time, relations, and entities of the positive pair sep-
arately and generate three types of negative pairs:
time incorrect, content incorrect, and both incor-
rect, as shown in Figure 2. Contrastive loss is
calculated based on the cosine similarity between
the question representation Eq and the quadruples
representation Et ∈ TKS as Equation 7.

ϕTKS = cos(Eq∗ ,Et) (7)

We aim to minimize the distance between positive
pairs and maximize the distance between negative
pairs. The contrastive label Y=1 signifies that the
context corresponds to a positive pair of the ques-
tion, whereas Y=0 indicates that the context rep-
resents the negative pair. Subsequently, following
Son and Oh (2023), the contrastive loss is com-
puted in Equation 8, with wp and wn as the weights
for positive and negative samples.

L =
∑

i

[wpY · exp(ϕTKS) + wn(1− Y ) · exp(1− ϕTKS)]

(8)

4.5 Rerank
To further refine the retrieval process, we design a
time-filtering function to filter out irrelevant facts
and focus more on time-related ones. After the
rewriting module, each question q∗ contains a spe-
cific timestamp tq, except for the questions that
require answering the timestamp. In that case, to
introduce the influence of time intervals, we design
a time-filtering function for questions containing
time constraints. For each quadruple (s, p, o, t) in
TKG G, we calculate the time difference between
tq and t, filter out quadruples that fall outside the
range, and normalize the time differences within
the range as the results of time filtering function.
Equation 9 represents the time-filtering function
for "before" type questions.

ϕt(tq, t) =

{
1− |tq−t|

max(tq−t) , if (tq − t) > 0

−100, otherwise
(9)

Specifically, we add the score obtained from the
time filtering function ϕt(tq, t) to the score of
the Time-aware Retirver ϕTKS(Eq,Et), thereby
reranking the scores of the retrieved facts. µ is the
weight of two scores.

ϕ(q, t) = µ · ϕTKS(Eq∗ ,Et) + (1− µ) · ϕt(tq, t) (10)

4.6 Reasoning
After obtaining the retrieved quadruples we for-
mulate the reasoning part as an LLM optimization
problem, aiming to maximize the probability of in-
ferring the answer a to question q from the knowl-
edge graph G by using the retrieved quadruples
f+ as history facts as in Equation 11. To guide
the LLM in generating final answers, we design a
simple instruction prompt in Appendix A.

L = max
Φ

∑

(q∗,a)∈Q̂

|a|∑

t=1

log
(
PΦ

(
at | (q∗, f+), a<t

))
(11)

5 Experiments

5.1 Experimental Settings
Datasets. Considering that the CronQuestions
(Saxena et al., 2021) dataset has been reported to
contain spurious correlations that different mod-
els can exploit to achieve high accuracy (Sharma
et al., 2022), we base our experiments on two recent
more challenging datasets, i.e., MULTITQ (Chen
et al., 2023b) and TimeQuestions (Jia et al., 2021).
MULTITQ is the largest known TKGQA dataset
constructed from the ICEWS05-15 (García-Durán
et al., 2018b), which has 500K unique question-
answer pairs. Besides, MULTITQ features multi-
ple temporal granularities, including years, months,
and days, with questions spanning over 3600 days.
TimeQuestions is another challenging dataset,
which has 16K temporal questions and is divided
into four categories. However, TimeQuestions only
includes a time granularity of years and is much
smaller in size. The statistical information is pre-
sented in Table 1 and Table 2 separately.

Baseline. We select three types of baselines for
comparison on MULTITQ: (1) Pre-trained LMs,
including BERT (Devlin et al., 2019) and AL-
BERT (Lan et al., 2020). (2) Embedding-based
methods, including EmbedKGQA (Saxena et al.,
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Category Train Dev Test

Single
Equal 135,890 18,983 17,311
Before/After 75,340 11,655 11,073
First/Last 72,252 11,097 10,480

Multiple
Equal Multi 16,893 3,213 3,207
After First 43,305 6,499 6,266
Before Last 43,107 6,532 6,247

Total 386,787 587,979 54,584

Table 1: Statistics of MULTITQ dataset.

Category Train Dev Test
Explicit 2,724 1,302 1,311
Implicit 651 291 292
Temporal 2,657 1,073 1,067
Ordinal 938 570 567
Total 6,970 3,236 3,237

Table 2: Statistics of TIMEQUESTIONS dataset.

2020), CronKGQA (Saxena et al., 2021), Mul-
tiQA (Chen et al., 2023b). (3) LLM-based methods,
including ARI (Chen et al., 2023a), LLaMA2 (Tou-
vron et al., 2023), ChatGPT. For TimeQuestions,
we also use three types of baselines: (1) KGQA
method, including PullNet (Sun et al., 2019),
Uniqorn (Pramanik et al., 2023), and GRAFT-
Net (Sun et al., 2018). (2) TKGQA methods, in-
cluding CronKGQA, TempoQR (Mavromatis et al.,
2022), EXAQT (Jia et al., 2021), LGQA (Liu et al.,
2023), and TwiRGCN (Sharma et al., 2022). (3)
LLM-based methods, including LLaMA2 and Chat-
GPT. We only input the given questions into Chat-
GPT and LLaMA2 without any explanation.

Implementations Details. We use LLaMA2-
Chat-7B (Touvron et al., 2023) as the LLM back-
bone. We fine-tune the LLaMA2 for 2 epochs on
2 NVIDIA A6000 GPUs. We only use 20% of
the training data for MULTITQ datasets for train-
ing because it is very large. For Fact Retriever,
We utilize off-the-shell SentenceBert (Reimers and
Gurevych, 2019) as the base encoder. For Time-
aware Retriever, we fine-tune the SentenceBert for
10 epochs. For re-writing, we use the OpenAI-
API 1 (gpt-3.5-turbo-01252). We set the µ as 0.4.
We fine-tune each question using in-batch negatives
and three hard negatives.

5.2 Main Results

We present the experimental results in compari-
son with other methods of TimeR4 on the MultiTQ
and TimeQuestions datasets in Table 3 and Table

1https://platform.openai.com/docs/api-reference
2https://platform.openai.com/docs/models/gpt-3-5-turbo

4, where the highest results are highlighted in bold
font and the second highest results are marked un-
derlined. TimeR4 achieves the best performance in
all experimental settings, indicating its superiority
on the TKGQA task.

For the MultiTQ dataset, TimeR4 achieves state-
of-the-art performance across all question types.
Specifically, We find that PLMs (BERT. ALBERT)
and LLMs (LLaMA2, ChatGPT) exhibit the lowest
performance on the TKGQA task. This might be
due to the lack of necessary temporal knowledge,
thus leading to errors in reasoning. Compared to
traditional methods, TimeR4 shows a significant
improvement in hits@1 performance, achieving a
59.8% enhancement. This highlights the capability
of LLMs in reasoning on complex temporal ques-
tions, particularly those involving multi-granularity
timestamps and complex reasoning. Furthermore,
compared with the recent ChatGPT-based method
ARI, TimeR4 demonstrates a 47.8% improvement,
showcasing the effectiveness of our proposed tem-
poral reasoning framework.

As for TimeQuestions, TimeR4 also achieves the
best results across all question types. The results
of KGQA methods are the poorest for they lack
the ability to retrieve temporal facts or reason in
temporal facts. Compared to traditional methods,
TimeR4 still achieves a 22.5% relative improve-
ment on Hits@1. The results demonstrate the capa-
bility of TimeR4 for precisely answering temporal
questions. Compared with other LLMs, TimeR4

also performs the best. The results of ChatGPT
and LLaMA2 are much higher than on MULTITQ
datasets. This might be because Timequestions
are built on the Wikidata (Vrandečić and Krötzsch,
2014) knowledge graph, and most LLMs are pre-
trained on the Wikidata knowledge graph corpus.
Therefore, they store some relevant information,
enabling them to answer such questions.

5.3 Ablation Study
The ablation results are shown in Table 5. The
results for TimeQuestions do not decline signifi-
cantly, primarily because the MULTITQ dataset is
more challenging. MULTITQ is larger and covers
a wider time range, making it harder to retrieve
relevant facts. Conversely, in the TimeQuestions
dataset, relevant facts can often be retrieved by the
fact retrieval module, which is why our strategy is
less prominent on this dataset.

Effect of fact retrieval module. We first replace
fact retriever with entity-linking tools. Since no
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Model Overall
Question Type Answer Type

Single Multiple Entity Time
BERT 8.3 9.2 6.1 10.1 4
ALBERT 10.8 11.6 8.6 13.9 3.2
EmbedKGQA 20.6 23.5 13.4 29 0.1
CronKGQA 27.9 13.4 13.4 32.8 15.6
MultiQA 29.3 34.7 15.9 34.9 15.7
ARI 38.0 68.0 21.0 39.0 34.0
LLaMA2 18.5 22.0 10.1 23.9 5.5
ChatGPT 10.2 14.7 7.7 13.7 2
TimeR4 72.8 88.7 33.5 63.9 94.5

Table 3: Performance comparison of different models
(in percentage) on MUULTITQ.

Model Overall
Question Type Answer Type

Explicit Implicit Temporal Ordinal
PullNet 10.5 2.2 8.1 23.4 2.9
Uniqorn 33.1 31.8 31.6 39.2 20.2
GRAFT-Net 45.2 44.5 42.8 51.5 32.2
CronKGQA 46.2 46.6 44.5 51.1 36.9
TempoQR 41.6 46.5 3.6 40 34.9
EXAQT 57.2 56.8 51.2 64.2 42
TwiRGCN 60.5 60.2 58.6 64.1 51.8
LGQA 52.9 53.2 50.6 60.5 40.2
LLaMA2 27.1 26.8 32.5 27.9 23.4
ChatGPT 45.9 43.3 51.1 46.5 48.1
GenTKGQA 58.4 59.6 61.1 56.3 57.8
TimeR4 78.1 82.3 73.0 83.0 64.9

Table 4: Performance comparison of different models
(in percentage) on TimeQuestions.

linking tool is available for the ICEWS, we adopted
the approach outlined in Chen et al. (2023b), em-
ploying a NER tool to identify entities. It can be
observed that after replacing the fact retriever mod-
ule, the overall performances decrease by 13.2%
on hits@1, which indicates that the fact retriever
module achieves accurate fact recognition.

Effect of rewriting strategy. To verify the role
of the rewriting strategy, we then conduct an exper-
iment where we removed the rewriting strategy and
solely relied on the original questions and retrieved
facts. The results showed a significant decrease, in-
dicating that the rewriting strategy effectively aids
LLMs in mitigating the hallucination of implicit
temporal questions.

Effect of time-aware retrieval module. We
conducted an experiment where we replaced the
time-aware retriever with the fact retriever. The
results show a significant decline, indicating that
our proposed time-aware retriever method is in-
herently time-aware and performs better than the
non-time-aware fact retriever.

Model
Hit@1

MULTITQ TimeQuestions
TimeR4 72.78 78.1
w/o fact retrieval 41.04 54.3
w/o rewrite 61.12 77.2
w/o temporal retrieval 70.34 77.3
w/o rerank 63.04 77.9

Table 5: Results of the ablation study. “w/o” means
removing the module.

Effect of reranking strategy. Removing the
rerank strategy resulted in a significant decrease
in model performance, indicating that filtering out
irrelevant time information is indeed crucial.

5.4 Further Discussion

To further analyze the superior performance of
TimeR4 compared to other models, we conduct
a series of experiments to gain further insights.

5.4.1 Comparison with LLMs
We compare TimeR4 with other LLMs in both
datasets in Table 6. LLMs w/ TimeR4 indicates
that we input the facts retrieved by our strategy and
rewritten questions into the LLMs. LLMs w/ fine-
tuned indicates that we fine-tuned the LLMs with
only questions.

First, the results on two LLMs show that with the
enhancement of the facts retrieved from TKGs and
our retrieve-rewrite-retrieve-rerank strategy, LLMs
w/ TimeR4 have significantly better performance.
This suggests that the LLMs possess some degree
of simple temporal reasoning capability. However,
for more precise and effective reasoning in complex
temporal questions, TimeR4 effectively overcomes
the limitations in handling and interpreting time-
sensitive knowledge.

To further explore the effectiveness of our
method, we also compared the results of LLama
with fine-tuned and without fine-tuned. It can be
found that the results of LLaMA2 with fine-tuning
almost doubled, indicating that fine-tuning can ef-
fectively regulate the output of LLMs and help
LLMs learn patterns of temporal reasoning, thereby
enhancing the results.

It is worth noting that in multiple questions,
ChatGPT performs better than TimeR4. This is
mainly because ChatGPT tends to provide all possi-
ble answers. For example, in Table 7, for questions
with only one entity as the answer, ChatGPT often
returns a list of relevant results, which can result in
higher performance.
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Model
MULTITQ Timequestions

Overall
Question Type Answer Type

Overall
Question Type Answer Type

Single Multiple Entity Time Explicit Implicit Temporal Ordinal
TimeR4 72.8 88.7 33.5 63.9 94.5 78.1 82.3 73.0 83.0 64.9
LLaMA2 18.5 22.0 10.1 23.9 5.5 28.9 26.8 41.9 33.7 33.8
LLaMA2 w/ finetuned 33.9 38.4 22.7 45.0 7.8 45.8 44.4 46.0 51.9 37.8
LLaMA2 w/ TimeR4 39.1 44.2 26.6 37.0 44.2 59.3 57.4 51.5 73.4 41.0
ChatGPT 10.2 14.7 7.7 13.7 2 45.9 43.3 51.1 46.5 42.1
ChatGPT w/ TimeR4 41.4 58.5 41.2 56.1 57.1 64.8 66.0 52.9 77.6 45.5

Table 6: Effects of integrating the TimeR4 framework with different LLMs for reasoning.
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(a) Results on MULTITQ.
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(b) Results on TimeQuestions.

Figure 3: The Hits@1 results of different fact numbers.
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Figure 4: Venn diagrams for the answers coverage over-
lap of time-aware retrieval, fact retrieval, and ground
truth for six question types in MULTITQ dataset.

5.4.2 Number of Retrieved Facts

To explore the impact of varying numbers of re-
trieved facts on the results, we present the perfor-
mance changes and the corresponding answer cov-
erage on two datasets by adjusting the number of
retrieved facts n in Figure 3. It is evident that
the model achieves its peak performance with 15
relevant facts, the same number included in our
strategy. Interestingly, there is a slight performance
dip at n = 20, despite the larger answer cover-
age obtained with 20 retrieved facts. This suggests
that an excessive amount of facts may hinder per-
formance by introducing noise, thereby making
it more difficult for the LLMs to distinguish rele-

vant information from irrelevant ones. On the other
hand, fewer facts do not provide sufficient tempo-
ral knowledge, also leading to poor performance.
Hence, n = 15 represents the optimal choice.

5.4.3 Effectiveness of the Retrieval
To verify the effectiveness of our time-aware re-
trieval module, we investigate the overlap of answer
coverage between the results of the Time-aware
Retriever, the Fact Retriever, and ground truth in
different question types in Figure 4. Across various
question types, our Time-Aware Retriever answers
most questions correctly that the Fact Retriever
does, while also handling a significantly larger set
of complex questions (second row). This indicates
that after fine-tuning, the Time-Aware Retriever
can retrieve more temporal information, while the
Fact Retriever struggles to capture temporal infor-
mation in the facts, leading to low answer coverage
in the retrieved results.

5.5 Case Study

We provide examples for each question type in
the MULTITQ dataset of ChatGPT w/ TimeR4,
LLaMA2 w/ TimeR4, and TimeR4 in Table 7 with
the same input.

It can be observed in the results that without
fine-tuned, LLMs tend to randomly generate a list
of irrelevant answers, but in comparison, Chat-
GPT performs better than LLaMA2. LLaMA2
is more prone to generating irrelevant responses
without fine-tuning. For instance, when asked "Af-
ter Okada Katsuya, who wishes to visit Cambodia
first?", LLaMA2 directly outputs the entity men-
tioned in the question: ’Okada Katsuya’. TimeR4,
on the other hand, achieves significantly higher
accuracy and only generates the relevant answers.

Furthermore, after fine-tuning, the output of
TimeR4 adheres more closely to standard conven-
tions. For questions like "in which month...," where
the ground truth answer is [’2012-05’], LLMs of-
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Type Question
Response

ChatGPT w/ TimeR4 LLaMA2 w/ TimeR4 TimeR4

Equal
In 2005-01,

who used light weapons to attack Thailand?
-Insurgent (Thailand)
-Citizen (Thailand)

1. Insurgent (Thailand)
2. Citizen (Thailand)

3. Armed Opposition (Thailand)

[’Citizen (Thailand)’,
’Armed Gang (Thailand)’]

Before/
After

Who investigated China after 22 July 2015?
1.Police (South Korea)

2. Mainland Affairs Council
3. Police (South Africa)

1. Japan
2. South Korea

3. France
4. China

[’Xi Jinping’]

First/
Last

In which month did Benny Gantz first visit China? - May - August May, August, or July [’2012-05’]

Equal
Multi

Who was the first to praise Iraq in 2015? Iran
1. Iran
2. Iraq

3. el-Tayeb
[’Foreign Affairs (France)’]

After
/First

After Okada Katsuya,
who wish to visit Cambodia first?

- South Korea
- Thailand

- Foreign Affairs (South Korea)

1. Okada Katsuya
2. John Faulkner

3. Anupong Paochinda
[’Foreign Affairs(South Korea)’]

Before
/Last

Who did Zimbabwe’s Foreign Minister
praise last before Kuwait?

- South Sudan
- Iran

Guy Scott
Mark Simmonds

Tony Blair
Faith Pansy Tlakula

[’Iran’]

Table 7: Comparison of responses to six different question types between our TimeR4 and ChatGPT w/ TimeR4,
LLaMA2 w/ TimeR4. The correct answers are highlighted in bold font.

ten generate "May", which, although correct, is
considered incorrect during evaluation. Exploring
methods to construct a more reasonable evaluation
or to ensure LLMs’ outputs conform to standard
conventions will be our future research. These re-
sults demonstrate the effectiveness of TimeR4 in
conducting temporal reasoning.

6 Conclusion

In this work, we address two key challenges that
LLMs face when handling temporal questions and
introduce a time-aware retrieve-rewrite-retrieve-
rerank framework named TimeR4.

To mitigate the issue of the temporal hallucina-
tion of LLMs, we utilize a retrieve-rewrite strategy
to fetch relevant facts in FKS and integrate specific
timestamps into the questions. Afterward, in order
to retrieve facts that satisfy both time constraints
and semantic similarity, we implement a retrieve-
rerank strategy. We perform time-aware retrieval
from the TKS and rerank them based on tempo-
ral constraints. Finally, we fine-tune open-source
LLMs, leveraging the knowledge in TKGs to en-
hance the temporal reasoning capabilities in LLMs.
Experiments on two datasets demonstrate that our
framework significantly enhances the temporal rea-
soning abilities of LLMs.

Limitations

Although our approach achieves significant im-
provements, with relative gains of 47.8% and
22.5% on two TKGQA datasets, the performance

of complex temporal fact retrieval can still be fur-
ther enhanced. How to retrieve more precise and
effective temporal information is a question worthy
of exploration.

Additionally, controlling the answer format dur-
ing the generation process of LLMs without fine-
tuning is difficult, as discussed in Section 5.5. Thus,
standardizing the answer formats of LLMs or de-
veloping a more reasonable evaluation method is
another important future task.
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A Prompt Template

The prompts for rewriting can be found in Figure
5. The template used for instruction tuning and
reasoning is shown in Figure 6.

Rewriting Prompt Template
Replace the temporal fact in questions with explicit timestamps from 
the provided facts or your knowledge without any explanation. If you 
are not sure about the answer, return the original questions.

For instance, from the fact: 
“[Juan Carlos I, Praise or endorse, Vietnam, 2006-02-22]”,
We can modify the question: 
“After Vietnam, who was the first to praise Juan Carlos I?”
to “After 2006-02-22, who was the first to praise Juan Carlos I?”

Here is your turn:
Facts:  <fact>
Question:  <question>

Figure 5: Rewriting prompt template.

Reasoning Prompt Template
Based on the historical facts, please answer the given question. Please 
keep the answer as simple as possible and return all the possible 
answers as a list.
Historical facts:  <fact>
Question:  <question>

Figure 6: Reasoning prompt template.
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