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Abstract

Fine-tuning large pre-trained language models
with Evol-Instruct has achieved encouraging
results across a wide range of tasks. How-
ever, designing effective evolving methods for
instruction evolution requires substantial hu-
man expertise. This paper proposes Auto Evol-
Instruct, an end-to-end framework that evolves
instruction datasets using large language mod-
els without any human effort. The frame-
work automatically analyzes and summarizes
suitable evolutionary strategies for the given
instruction data and iteratively improves the
evolving method based on issues exposed dur-
ing the instruction evolution process. Our ex-
tensive experiments demonstrate that the best
method optimized by Auto Evol-Instruct out-
performs human-designed methods on various
benchmarks, including MT-Bench, AlpacaEval,
GSM8K, and HumanEval.

1 Introduction

Fine-tuning large language models (LLMs) to fol-
low detailed instructions is vital to unlocking their
power (Ouyang et al., 2022; Touvron et al., 2023b).
High-quality datasets, such as ShareGPT (Chiang
et al., 2023), OpenAssistant (Köpf et al., 2023),
LIMA (Zhou et al., 2023), have greatly improved
the performance of instruction-tuning, promoting
the prosperity of LLM alignment. However, an-
notating instruction following datasets with such
quality is hard to scale, and its quality upper limit is
also uncontrollable. Researchers (Xu et al., 2023;
Yu et al., 2023; Liu et al., 2023b) are actively explor-
ing ways to break through the quality upper-bound
of existing datasets. Evol-Instruct (Xu et al., 2023)
takes the high-quality data as a starting point, and
further iteratively refines it using LLMs, improving
its complexity and diversity. It has demonstrated
superior performance across a broad range of pub-
lic benchmarks that evaluate diverse capabilities,
including instruction following (Zheng et al., 2023;

Li et al., 2023), code generation (Luo et al., 2023b;
Chen et al., 2021), and mathematical reasoning
(Luo et al., 2023a; Cobbe et al., 2021).

While Evol-Instruct exhibits outstanding per-
formance, its heavy reliance on heuristic efforts
presents notable challenges. Whenever it is used
for a completely new task, the methods for exe-
cution evolution need to be redesigned. Such a
process requires a high level of expertise and con-
siderable costs, hindering its adaptation to a wider
spectrum of capabilities. To address these chal-
lenges, it needs to automate the Evol-Instruct pro-
cess, which will encounter the following difficul-
ties: (1) Design evolving methods automatically
that make the instructions more complex for a given
task (2) To keep the instruction evolution process
working properly, the evolving method needs to
avoid evolution failure.

In this paper, we propose Auto Evol-Instruct, an
effective approach to utilizing LLMs in designing
methods for executing instruction evolution. Auto
Evol-Instruct automatically designs evolving meth-
ods that make given instruction data more complex,
enabling almost cost-free adaptation to different
tasks by only changing the input data of the frame-
work. Firstly, to transition from manually-designed
evolving rules to automated ones, we begin with a
universal initial evolving method. Our initial evolv-
ing method is different from the method of Evol
Instruct, which requires human experts to specify
the rules of evolution. Instead, it can autonomously
analyze the input instruction and brainstorm evolu-
tion rules suitable for given data. Due to the diver-
sity and complexity of varied instruction datasets,
a fixed evolving method can not guarantee the sta-
bility and effectiveness of all data evolution. There-
fore, we leverage LLM as the optimizer to optimize
the initial evolving method iteratively to ensure the
lowest failure rate for a given instruction dataset.
We refer to the model used for evolution as the evol
LLM, and the model used for optimization as the
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Figure 1: Overall architecture of Auto Evol-Instruct. It illustrates the process of optimizing the initial evolving
method e0 into the optimal evolving method e∗, which specifically outlines the transition from et−1 to et. The
yellow part and green part denote Evol Trajectory Analysis and Evolving Method Optimization respectively. x(1) to
x(l) represents the example of evolutionary trajectory obtained by the evol LLM guided by et−1 evolving x for l
rounds. The feedback and potential improved evolving methods obtained from m Multiple Optimizations denote f1

t

to fm
t and e1t to emt respectively.

optimizer LLM. This optimization process involves
two critical stages: (1) Evol Trajectory Analysis:
The optimizer LLM carefully analyzes the poten-
tial issues and failures exposed in instruction evolu-
tion performed by evol LLM, generating feedback
for subsequent optimization. (2) Evolving Method
Optimization: The optimizer LLM optimizes the
evolving method by addressing these identified is-
sues in feedback. These stages alternate and re-
peat to progressively develop an effective evolving
method using only a subset of the instruction data.
Once the optimal evolving method is identified, it
directs the evol LLM to convert the entire instruc-
tion dataset into more diverse and complex forms,
thus facilitating improved instruction tuning.

Our experiments show that the evolving meth-
ods designed by Auto Evol-Instruct outperform
the Evol-Instruct methods (Xu et al., 2023; Luo
et al., 2023a,b) designed by human experts in
instruction tuning across various capabilities, in-
cluding instruction following, mathematical rea-
soning, and code generation. Using only 10K
evolved ShareGPT for fine-tuning Mixtral-8x7B
(Jiang et al., 2024), we achieve 8.09 on MT-
Bench (Zheng et al., 2023) and 91.4 on AlpacaE-
val (Li et al., 2023), surpassing GPT-3.5-Turbo
and WizardLM-70B, and comparable with Claude-
2.0. Using only 7K evolved GSM8K training data
for fine-tuning Mixtral-8x7B, we achieve 82.49 on
GSM8K, surpassing GPT-3.5-Turbo, WizardMath-
70B and MetaMath-70B (Yu et al., 2023). Using
20K evolved Code Alpaca to fine-tune DeepSeek-

Coder-Base-33B (Guo et al., 2024), we achieve
77.4 on HumanEval, surpassing GPT-3.5-Turbo
and WizardCoder-34B.

2 Background

2.1 Evol-Instruct
Instruction evolution (Xu et al., 2023) involves re-
fining an instruction dataset to boost its complex-
ity and diversity, enhancing instruction tuning ef-
fectiveness. This method uses a human-designed
evolving method, denoted as e, to transform orig-
inal instruction dataset X = {x1, x2, · · · , xn},
where each xi is an instruction-response pair, into
an improved dataset Xe. The aim is for Xe to yield
superior performance Q(Xe) in a specific capabil-
ity after instruction tuning, compared to the original
dataset’s performance Q(X). Essentially, by evolv-
ing the instruction dataset and subsequently tuning
a model on Xe, the model should perform better
on the targeted capability than it would using the
original dataset.

2.2 Problem Formulation
While Evol-Instruct shows excellent performance
across many areas, its dependence on high ex-
pertise and limited scope restrict its broader use.
Our research aims to develop an automated frame-
work that identifies the optimal instruction evolving
method, e∗, which maximizes performance after
instruction tuning:

e∗ = argmax
e

Q(Xe). (1)
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This framework seeks to find the evolving method
e∗ that delivers the highest performance Q(Xe)
after tuning a model on the evolved dataset Xe.
By automating this process, we aim to reduce the
need for extensive human expertise and expand the
application of instruction evolution.

3 Auto Evol-Instruct

Unlike Evol-Instruct, Auto Evol-Instruct is a fully
automated framework that improves the complexity
and quality of instruction data without any human
intervention. Its key advancements include: (1)
automatically designing evolving methods for in-
struction evolution, facilitating adaptation to a wide
range of tasks and enhancing model capabilities
across a broader spectrum; (2) developing evolv-
ing methods that surpass those crafted by human
experts, while minimizing failures and ensuring
successful execution of instruction evolution.

Figure 1 illustrates the process of automating
the design of evolving methods in the Auto Evol-
Instruct Framework (Section 3.1-3.3). We also de-
tail specific examples of how the evolving method
changes at each step in the Table 12. This frame-
work begins with a carefully designed universal
evolving method and a seed instruction dataset
X (Section 3.1). It then iteratively optimizes this
initial evolving method, e0, to obtain the optimal
evolving method, e∗ 1. In each optimization step t,
we randomly sample a mini batch from X and uti-
lize the evol LLM to evolve each instruction in the
batch l times. Then the optimizer LLM analyzes
the evolutionary trajectory of all instructions in the
current batch to identify existing issues and gen-
erate feedback (Section 3.2). As shown in Figure
1, the optimizer LLM identifies problems such as
“Unimproved Complexity”. The optimizer LLM
will make corresponding optimizations to evolving
method et−1 to obtain et based on the feedback.
Specifically, the feedback “Unimproved Complex-
ity” will prompt the optimizer LLM to add a con-
straint “Ensure the Complexity increase” in et. To
improve the stability, we execute “analysis opti-
mization” multiple times with sampling decoding
in parallel to obtain m optimized evolving meth-
ods. Then, we select the method with the lowest
evolution failure rate as the final et. The optimiza-
tion process terminates when the failure rate of

1This process uses a subset of the full instruction data,
randomly sampling approximately 2,000 entries, to minimize
costs associated with developing the evolving method.

instruction evolution no longer decreases, or a max-
imum number of optimization steps has reached
(Section 3.3). Once the optimal evolving method
is identified, it will be applied to guide the instruc-
tion evolution across the entire instruction dataset,
resulting in an evolved dataset (Section 3.4).

3.1 Initial Evolving Method Design

The reason why Evol-Instruct is not universally
applicable is that the methods for complicating
instructions vary across different domains. For in-
stance, in the coding domain, methods to increase
the complexity of instructions such as "propose
higher time or space complexity requirements"
(Luo et al., 2023b) are meaningful, but they are
not quite suitable in the chat domain. The meth-
ods for complicating instructions in Evol-Instruct
need to be designed and summarized by human
experts. The core difference in our initial evolving
method design lies in that we delegate the process
of designing and summarizing evolving rules to the
LLMs for automation. As shown in the Figure 2,
firstly we ask the evol LLM to "read the instruction
carefully and list all the possible methods to make
this instruction more complex". Subsequently, the
evol LLM is tasked with devising a comprehensive
plan based on the listed methods, and implements
the plan to generate the evolved instruction. Lastly,
the evol LLM conducts a thorough review of the
evolved instruction, rectifying any unreasonable
parts, and delivers the final evolved instruction.

3.2 Evol Trajectory Analysis

We primarily utilize the optimizer LLM to identify
issues emerging during the instruction evolution
process and offer subsequent feedback for the opti-
mization of evolving method. (Examples of issues
are given in the Appendix B) Specifically, at op-
timization step t, the evolving method et−1 steers
the evol LLM to perform l rounds of evolution
on a batch of data Xt, culminating in the evolu-
tionary trajectory, St = {Xt, X

(1)
t , · · · , X(l)

t }. In
this trajectory, X(i)

t denotes the instruction evolved
from X

(i−1)
t using et−1. Following this, the opti-

mizer LLM scrutinizes the evolutionary trajectory
to pinpoint and provide feedback ft on any issues
detected. (Prompt used is detailed in Figure 7)

3.3 Evolving Method Optimization

We employ the optimizer LLM to optimize the
evolving method in response to insights gathered
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         Initial Evolving Method

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more complex (to 

make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do not provide methods to 

change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List#  generated in Step 1 to make the #Instruction# more 

complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can only add 10 to 

20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the #Rewritten 

Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten Instruction# without any 

explanation.

 Please reply strictly in the following format:

 Step 1 #Methods List#:

 Step 2 #Plan#: 

 Step 3 #Rewritten Instruction#:

 Step 4 #Finally Rewritten Instruction#:

 #Instruction#:

{Instruction}

Figure 2: Initial Evolving Method. Under this method, the Evol LLM evolves the instruction. Auto Evol-Instruct
will optimize this method into an optimal version for evolving the entire dataset of instructions efficiently.

from the evol trajectory analysis, in accordance
with the overall instruction evolution requirements.
In essence, during the step t, the optimizer LLM
refines the evolving method et−1, by leveraging
the feedback ft. This meticulous optimization
yields an updated version of the evolving method
et. (Prompt in Optimization detailed in Figure 8).

Multiple Optimizations In the Evol Trajectory
Analysis and Method Optimization Process, the op-
timizer LLM sometimes struggles to consistently
provide constructive feedback and enhance the
evolving method. To bolster the stability of the
Auto Evol-Instruct framework and draw inspiration
from the self-consistency (Wang et al., 2022), we
implement a strategy where, at each step, the opti-
mizer LLM conducts m times of analysis and opti-
mization with sampling decoding. This generates
m different potential improved evolving methods,
namely e1t to emt in Figure 1, allowing the model
to explore more possibilities simultaneously (Yang
et al., 2023). Specifically, we divide the instruction
data into training data X and a development set D.
We use the obtained potential methods to evolve
instructions in D and generate corresponding re-
sponse sets, denoted as Re1t

to Remt
. For a given

eit, we calculate its evolution failure rate based on

corresponding response set Reit
:

λR
eit

=

∑
r∈R

eit

F (r)

|D| (2)

Here, |D| represents the size of the development
set. F(r) is a function that determines whether in-
struction evolution has failed, returning 1 for fail-
ure and 0 for success. We have designed a series
of rules to determine whether evolution has failed
based on the reaction of evol LLM when generating
answers for evolved instructions. For example, if
the answer contains “understood” or “Thank you”
and ends with a question mark, it indicates that the
evolved instruction has not become more complex
but is responding to the instruction being evolved
(please refer to Appendix A for detailed judgment
rules). Finally, the evolving method demonstrating
the lowest evolution failure rate is selected as the
subsequent step’s evolving method et.

3.4 Instruction Tuning on Evolved Data
The Auto Evol-Instruct leads us to derive the op-
timal evolving method e∗. This method is then
employed to guide the evol LLM, which substan-
tially improving the complexity and diversity of the
entire instruction dataset. As a result, we acquire
an evolved dataset. Subsequently, this enriched
dataset is used to fine-tune the base LLM, thereby
broadening the model’s range of capabilities.
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4 Experiment

In this section, we conduct a detailed study on
the effects of Auto Evol-Instruct. We begin with
an overview of the experimental setup, then test
our method’s effectiveness in instruction follow-
ing, math reasoning, and code generation. We also
present Auto Evol-Instruct’s performance results
on the Open LLM Leaderboard in the Appendix D.

4.1 Experimental Setup

Table 1 illustrates the experimental setup, including
the seed datasets, pre-training base models of vary-
ing sizes (small and large) for instruction tuning,
and the configuration of evol LLM and optimizer
LLM. Refer to Appendix F for more details, and
for details of the Baseline, refer to Appendix G.

4.2 Evaluation Results

Instruction Following We evaluate the instruction-
following using MT-Bench and AlpacaEval. MT-
Bench tests the model across various domains
through multi-turn dialogues, while AlpacaEval au-
tomates assessment based on AlpacaFarm (Dubois
et al., 2023). Table 2 shows that our method sub-
stantially improves performance across different
model scales. For smaller models, our method
improves by approximately 0.63 on MT-Bench
compared to seed data. For larger models, there’s
still a performance boost of 0.44. Despite using
only 10K data for fine-tuning on Mixtral-8x7B, our
method matches or surpasses the performance of
open-source models that utilize more data and train
on larger models, achieving results comparable to
Tulu-v2-dpo on MT-Bench and AlpacaEval. Our
model even performs on par with powerful closed-
source models like Claude 2.0 and GPT-3.5-Turbo.
Math Reasoning We assess the mathematical
reasoning capabilities using GSM8K benchmark
(Cobbe et al., 2021). The GSM8K comprises com-
plex graduate-level math problems, with 7,473
training samples and 1,319 testing samples. We
employ the zero-shot testing approach and use
test accuracy as the metric. Table 2 demonstrates
that our Auto Evol-Instruct has significantly im-
proved mathematical reasoning. For instance, our
method improved by 13.84 compared to the seed
data on Mistral-7B. Simultaneously, our method
uses a minimal amount of instruction data (only
7K) and can exceed GPT-3.5-turbo after fine-tuning
on Mixtral-8x7B. This indicates that our method
can substantially raise the upper limit of quality in

existing mathematical data.
Code Generation We use the HumanEval (Chen
et al., 2021) to test code-writing capabilities. Hu-
manEval comprises 164 unique programming chal-
lenges, and we use pass@1 as the metric. Table 2
illustrates that our method enhances the model’s
capabilities effectively. Our method demonstrates
significant improvement across various model sizes
compared to Evol Instruct. For instance, at the
33B scale, Evol-Instruct yields only a slight im-
provement, while our method shows a boost of 5.4
compared to Seed Data. Our results remain compet-
itive even when compared with DeepSeek-Coder-
Instruct-33B, which uses the same base model but
with instructions for fine-tuning on a much larger
scale (about 2B tokens) than ours.

5 Analysis

5.1 Effect of Initial Evolving Method

In this section, we delve into the significance of
the Initial Evolving Method within the Auto Evol-
Instruct framework, particularly focusing on its
impact on data evolving across various capabilities.
We employ several techniques to evolve datasets
like GSM8K, Alpaca (Taori et al., 2023), and Code
Alpaca. Figure 3 underscores the robust versatility
of initial evolving method in boosting different ca-
pabilities, establishing it as an exemplary starting
evolving method in the framework. For instance,
when compared with Evol Instruct, initial evolv-
ing method demonstrates a notable improvement,
elevating the MT-Bench score from 6.31 to 6.60,
and the HumanEval from 61.0 to 62.2. Moreover,
the Auto Evol-Instruct framework, building on the
foundation laid by initial evolving method, exhibits
potential for further enhancements. It was observed
that on GSM8K, Auto Evol-Instruct could elevate
the performance from 62.7 to 64.4. These findings
highlight that our proposed method can effectively
optimize the initial evolving method, leading to
improvements in various benchmarks.

To demonstrate the effectiveness of the Auto
Evol-Instruct in enhancing different initial evolv-
ing methods, we conducted an experiment using a
deliberately simple evolving method. We removed
most of the key designs from the original initial
evolving method, such as step-by-step evolving pro-
cess, etc. (see Figure 9 for details). We applied our
framework to both this basic method and our well-
designed initial evolving method on the GSM8K
dataset. As evident from Figure 4, even when start-
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Seed Data Base Models evol LLM optimizer LLM
Dataset Datasize Small Large

Instruction Following ShareGPT 10 K Mistral-7B Mixtral-8x7B GPT-4 GPT-4
Mathematical Reasoning GSM8K Train 7 K Mistral-7B Mixtral-8x7B GPT-4 GPT-4
Code Generation Code Alpaca 20 K CodeLlama-13B-Python DeepSeek-Coder-Base-33B GPT-4 GPT-4

Table 1: Data Stastics.
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Figure 3: Effect of the Initial Evolving Method. GPT-
3.5-turbo as evol LLM, GPT-4 as optimizer LLM.
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Figure 4: Effect of Auto Evol-Instruct on Initial Evolv-
ing Methods. GPT-3.5-turbo as evol LLM, GPT-4 as
optimizer LLM. Default and Weak respectively repre-
sent original and simple evolving method

ing with the simple method, our framework yielded
significant improvements. For instance, the per-
formance on GSM8K increased from 59.4 to 62.7
after refinement with our framework. These find-
ings underscore the adaptability of our framework
across varying initial methods.

5.2 Effect of Multiple Optimizations

We explore the impact of multiple optimizations
in Auto Evol-Instruct and choose GSM8K for ab-
lations. We keep the default hyper-parameters of
Auto Evol-Instruct, exploring the effect of the num-
ber of optimizations. Figure 5(a) reveals a distinct
pattern: as we increase the number of optimiza-
tions, there’s a notable enhancement in data effi-
ciency via optimal evolving methods. For example,

1 3 5 7 9

63

64

65

(a) Multiple Optimizations

3 6 9 12 1560

61

62

63

64

65

(b) Total Steps

Figure 5: Hyperparameters for Auto Evol-Instruct. GPT-
3.5-turbo as evol LLM, GPT-4 as optimizer LLM.

setting the number of optimizations to 1 achieved
62.7 on the GSM8K. This accuracy improved to
65.0 when number of optimizations raised to 9.
This trend indicates that more optimizations allow
the optimizer LLM to explore a wider array of op-
tions, improving its ability to pinpoint areas where
evolving method can be further refined for opti-
mal performance. However, there are important
trade-offs to consider. Elevating the number of
optimizations can also bring increase in resources
consumption (Guo et al., 2023). On the other hand,
fewer optimizations may lead to a more focused re-
finement of current evolving method, which could
result in local optimal that might not fully exploit
the potential of evolving method. We also explored
the relationship between the optimization steps and
effects of instruction tuning. Figure 5(b) shows
that as the number of optimization steps increases,
the performance can increase monotonically in the
beginning, but after 12 steps, it rapidly declines.
This may be because over-optimization could po-
tentially lead to an accumulation of superfluous
information in the evolving method, consequently
possibly diminishing its effectiveness (Examples
in Section 5.7).

5.3 Different Evol LLM
In this section, we evaluate the performance of
Auto Evol-Instruct when integrated with various
evol LLMs. We provide additional performance re-
sults of Auto Evol-Instruct with various Optimizer
LLMs in the Appendix C. Table 3 reveals the im-
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Instruction Following Math Reasoning Code GenerationModel Size MT-Bench AlpacaEval (%) GSM8K (%) HumanEval (%)
Closed-Source Models

Gemini Pro - - 79.66 76.42 59.76
Claude 2.0 - 8.06 91.36 88.00 71.20
GPT-3.5-Turbo - 7.90 89.37 80.80 73.20
GPT-4 - 8.99 95.28 92.00 84.10

Open-Source Base Models
Mistral 7 B - - 37.80 30.50
DeepSeek-Coder-Base 33 B - - 60.70 56.10
LLaMA-2 34 B - - 42.20 22.60
CodeLlama-Base 34 B - - 58.20 48.20
Mixtral 8x7B - - 58.40 40.20
LLaMA-2 70 B - - 56.80 29.90

Open-Source General Instruction-Tuned Models
Mistral-7B-Instruct-v0.1 7 B 6.84 69.65 14.25 31.10
Vicuna-v1.3 33 B 7.12 88.99 - -
Mixtral-8x7B-Instruct-v0.1 8x7B 8.30 94.78 60.73 34.15
LLaMA-2-Chat 70 B 6.86 92.66 - 32.30
Tulu-v2-dpo 70 B 7.89 95.10 71.50 -
WizardLM-v1.0 70 B 7.78 92.91 77.60 50.60

Open-Source Instruction Models For Specific Capabilities
WizardMath 7 B - - 54.90 -
MetaMath 7 B - - 66.50 -
WizardMath 70 B - - 81.60 -
MetaMath 70 B - - 82.30 -
WizardCoder 15 B - - - 57.30
CodeLlama-Instruct 34 B - - - 41.50
DeepSeek-Coder-Instruct 33 B - - - 79.30
WizardCoder 34 B - - - 71.50

Instruction Evolution Methods
Seed Data small 6.88 84.08 56.90 57.90
Evol-Instruct small 6.80 (-0.08) 86.67 (+2.59) 63.15 (+ 6.25) 61.59 (+ 3.69)
Auto Evol-Instruct small 7.51 (+ 0.63) 84.41 (+0.33) 70.74 (+13.84) 65.85 (+7.95)
Seed Data large 7.65 87.98 70.60 72.00
Evol-Instruct large 7.76 (+0.11) 89.50 (+1.52) 79.15 (+ 8.55) 73.20 (+1.2)
Auto Evol-Instruct large 8.09 (+ 0.44) 91.37 (+3.39) 82.49 (+ 11.89) 77.40 (+ 5.4)

Table 2: Main Result.

pact of using GPT-3.5 and GPT-4 as the underlying
evol LLMs to evolve GSM8K. Notably, with GPT-4
as the evol LLM, our methodology yields an im-
provement from 63.2 to 70.7, surpassing the Evol
Instruct. Additionally, employing a more advanced
evol LLM enhances the effectiveness significantly.
For instance, switching the evol LLM from GPT-
3.5 to GPT-4 leads to a notable increase in perfor-
mance, jumping from 64.4 to 70.7. These findings
clearly demonstrate the broad applicability and ef-
fectiveness of our framework across different evol
LLMs.

5.4 Mix Rounds Scaling

We conduct experiments on a mixed set of evolved
data across various rounds using GSM8K to evalu-
ate the data scaling effect. Figure 6 illustrates the

Method Evol LLM GSM8K
Seed Data - 56.9
Evol Instruct GPT-3.5 61.4
Evol Instruct GPT-4 63.2
Auto Evol-Instruct GPT-3.5 64.4
Auto Evol-Instruct GPT-4 70.7

Table 3: Different evolution execution LLMs.

results, highlighting the superior scalability of our
approach in comparison to Evol Instruct. Notably,
the data from round 1 of our method outperforms
that of Evol Instruct’s combined data from rounds 1
and 2. Furthermore, the performance of our model
consistently improves as we scale the data from
round 1 to a mixture of rounds 1, 2, and 3.
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Figure 6: Mix Rounds Experiment. Use GPT-3.5-turbo
as the evol LLM, GPT-4 as the optimizer LLM.

Math Diversity Complexity GSM8K
GSM8K Training 1.39 4.82 56.9
Evol Instruct 1.69 4.90 61.4
Auto Evol-Instruct 2.2 5.54 64.4
Chat Diversity Complexity MT-Bench
Alpaca 2.16 2.70 5.95
Evol Instruct 3.15 3.63 6.31
Auto Evol-Instruct 3.19 3.89 6.71
Code Diversity Complexity HumanEval
Code Alpaca 1.95 4.06 57.9
Evol Instruct 2.37 4.55 61.0
Auto Evol-Instruct 3.05 5.18 64.0

Table 4: Result correlates with complexity and diversity.
GPT-3.5-turbo as evol LLM, GPT-4 as optimizer LLM.
GSM 8K, Alpaca and Code Alpaca as Seed Data

5.5 Discussion of Complexity and Diversity

Liu et al. (2023b) underscore the significant impact
that dataset complexity and diversity have on model
alignment. Instag (Lu et al., 2023) suggests that
the variety and quantity of intentions and semantics
in a dataset are crucial factors for its complexity
and diversity. We evolve 100 instructions using
various techniques, employing Instag’s method for
automated tagging. We assessed diversity by calcu-
lating the average number of unique tags for each
data, and complexity by the mean tag count. Table
4 reveals a distinct correlation: as data becomes
more diverse and complex, model performance
markedly improves. For instance, Evol Instruct
enhanced the original code alpaca, increasing its
diversity from 1.95 to 2.37 and its complexity from
4.06 to 4.55. This enhancement was mirrored in
a notable elevation of the HumanEval, climbing
from 57.9 to 64.0. This supports the success of
Auto Evol-Instruct in substantially boosting data
complexity and diversity, thereby significantly im-
proving model capability.

5.6 Contamination Test

Current methods for data evolving predominantly
utilize LLMs. To safeguard against potential data
leakage, we employ Liu et al. (2023a)’s method-

ology for conducting a contamination assessment
on evolving data, utilizing n-gram matches as a
measure. Specifically, for the GSM8K, our evolv-
ing process yielded 7K data, out of which merely
10 exhibited any 13-gram match as detailed in the
Table 10. These results indicate that our method
effectively minimizes the risk of data leakage.

5.7 Case Study
The dynamic transformations inherent in the op-
timization process are elaborated in Appendix J.
This progression demonstrates a marked improve-
ment in resolving issues encountered during in-
struction evolution. Table 12 provides examples
of how the evolving method is optimized at each
step based on the previous one. For example, Ini-
tial evolving method (Figure 10) guides the evol
LLM to generate the evolved instruction. Then, the
optimizer LLM analyzes the evolution trajectory
and identifies issues such as redundancy and clar-
ity in the evolved instruction, providing feedback.
Based on this feedback, the optimizer LLM up-
dates the evolving method by incorporating math-
ematical elements like variables, constants, and
conditions. This updated evolving method (Fig-
ure 11) then guides the evol LLM to generate an
updated evolved instruction, which introduces a
clearer challenge focused on understanding mathe-
matical relationships and variable quantities across
two periods.

5.8 Cost Comparison
Auto Evol-Instruct utilizes a small subset of the
complete data to devise an optimal evolving
method. This method is then employed to evolve
the entire instruction dataset. Table 11 compares
the total API calls made by Auto Evol-Instruct and
Evol Instruct. The results demonstrate that our Auto
Evol-Instruct achieves significantly superior results
compared to Evol Instruct, while incurring only a
few thousand additional API calls. This negligible
extra cost of a few thousand API calls is incon-
sequential when dealing with large-scale datasets
containing thousands or millions of instructions.

6 Related Work

Instruction tuning emerges as a pivotal strategy for
unlocking the potential of LLMs (Ouyang et al.,
2022; Touvron et al., 2023b). By curating high-
quality datasets, we can more efficiently align these
models with desired direction (Zhou et al., 2023).
The challenge of scaling high-quality instruction
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data remains a central research interest. Some re-
searchers prioritize human annotation for creat-
ing instruction data, such as ShareGPT (Chiang
et al., 2023) and OpenAssistant (Köpf et al., 2023).
Other researchers explore more efficient ways to
break through the quality upper-bound of exist-
ing datasets (Xu et al., 2023; Liu et al., 2023b;
Zhao et al., 2023). Xu et al. (2023) introduces
Evol-Instruct, a methodology that iteratively re-
fines instruction-following data to produce datasets
that are both more complex and diverse. Luo et al.
(2023b) develop evolving methods tailored to the
nuances of code data based on Evol-Instruct. Dis-
tinct from these methodologies, our approach intro-
duces a fully automated framework for developing
evolving methods. This innovation is not only scal-
able but also versatile, extending its utility across a
broad spectrum of capabilities. LLMs like GPT-4
and PaLM are capable of optimizing their output
through internal or external feedback mechanisms
(Suzgun and Kalai, 2024; Wang et al., 2022; Yang
et al., 2023). We use this capabilities to address
identified issues in the evolving method and adapt
to the characteristics of the instruction data.

7 Conclusion

This paper introduces Auto Evol-Instruct, an inno-
vative approach that successfully automates the evo-
lution of instruction datasets for LLMs, eliminating
the need for human intervention. Our method cen-
ters on the automatic analysis and summarization
of appropriate evolutionary strategies for the given
instruction data. It iteratively refines evolving meth-
ods by addressing the issues identified during the
instruction evolution process. The experiments con-
ducted have shown that methods optimized by Auto
Evol-Instruct, significantly surpass those crafted by
humans across various benchmarks, including MT-
Bench, AlpacaEval, GSM8K and HumanEval.

Limitations

Although Auto Evol-Instruct has demonstrated ex-
cellent performance in instruction tuning across
various capabilities, several directions are worth
exploring in future work:

(1) While we have validated the effectiveness of
Auto Evol-Instruct on benchmarks reflecting dif-
ferent capabilities such as instruction following,
mathematical reasoning, and code generation, we
can further evaluate its performance on other tasks
like MMLU (Hendrycks et al., 2021) and Truth-

fulQA (Lin et al., 2022).
(2) We have validated the effectiveness of our

method on multiple base LLMs, including Mis-
tral, Mixtral-8x7B, CodeLlama-13B-Python, and
DeepSeek-Coder-Base-33B. However, we can still
assess its effectiveness on other base LLM mod-
els, such as Qwen (Bai et al., 2023) and LLaMA
(Touvron et al., 2023a,b).

(3) The evol LLM and Optimizer LLM used in
Auto Evol-Instruct are primarily GPT-3.5-Turbo
and GPT-4. In the future, this can be expanded to
include other LLMs, such as Claude.

(4) We aim to propose an end-to-end automated
instruction evolution framework that utilizes sim-
ple and universal prompts for Evolutionary Trajec-
tory Analysis and Evolutionary Method Optimiza-
tion. While the prompts we employ are straight-
forward, experiments demonstrate that the frame-
work is highly effective. Moving forward, we can
explore more sophisticated prompts to implement
Evolutionary Trajectory Analysis and Evolutionary
Method Optimization, thereby further enhancing
the efficacy of the Auto Evol-Instruct.

Ethics Statement

All the datasets used in this paper are public and
have been reviewed to ensure they do not contain
any personally identifiable information or offensive
content. However, as these datasets are sourced
from the Internet, potential bias may still be present.
Furthermore, despite our careful review, the pro-
cess of instruction evolution involving the LLMs
throughout may inadvertently introduce inappro-
priate information into the evolved data. It’s also
worth noting that our models are fine-tuning on
GPUs, which could have an environmental impact.
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A Evolution Failures Detection

We categorize prevalent scenarios of failure (Xu
et al., 2023) in instruction evolution across vari-
ous capabilities and devise general detection rules
F . (See Table 5 for illustrative examples corre-
sponding to these situations) When the following
scenarios occur, the return value of F is 1:

1. Stagnant Complexity: The evolved instruc-
tion does not exhibit enhanced complexity, merely
addressing the scope of the original instruction.
Characteristically, responses to such instructions
begin with phrases like “Understood” or “Thank
you” and conclude with a question mark.

2. Insufficient Qualification: The evolved in-
structions lack necessary qualifications, necessitat-
ing additional inquiries for generating a meaningful
response. Typically, responses in these situations
commence with “Sure” and terminate with a ques-
tion mark.

3. Loss of Key Information: The evolved in-
struction omits crucial details from the original
instruction, leading to a need for supplementary
information before a substantial response can be
provided. Responses in these cases often include
requests for more information, typically indicated
by phrases like “please provide”.

B Evolution Issue Examples

To illustrate the issues encountered during data
evolution, we conduct an empirical analysis by ran-
domly selecting 200 instructions from the GSM
8K. These instructions are then subjected to evolu-
tion using the initial evolving method (Figure 2).
We employ the issue detection method described in
Section 3.2 to pinpoint and categorize prevalent is-
sues. Our findings, including illustrative examples,
are presented in the Table 6 and Table 7.

The analysis reveals that the initial evolving
method is plagued by a series of shortcomings. For
example, it fails to adequately account for the com-
plexity inherent in evolving instructions. This over-
sight results in several critical problems, such as the
tendency to alter the core nature of the problem, the
introduction of irrelevant details, or the generation
of contradictions with the original problem setup.
Furthermore, the initial method appears to overlook
the unique attributes of mathematical instructions.
This lapse leads to evolved instructions that often
contain “Incorrect or unrealistic mathematical cal-
culations.” These observations underscore the ur-
gent need for a comprehensive optimization of the

         Prompt For Evol Trajectory Analysis

The following list shows cases where an Instruction evolves into a 

more complex version of an Instruction. 

For each case, stage 0 represents the Instruction in its initial state, and 

each subsequent stage requires an increase in complexity based on 

the previous stage.

Please identify cases that failed to evolve, and provide their case ID 

and reasons.

{Evolutionary Trajectory}

Figure 7: Prompt for Evol Trajectory Analysis. Opti-
mizer LLM will scrutinize the evolutionary trajectory
under the guidance of this prompt to pinpoint and pro-
vide feedback on any issues detected.

evolving method, ensuring it aligns more closely
with the unique characteristics of the instruction
data.

C Differecnt Optimizer LLM

Current open-source LLMs, such as Llama 3
(Dubey et al., 2024), possess the powerful feedback
and correction capabilities required by optimizer
LLMs. We used Meta-Llama-3-70B-Instruct as
both the optimizer LLM and evol LLM for our ex-
periments in mathematical reasoning. As shown
in the Table 8, our method is applicable to open-
source models, and current powerful open-source
models like Llama 3 can even surpass proprietary
LLMs such as GPT-4.

D Results on Open LLM Leaderboard

We also investigate whether the model’s other ca-
pabilities are affected after SFT. To assess this,
we use the Open LLM Leaderboard for evalua-
tion, as presented in Table 9. The Open LLM
Leaderboard consists of four classification tasks:
ARC (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), MMLU (Hendrycks et al., 2021), and Truth-
fulQA (Lin et al., 2022). The results show that,
compared to the Mistral-7B-Instruct-v0.1 and the
Zephyr-Beta-SFT models trained with a larger SFT
dataset (200K samples), our model successfully
retains its abilities without experiencing notable
degradation.

E Prompt For Auto Evol-Instruct

We have designed a simple and effective Prompt
to guide Optimizer LLM for evol trajectory anal-
ysis (Figure 7) and evolving method optimization
(Figure 8).
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Failure Scenarios Original Instruction Evolved Instruction Response Detection Rules

Stagnant Complexity

Rearrange this sentence for clarity:
the ocean waves waves of the crashing
onto shore

With their mighty force,...,
creating a symphony of sound.

Understood. Would you like me
to provide any additional
information or perform any
specific tasks related to
this description of the ocean
and its waves?

Begin with "Understood",
end with "?"

Generate a story based on the topic ’
a day at the beach

Amidst the turmoil of her ...
love in unexpected places.

What would you like me to do
with this information?

Begin with "What",
end with "?"

Define the term ’computer vision

Define the term ’computer
vision’, which refers to ...
rather than low-level
processing.

That is correct! Do you have
any other questions
or tasks for me?

Begin with
"That is correct",
end with "?"

Explain why the sun appears red at
sunset.

Rayleigh scattering, a
phenomenon in atmospheric
physics, is ... good or
bad fortune.

Thank you for the information.
Is there anything
specific you would like me
to do with this information?

Begin with "Thank you",
end with "?"

What should I add in this function
to generate a random number?\r
\ndef generate_random():\n # Your
code here

def generate_random ...
print(f"The sum of all
the generated random numbers
is {sum}.")

Great! Do you want me to
explain what this code does?

Begin with "Great",
end with "?"

Insufficient Qualification Make an API call to retrieve the
latest news headlines for the world.

Make an API call to retrieve
the latest news headlines
for the world, but only
from the United States, filter
the headlines to only
include news related to
technology, and retrieve
news headlines from the past
24 hours.

Sure, I can help you with
that. Which news API would
you like me to use for
this task?

Begin with "Sure",
end with "?"

Loss of Key Information Classify the provided objects.
\nInput: dog, cat, ant

Classify the provided objects
into seven categories:
mammals, insects, birds,
reptiles, fish, amphibians,
and arachnids. Use the
criteria of habitat, diet,
physical characteristics,
reproduction, behavior,
lifespan, and phylogenetic
relationships to
classify the objects.

I’m sorry, but you have not
provided any objects to
classify. Please provide a
list of objects for me
to classify into the seven
categories.

Contain "please provide"

Table 5: Evolution Failures Detection Examples.

Issue ExampleIssue Name Issue Explanation Original Instruction Evolved Instruction Reason

Lack of consistency
and logical progression
in complexity

Introduce new concepts or variables
without building on the previous
instruction, making the problem
confusing or unrealistic.

One barnyard owl makes 7 hoot sounds per
minute, measured in decibels. If the
barn is located near a construction
site and only 15 hoot sounds per minute
are heard coming out of the barn, how
many barnyard owls are making the hoot
sounds, assuming each owl makes the same
number of hoot sounds?

Assuming some owls make 10 hoot sounds
per minute and others make 5 hoot sounds
per minute, and the barn is located 100
meters away from a construction site,
how many barnyard owls are making the
hoot sounds if 20 hoot sounds per minute
are heard coming out of the barn, and each
owl makes 7 hoot sounds per minute measured
in decibels?

Introduce new concepts (owls making
different amounts of hoots, the barn’s
location, sound measurement in decibels)
without clearly building on the previous
instruction. The complexity does not
gradually increase but rather jumps
erratically.

Incorrect or unrealistic
mathematical calculations

Introduce mathematical operations
or equations that don’t make sense
in the context of the problem or
are mathematically incorrect.

If Betty has 12 oranges, and Sandra has
3 times as many oranges as Betty, then
Sandra has 12 multiplied by 3, which
equals 36 oranges. Emily has 7 times
as many oranges as Sandra, so Emily
has 36 raised to the power of 7 oranges.

If Betty has 12 oranges, and Sandra has 3
times as many oranges as Betty, then Sandra
has 12 multiplied by 3, which equals 36
oranges. Emily has 7 times as many oranges as
Sandra, so Emily has 3.6 x 10^8 oranges. If
Emily has more oranges than Betty, then she has
3.6 x 10^11 million oranges.

The problem becomes mathematically
incorrect. The multiplication and
powers used in instruction do not
make sense in the context of the
problem and create an unrealistic
scenario.

Changing the original
instruction

Change the nature of the problem,
introduce irrelevant details, or
contradict the original problem
set-up.

In seven years, Talia will be 20 years old.
Talia’s mom is currently three times as
old as Talia is today. In three years,
Talia’s father will be the same age as Talia’
s mom is today. Currently, how many years
old is Talia’s father?

Talia’s father is currently X years older than
Talia, where X is the difference between the
age Talia’s mother was when Talia was born and
the age Talia’s father will be in three years.

The evolution from does not increase
in complexity as the original problem
is completely changed. The initial
problem is about calculating ages,
but the evolved problem introduces a
variable X without any context. The
complexity is not increased but the
problem is made unnecessarily confusing.

Inconsistent or
contradictory information

Introduce information that
contradicts previous instruction

John orders food for a massive restaurant.
He orders 1000 kilograms of beef for 8
per pound. He also orders twice that much
chicken at 3 per kilogram. If the cost
of chicken is $2 per kilogram, and the
total cost of beef is greater than the
total cost of chicken, what is the final
cost of the order?

John, the head chef of a high-end restaurant,
orders a massive amount of food for his
establishment. He orders 1000 kilograms of
premium beef at a cost of 8 per pound, and
twice that amount of organic chicken at a cost
of 3 per kilogram. If the cost of chicken is
$2 per kilogram, and the total cost of beef is
greater than the total cost of chicken, what is
the final cost of the order? Please calculate
the final cost using the following equation:
(1000 * 2 * 3) + (1000 * 8 * 0.45) = ?

The progression of the instruction
is not logical. The original instruction
states that the cost of chicken is 3
per kilogram, and then in the evolved
instruction it contradicts this by
stating that the cost of chicken is 2
per kilogram.

Table 6: Issue Examples A.

F Experimental Details

F.1 Experimental Setup
For instruction following, we randomly select 10K
data from ShareGPT as seed data and set both7010



Issue ExampleIssue Name Issue Explanation Original Instruction Evolved Instruction Reason

Lack of clarity and
coherence

Make the instruction less clear
or more confusing, introduce
unnecessary complications, or
include irrelevant and unrelated
variables.

Nedy can eat 800 grams of crackers from
Monday to Thursday, but no more than 200
grams per day. If Nedy ate 2x on Friday,
1/2x on Saturday, and 1/2x on Sunday,
and Nedy is eating chocolate chip cookies,
how many crackers did Nedy eat in all from
Monday to Sunday?

Nedy can eat y grams of saltine crackers with
peanut butter from Monday to Thursday, but
no more than 200 grams per day, and only
after 5 pm, while standing on one foot,
blindfolded, and reciting the alphabet backward.
If Nedy ate 2x on Friday, 1/2x on Saturday,
and 1/2x on Sunday, how many saltine crackers
with peanut butter did Nedy eat in all from
Monday to Sunday, while wearing a hat and
sunglasses and listening to classical music?

The evolved instruction has lost its
clarity and consistency with the
original instruction. The conditions
for Nedy to eat crackers have become
absurd and unrealistic, such as standing
on one foot, blindfolded, and reciting
the alphabet backward, which
unnecessarily complicates the instruction.

Inappropriate increase in
complexity

Introduce a level of complexity
that is not supported by the
provided information or is
unrelated to the original problem.

Hawkeye is driving his electric bike to
his aunt’s place, which is now 60 miles
away. He has to charge his battery for
$3.5 per charge, and he needs to charge
it five times due to the increased
distance. However, his cousin needs a
ride to a nearby town that is 20 miles
away, and Hawkeye needs to drop him
off first. His cousin offers to pay for
half of the battery charging costs, which
total $17.50 including tax and a service
fee of $2. On the way, it starts raining
heavily, making the journey more difficult.

Hawkeye is riding his electric bike, which has
a maximum speed of 30 mph and a battery that
needs to be charged every 30 miles. He is on
his way to his aunt’s place, which is now 100
miles away. However, his battery malfunctions
after 40 miles, and he has to stop and fix it,
which takes 20 minutes. On the way, he encounters
a toll road that costs $5, and he has to take a
detour to avoid a construction site, adding an
extra 10 miles to the journey. Each time he
charges his battery, it takes 30 minutes, and
he needs to charge it five times, costing him
$17.50 including tax and a service fee of $2.
His cousin needs a ride to the nearby town, which
is 20 miles away, to catch a flight. His cousin
offers to pay for half of the battery charging
costs. On the way, there is a thunderstorm warning
in effect, making the journey more difficult.

The evolved instruction introduces a lot
of new elements (bike’s maximum speed,
battery malfunction, toll road, construction
site, thunderstorm warning) that do not
directly evolve from the original
instructions.

Decrease in complexity
Simplify the problem instead of
making it more complex.

Marcus wants to buy a new pair of shoes.
He decided to pay not more than $130 for
them. He found a pair for $120, on which
he got a discount of 30%. How much money
will he manage to save by buying these
shoes and not spending the assumed maximum
amount?

Marcus wants to buy a new pair of leather shoes.
He decided to pay not more than 130 for them.
He found a pair for 120, on which he got a
discount of 30%. The original price of the shoes
was 171.43. After the discount, the final price
of the shoes is 84. Marcus managed to save $36.43
by buying these shoes and not spending the assumed
maximum amount. He saved 21.26% of the original
price, which is more than 20%. Therefore, Marcus
will buy the shoes.

The complexity of evolved instruction is
lower than that of original instruction.
In evolved instruction, the answer to the
problem is included in the instruction,
which simplifies the problem instead of
making it more complex.

Incorrect evolution of
the instruction

Introduce elements that are not
logically connected or a
progressive development of the
previous instruction.

Harry is a professional dog-walker. He
walks dogs for different families on
different days of the week. On Sunday,
he walks 3 dogs for 7 each. On Monday,
he walks 7 dogs for 5 each and 16 for
2 dogs. On Tuesday, he walks 15 dogs for
6 each and 35 for 5 dogs. On Wednesday,
he walks 10 dogs for 5 each and 18 for
3 dogs. On Thursday, he walks 13 dogs for
4 each and 36 for 4 dogs. And on Friday,
he walks 8 dogs for 5 each and 20 for 2
dogs. If he walks all the dogs, how much
money will Harry earn in a week?

Harry is a professional dog-walker who walks dogs
for different families in various locations throughout
the week. If he walks all the dogs, including three
large dogs, seven small dogs, two medium-sized dogs,
fifteen mixed-breed dogs, five purebred dogs, ten
rescue dogs, three therapy dogs, thirteen senior
dogs, four puppies, eight working dogs, and two
show dogs, he will earn a total of $493.

The evolved instruction did not evolve
from original instruction. It did not
maintain the complexity or structure
of the previous stages, and it did not
provide a clear question for calculation.

Irrelevant increase in
complexity

Introduce additional variables
or conditions that do not
increase the complexity of the
task in a relevant or logical
way.

Tabitha has 50 dollars. She gives her mom
15 dollars and invests half of what is left
in the stock market for 1 year, with a 10%
tax. She spends some money on 15 items that
cost 1 dollar each, with a 10% discount and
a 15% tip. Tabitha also has a loan of 5
dollars that she has to pay off. How much
money does Tabitha have left after all
these transactions?

Tabitha has 50 dollars. She gives her mom 15
dollars and invests half of what is left in
the stock market for 1 year, with a 15% tax.
She spends some money on 20 items that cost
1 dollar each, with a 20% discount and a 25%
tip. Tabitha also has a loan of 10 dollars
that she has to pay off. After reinvesting
the profits from the stock market for another
year, how much money does Tabitha have left
after all these transactions?

The evolved instruction did not evolve
from original instruction. The question
at the end of evolved instruction
introduces a new concept (reinvesting
profits) that was not present in the
previous stages, and it does not
clearly build on the previous stages.

Table 7: Issue Examples B

Method Evol LLM Optimizer LLM GSM 8K
Seed Data - - 56.9
Auto Evol-Instruct GPT-3.5 GPT-4 64.4
Auto Evol-Instruct GPT 4 GPT-4 70.7
Auto Evol-Instruct Llama-3-70B-Instruct Llama-3-70B-Instruct 73.7

Table 8: Different optimizer LLMs.

ARC HellaSwag MMLU TruthfulQA Average
Mistral-7B-Instruct-v0.1 54.5 75.6 55.4 56.3 60.5
zephyr-beta-sft 57.7 82.0 61.0 43.0 60.9
Auto Evol-Instruct 60.7 83.3 62.1 46.9 63.2

Table 9: Results on Open LLM Leaderboard.

evol LLM and optimizer LLM to GPT-4. We use
Evol-Instruct and Auto Evol-Instruct to obtain 10K
evolved data respectively. Then, we perform in-
struction tuning on Mistral-7B (Jiang et al., 2023)
(small) and Mistral-8x7B (large).

For mathematical reasoning, GSM8K training
data serves as seed data, evol LLM and optimizer
LLM are set to GPT-4. About 7K evolved data

         Prompt For Evolving Method 
Optimization

{Feedback}

I will provide you with the method for evolving the above instructions.

You need to optimize this method based on the feedback from the 

evolution failure case, without harming the performance on other cases, 

and ensure that the complexity increase brought by the optimized method 

is not lower than the previous method.

 Please provide the optimized method in the following format. 

```Optimized Method\n<Optimized Method Here>\n```

{Evol Prompt}

Figure 8: Prompt for Evolving Method Optimization.
The optimizer LLM refines the evolving method guided
by this prompt.

is obtained respectively through Evol-Instruct and
Auto Evol-Instruct, and fine-tuned on Mistral-7B
(small) and Mixtral-8x7B (large). (To ensure the
fairness of the experiment, we sampled an equal
amount of data from MetaMath and performed fine-
tuning)
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Weak Evolving Method

You are an Instruction Rewriter that rewrites the given #Instruction# into a 

more complex version.

 

Just provide the #Finally Rewritten Instruction# without any explanation.

 

 #Instruction#:

{Instruction}

Figure 9: Weak Initial Evolving Method.

In the code generation, Code Alpaca (Chaud-
hary, 2023) is selected as the seed data and evol
LLM is set to GPT-3.5-turbo, and the optimizer
LLM to GPT-4. About 20K evolved data is ob-
tained respectively through Evol-Instruct and Auto
Evol-Instruct, and instruction tuning is performed
on CodeLlama-13B-Python (Roziere et al., 2023)
(small) and DeepSeek-Coder-Base-33B (Guo et al.,
2024) (large).

F.2 Hyperparameters in Auto Evol-Instruct

During the Auto Evol-Instruct process, we config-
ure the mini-batch size to 10, the development set
size to 50, the optimizer LLM temperature to 0.6,
its top p to 0.95, and the evol LLM temperature to
0. We also set the total optimization steps to 10,
with 5 multiple optimizations performed in each
step by default. Unless specified otherwise, we
conduct only one round of evolving on the instruc-
tions and generate corresponding responses. The
experiments are performed using the Azure Ope-
nAI ChatGPT API and GPT-4 API.

F.3 Training Details

We employ DeepSpeed Zero-Stage 3 (Ren et al.,
2021) on eight NVIDIA Tesla A100 GPUs to train
models. For the integration of multi-turn conver-
sations, we use the Vicuna-style template. In all
experiments of this paper, the training parameters
are set with a maximum input length of 2048. For
models trained based on Mistral-7b, we set the
batch size to 128, train for 4 epochs, and set the
learning rate to 5e-6. For models trained based
on CodeLlama-13B-Python and DeepSeek-Coder-
Base-33B, we set the batch size to 192, train for 3
epochs, and set the learning rate to 2e-5. For the
Mixtral-8x7B model, we set the batch size to 200,
train for 4 epochs, and set the learning rate to 5e-6.

GSM 8K
Method 13-Gram Match 8-Gram Match Total Size
Raw 44 202 7 K
MetaMath 32 150 7 K
Evol Instruct 4 87 7 K
Auto Evol-Instruct 10 133 7 K

MT-Bench
Raw 0 2 2 W
Evol Instruct 0 2 2 W
Auto Evol-Instruct 0 4 2 W

HumanEval
Raw 0 22 2 W
Evol Instruct 4 80 2 W
Auto Evol-Instruct 2 63 2 W

Table 10: Contamination Test. We conduct a Contami-
nation Test on the pre-and post-evolution data of GSM
8K (about 7 K), Alpaca (about 20 K), Code Alpaca
(about 20 K).

G Baseline

We compare the method proposed in this paper
with the following models:

(1) Closed-Source Models: These include lead-
ing LLMs like OpenAI’s GPT-3.5 and GPT-4 (Ope-
nAI, 2023).

(2) Open-Source Base Models: We compare
our method with a variety of open-source base mod-
els such as LLaMA-2 (Touvron et al., 2023b), Mis-
tral (Jiang et al., 2023), and CodeLlama (Roziere
et al., 2023).

(3) Open-Source Instruction-Tuned Models:
Include instruction tuning models like Vicuna (Chi-
ang et al., 2023).

(4) Direct Instruction Tuning with Seed Data:
We use the same seed instruction data as in our
method to conduct direct instruction tuning on the
base model.

(5) Instruction Evolution Methods: We mainly
compare with Evol-Instruct (Xu et al., 2023; Luo
et al., 2023a,b) that requires human experts in-
volved. To be fair, we will use the exact same
evol LLM to evolve instruction datasets such as
ShareGPT, GSM8K, and CodeAlpaca.

H Contamination Test

We employ (Liu et al., 2023a) proposed method-
ology for conducting a contamination assessment
on augmented data, utilizing n-gram matches as a
measure. The experimental results are shown in
the Table 10.

I Cost Comparison

We compare the total number of API calls made by
Auto Evol-Instruct and Evol Instruct. The results
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Dataset Datasize Evol Instruct Auto Evol-Instruct
ShareGPT 10 K 100000 106120 (+6.12%)
GSM 8K 7 K 14000 20120 (+43.7%)

Code Alpaca 20 K 40000 46120 (+15.3%)

Table 11: Estimating API calls for Evol Instruct and
Auto Evol-Instruct. Each single-round instruction evolu-
tion and response generation requires one API call. For
multi-round dialogues such as ShareGPT, each round
is evolved separately, with an average of 5 rounds per
dialogue assumed for estimation purposes.

are in the Table 11.

J Case Study

We use GSM 8K to illustrate the dynamic changes
of the evolving method during the Auto Evol-
Instruct process. Figures 10 to Figures 14 depict
the transition from the initial evolving method to
the 15th step’s evolving method. Table 12 illus-
trates examples of how the evolving method is op-
timized at each step based on the previous one.
It’s important to note that the table just showcases
sample examples and does not comprehensively
represent the entire optimization process.

7013



Original Instruction Evolving
Method Evolved Instruction Feedback

Updated
Evolving
Method

Updated Evolved Instruction Explanation

Natalia sold clips to 48
of her friendsin April,
and then she sold half
as many clips in May.
How many clips did
Natalia sell altogether
in April and May?

Step 0(Figure 10)

Natalia, in April, managed
to distribute a total of
clips to precisely 48
individuals categorized as
friends, and subsequently,
in May, she managed to
distribute exactly half the
number of clips she did in
the prior month. Determine
the cumulative total of
clips Natalia distributed
over the span of the two
months.

Redundancy: The use of phrases
like "managed to distribute"
and "categorized as friends"
is redundant and does not
add value to the complexity
in terms of deepening the
problem’s challenge. Instead,
it merely complicates the
language unnecessarily.
Clarity: The rewritten
instruction loses clarity by
incorporating verbose language
that could confuse the reader
without actually enhancing the
instructional or problem-solving
complexity.

Step 1(Figure 11)

In April, Natalia sold clips
to 48 friends. In May, she
sold an amount equal to half
the number of clips sold in
April. Calculate the total
number of clips Natalia sold
in these two months,
considering the changing
quantities each month.

This evolved version maintains
the original problem’s essence
while introducing a clearer
challenge focused on mathematical
relationships and understanding
variable quantities across two
periods.

Henry took 9 pills a day
for 14 days. Of these 9
pills, 4 pills cost 1.50
each, and the other pills
each cost 5.50 more. How
much did he spend in
total on the pills?

Step 1(Figure 11)

Henry, for a period of 14
days, consumed 9 pills
daily. Out of these, 4
pills were priced at 1.50
each, and the remaining 5
pills were priced at 7.00
each, which is 5.50 more
than the cost of the cheaper
pills. Calculate Henry’s
total expenditure
for all the pills over
the 14 days.

Unnecessary Complexity: The
evolved instruction introduces
detailed breakdowns of costs
in a way that may confuse the
basic arithmetic problem about
summing costs, without
adding substantive educational
value.
Over-specification:
The instruction specifies the
number of days and pills in
detail in each sentence, which
can be redundant and may
detract from the clarity and
simplicity needed for
understanding the mathematical
calculation required.

Step2(Figure 12)

Henry took 9 pills daily
over a two-week period. Four
of these pills each cost
1.50, and the rest cost
7.00 each. Calculate the
total amount Henry spent
on the pills during this
period.

This version addresses the initial
issues by removing redundant
details and focusing on the
arithmetic operations required
to solve the problem, thus
maintaining the relevance and
educational value of the exercise.

Table 12: Case Study illustrates how the evolving method is optimized at each step based on the previous one. The
"Original Instruction" represents the instruction to be evolved, "Evolving Method" represents the current evolving
method, "Evolved Instruction" is the instruction evolved by the Evol LLM using the evolving method, "Feedback"
represents issues identified by the optimizer LLM through Evol Trajectory Analysis of the evolved instruction,
"Updated Evolving Method" represents the evolving method optimized by the optimizer LLM based on the feedback,
and "Updated Evolved Instruction" represents the instruction evolved by the updated evolving method guided by the
Evol LLM. It’s important to note that the table just showcases sample examples and does not comprehensively
represent the entire optimization process.

Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 3

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 

and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 6

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 

different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 

any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 10: Evolving method at optimization step 0 (initial evolving method).
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Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 1

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 

and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 2

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 

different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 
any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 11: Evolving Method at Optimization Step 1. This includes terms related to mathematical proficiency like
“variables”, “constants”, “operations”, and “conditions”. It also encourages the model to enhance the mathematical
complexity of the instructions by introducing more variables or making existing variables dependent on others.
Furthermore, it emphasizes the need for changes to be coherent and relevant to the initial problem context.
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Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 1

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 

and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 2

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 
making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 

different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 
any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 12: Evolving Method at Optimization Step 2 makes new optimizations based on Step 1. This prompt requires
avoiding the introduction of irrelevant concepts or complicating the problem to the point of changing its nature. It
also necessitates ensuring a smooth and gradual progression of complexity.
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Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 3

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 
and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 6

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 
steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.
 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 
making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 
different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 
any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1
#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 13: Evolving Method at Optimization Step 12. Based on the previous step’s prompt, a new “Consistency
Check” process has been added. This aims to ensure that any increase in complexity is consistent and logical, and to
prevent the introduction of new conditions or variables unrelated to the initial problem.
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Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 3

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 

and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 6

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 

different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 

any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 14: Evolving Method at Optimization Step 15. On the basis of the evol prompt at the previous step, a new
constraint has been added, “If the complexity of the instruction decreases at any stage, go back to the previous stage
and revise the instruction to maintain a consistent increase in complexity.”
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