
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 7034–7048
November 12-16, 2024 ©2024 Association for Computational Linguistics

Generative Models for Automatic Medical Decision Rule Extraction
from Text

Yuxin He1,3 and Buzhou Tang*1,2 and Xiaoling Wang4

1Department of Computer Science, Harbin Institute of Technology (Shenzhen)
2Peng Cheng Laboratory

3The Hong University of Science and Technology (Guangzhou)
4East China Normal University
21S051047@stu.hit.edu.cn
tangbuzhou@gmail.com

Abstract

Medical decision rules play a key role in
many clinical decision support systems (CDSS).
However, these rules are conventionally con-
structed by medical experts, which is expensive
and hard to scale up. In this study, we explore
the automatic extraction of medical decision
rules from text, leading to a solution to con-
struct large-scale medical decision rules. We
adopt a formulation of medical decision rules
as binary trees consisting of condition/decision
nodes. Such trees are referred to as medical de-
cision trees and we introduce several generative
models to extract them from text. The proposed
models inherit the merit of two categories of
successful natural language generation frame-
works, i.e., sequence-to-sequence generation
and autoregressive generation. To unleash the
potential of pretrained language models, we
design three styles of linearization (natural lan-
guage, augmented natural language and JSON
code), acting as the target sequence for our
models. Our final system achieves 67% tree
accuracy on a comprehensive Chinese bench-
mark, outperforming state-of-the-art baseline
by 12%. The result demonstrates the effective-
ness of generative models on explicitly model-
ing structural decision-making roadmaps, and
shows great potential to boost the development
of CDSS and explainable AI. Our code will be
open-source upon acceptance.

1 Introduction

Currently, the development of clinical decision sup-
port systems (CDSS) relies heavily on manual enu-
meration of medical decision rules (Matsumura
et al., 1986; Grosan et al., 2011; Shortliffe and
Sepúlveda, 2018). Although this paradigm brings
CDSS interpretability and reliability, its request of
extensive labor poses a challenge on scaling, given
the huge amount of potential medical decision rules
(Tsumoto, 1998). And the fact that some medical

*Corresponding Author.

Figure 1: An example (translated from Chinese) of
extracting tree-form medical decision rules from clinical
guidelines and textbooks.

decision rules get occasionally updated make the
challenge even worse. This motivates researchers
to explore the automation of medical decision rules
construction. Inspired by the fact that human doc-
tors acquire medical decision rules from textbooks
and clinical guidelines, a recent study proposes to
imitate this process via deep learning methods (Zhu
et al., 2022).

There exist two typical formulations of medical
decision rules: first-order predicate logic formu-
las (Matsumura et al., 1986; Tsumoto, 1998) and
medical decision trees (Zhu et al., 2022), where
the latter is an extension of the former. Formally, a
medical decision tree is a binary tree consisting of
condition nodes and decision nodes. Each node is a
relation triple or multiple relation triples combined
by logical operators (“OR”, “AND”). The decision
nodes are leaf nodes of the tree, whereas the con-
dition nodes are internal nodes. And the transition
from one node to another represents judgment or
decision-making. A first-order predicate logic for-
mula in conjunctive normal form can be viewed
as a special case of a medical decision tree where
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there is only one condition node and one decision
node. Hence, we adopt the tree-form formulation
in this paper.

Different from traditional information extrac-
tion tasks, e.g., name entity recognition (Tan et al.,
2021; He and Tang, 2022), relation triple extraction
(Yan et al., 2021; He and Tang, 2023) and event ex-
traction (Yang et al., 2021; He et al., 2023), where
the target output is a set of unitary/dual/multivari-
ate tuples, the target output of medical decision
tree extraction is a logically combined complex of
relation triples. The logical coherence exhibited by
such complexes mimics that of human language.
This motivates us to adopt generative approaches
for medical decision tree extraction, so as to better
model the intrinsic logical connection among the
relation triples inside a medical decision tree.

Reflecting on the exciting success within the
field of natural language generation, we can ob-
serve that two paradigms (sequence-to-sequence,
autoregressive generation) along with the idea of
pretraining play the crucial roles. In this work,
we try to replicate the success of sequence-to-
sequence/autoregressive generation on the task of
medical decision tree extraction.

In order to maximally elicit the potential of pre-
trained generative language models, three designs
of medical decision tree linearization are trialed: 1)
natural language (NL) style of linearization, where
the relation triples are verbalized and naturally as-
sembled with conjunctions; 2) augmented natural
language (AugNL) style of linearization, where
each relation triple is represented as an augmented
token, sharing equal status with natural language
tokens; 3) JSON style of linearization, the most
widely used data interchange format that represents
data objects as key–value pairs. The linearized
medical decision trees act as the target sequences
during training, and are generated then parsed into
tree structure during inference.

The proposed sequence-to-sequence models em-
ploy an encoder-decoder architecture with a pair of
pretrained language encoder and decoder, as well
as a query-based entity-relation extractor. Under
this paradigm, relation triple extraction is treated
as a sub-task and the models fulfill it via the entity-
relation extractor. Whereas the proposed autore-
gressive models are instantiated from decoder-only
large language models (LLMs). In this discipline,
relation triple extraction is treated as an auxiliary
task for multi-task learning without introducing
extra parameters.

Benchmarking on Text2DT (Zhu et al., 2022),
a comprehensive Chinese dataset, we find that
generative models are much more capable of ex-
tracting medical decision tree than state-of-the-art
(SOTA) discriminative models. Our experiments
also show that a carefully designed sequence-to-
sequence model (Section 2.2) is competitive to a
LLM-based autoregressive model (Section 2.3) that
is 10+ times larger.

Our contributions are summarized as follows:

• We propose several generative models un-
der the sequence-to-sequence/autoregressive
paradigms to better capture the intrinsic log-
ical connection among the relation triples
within a medical decision tree and extract the
tree from text accurately.

• We design 3 styles of tree linearization to
represent each medical decision tree as a se-
quence that is suitable to be generated by dif-
ferent pretrained generative language models.

• Experimental results demonstrate that our
method outperforms SOTA discriminative
method by 12% tree accuracy, 9% path F1
score on the only available public benchmark,
Text2DT. In-depth analysis also uncovers the
pros and cons of different generative medical
decision tree extraction models.

2 Methodology

2.1 Medical Decision Tree Linearization

To linearize medical decision trees into NL or
AugNL style sequences as target output for training,
we traverse each tree in pre-order, insert transition
conjunctions (“if”, “else”, “then”, “otherwise”) be-
tween nodes according to the node position, and
join the relation triples within each node with log-
ical conjunctions (“or”, “and”). This procedure
is depicted in Algorithm 1. The specific differ-
ences between NL and AugNL styles are explained
in Section 2.2.4. The JSON-style linearization is
more straightforward, see Appendix D for the de-
tails. Since CPT (Shao et al., 2021), so far the best
Chinese language encoder-decoder is pretrained on
text corpora and unable to generate code, we only
try the JSON-style linearization on autoregressive
LLMs (ChatGPT and ChatGLM).

2.2 Sequence-to-sequence Models

Figure 2(a) shows the overall framework of our
sequence-to-sequence models, which work in 4
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(a)

(b)

Figure 2: An overview of our generative medical decision tree extraction models. (a) A sequence-to-sequence
model that extracts relation triples within input text and translates the text along with the extracted relation triples
into a linearized medical decision tree. (b) An autoregressive model that follows task instructions to generate a
linearized medical decision tree conditioned on input text. See Figure 4 for the original Chinese-language prompts.

steps: 1) encodes the input text and entity/relation
queries with a pretrained language encoder; 2) gen-
erates the entity/relation set with a query-based
entity-relation extractor; 3) generates the linearized
decision tree with a pretrained language decoder,
conditioned on the text encoding, relation repre-
sentation and extracted relation set; 4) parse the
linearized decision tree. Detailed designs are intro-

duced as follows.

2.2.1 Query-based Entity-relation Extraction

The query-based entity-relation joint extractor is
the one proposed by He and Tang (2023), which
consists of a shared decoder, an entity decoder, a
relation decoder, an entity predictor, a relation type
predictor and a subject-object predictor. It also
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owns a series of learnable entity queries Qe and
relation queries Qr (each query is a vector), which
are concatenated with input text X . Pretrained lan-
guage encoder and shared decoder transform the
concatenation into text encoding Hx along with
contextual entity/relation representation He/Hr.
Entity decoder and relation decoder further update
He into H̃e, update Hr into H̃r, H̃h, H̃t via linear
transform and attention mechanism.

The predicted sets of entities Ê and relations
R̂ are finally computed based on H̃e, H̃r, H̃h, H̃t.
Only R̂ is utilized by downstream modules while
Ê is not. See Appendix A or the work by He and
Tang (2023) to learn more about this module.

2.2.2 Relational Context
Since a medical decision tree is essentially a com-
bination of relation triples, leveraging the predicted
relation set as an additional decoding context may
help the pretrained language decoder keep aware of
which triples are already included in the generated
sequence and which ones are not. It can address the
problem of low triple coverage in the predicted de-
cision tree. Motivated by this idea, three designs of
relational context are attempted: 1) Relation query
context (RQC), the representation vectors H̃r of
relation queries corresponding to all extracted re-
lation triples; 2) Relation-centric textual context
(RTC), a cross-attention-based context, where text
encoding Hx acts as key and value, relation query
vectors H̃r corresponding to all extracted relation
triples act as query; 3) Harmonized relation context
(HRC), the fusion of RQC and RTC through gating
mechanism.

To inject the relational context into the model,
we concatenate text encoding Hx with the rela-
tional context in the sequence dimension and to-
gether they serve as the decoding context for the
pretrained language decoder:

hd
t−1 = Decoder(ŷ<t|[Hx; C]) (1)

C ∈ {RQC,RTC,HRC} (2)

P (ŷt) = LMHead(hd
t−1) ∈ R|V | (3)

ŷt = DecodeSearch(P (ŷt), ŷ<t, R̂) (4)

where ‘;’ means concatenation, ŷ<t is the generated
tokens by time step t, hd

t−1 is the undated hidden
state of current time step, LMHead is a classifier
that first convert current hidden state into vector
of size |V | that apply SoftMax to obtain predicted
probability distribution P (ŷt) over the vocabulary,
DecodeSearch is the decode search strategy (we

use constrained search in this paper, see Section
2.2.3). ŷt is the token generated for current time
step and will be concatenated with ŷ<t to restart the
process, until the terminal token </s> is generated.

2.2.3 Constrained Decoding
In order to utilize apriori decision tree linearization
grammar (as shown in Algorithm 1) to constrain
the candidate space of generated target sequence
with the set of extracted relations, we employ a spe-
cially designed constrained decoding (CD) strategy
during generative inference.

Specifically, the strategy restricts the candidate
token vocabulary at each generation step based on
the generated sequence prefix using a trie. The con-
struction of the trie takes into account the following
scenarios: 1) if the sequence prefix is “if”, the can-
didates include the first token of all head entities;
2) if the sequence prefix is “else”, the candidate
token is only “then”; 3) if the sequence prefix is
“then”, the candidates include “,” and the first token
of each head entity; 4) if the sequence prefix is “,”,
the candidate token is only “if”; 5) if the sequence
prefix is the first half of an entity/relation name, the
candidates are the first token of the second half of
the entity/relation name; 6) if the sequence prefix
is a complete head entity, the candidates are the
first token of all relation names with that entity as
the head; 7) if the sequence prefix is a complete
relation name, the candidates include the first to-
ken of all tail entities; 8) if the sequence prefix is a
complete tail entity, the candidates include “then”,
“otherwise”, and “</s>”.

2.2.4 AugNL-style Linearization
Augmenting natural language (Mialon et al., 2023)
with tokens of other modalities (e.g., vision(Zhu
et al., 2023; Liu et al., 2023) and knowledge
graph(Pan et al., 2023)) can not only provide com-
plementary context but also greatly enhance the
expression ability. Distinguish from NL style of
linearization (Paolini et al., 2021; Lu et al., 2022),
where relation triples have to get verbalized before
being placed in the target sequence, in AugNL style
of linearization relation triples are considered as ba-
sic tokens of high-level abstract semantics and get
naturally embedded in the target sequence, which
decreases the average length of linearized relation
triples by 10+ times.

The technical difference between sequence-to-
sequence models with NL-style linearization and
AugNL-style linearization lies in the decoding
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mechanism. Models with AugNL-style lineariza-
tion employ a pointer-based copy mechanism,
where the relational part of generated sequence is
made up of pointers to extracted relation triples and
the conjunction part of generated sequence is made
up of pointers to predefined structure tokens (i.e.,
“or”, “and”, “if”, “then”, “otherwise”, “,”, “</s>”):

P (ŷt) = Softmax(hd
t−1⊙ (5)

[Emb(R̂);Emb(StructureTokens)])

For the embeddings of extracted relation triples
Emb(R̂), we reuse the three designs of relational
context representation but name them differently as
relation query embeddings (RQE), relation-centric
textual embeddings (RTE) and harmonized relation
embeddings (HRE) to clarify the different usage.

2.3 Autoregressive Models
In contrast to sequence-to-sequence models, our
autoregressive models inherit from decoder-only
LLMs, as shown in Figure 2(b). When properly
prompted with examples, a LLM can handle simple
tasks without supervision, which is known as the
ability of in-context learning (ICL). After super-
vised fine-tuned (SFT), a LLM will get better at
modeling the desired output of complex tasks.

We explore the ICL as well as SFT settings.
For the first setting, two LLMs, ChatGPT (gpt-3.5-
turbo) and ChatGLM are employed, and the NL,
JSON styles of linearization are tried (note that
AugNL style is inapplicable here). For the SFT
setting, we only consider ChatGLM (for reproduc-
tivity concern) and the NL style linearization (since
the ICL results suggest this style of linearization is
more suitable for ChatGLM, see Section 3.2).

2.3.1 Few-shot In-context Learning
In the in-context learning (ICL) setting, autore-
gressive models are prompted with task instruction
for medical decision tree extraction and few-shot
demonstration. Specifically, the prompt for autore-
gressive models with NL-style linearization under
the ICL setting is similar to the one in Figure 2(b),
except that it contains 5 examples of expected input-
output (randomly sampled from the training set).
The prompt template is shown in Appendix D.

2.3.2 Multi-task Joint Fine-tuning
Different from unsupervised in-context learning,
supervised fine-tuning helps a LLM master com-
plex tasks through end-to-end training on a diverse
set of instruction-response pairs. In this work, we

propose a multi-task joint fine-tuning method for
our autoregressive models, where medical decision
tree extraction is the main task, relation triple ex-
traction and tree shape extraction serve as the aux-
iliary tasks. And a novel progressively-dynamic
sampling strategy helps the model gradually ac-
quire easy-to-hard structural extraction abilities.

Prompts for these tasks are illustrated in Figure
2(b). The target output of medical decision tree
extraction is just the NL-style linearized tree. The
target output of relation triple extraction is all men-
tioned relation triples in list format (ordered by
textual position). The target output of tree shape
extraction is the skeleton of a tree, made up of con-
junctions and ellipses. Our progressively-dynamic
sampling strategy is inspired by curriculum learn-
ing (Wang et al., 2021). With the increase of train-
ing step, the sampling rate of each task changes
according to the assumed task difficulty: for rela-
tion triple extraction, the sampling rate goes from
0.8 to 0 linearly; for tree shape extraction, the sam-
pling rate goes from 0.7 to 1 linearly; for the main
task, the sampling rate stays as 1.

2.4 Data augmentation and model ensemble

The SOTA baseline, PromptRE (Jiang et al., 2022),
leverages R-Drop (Wu et al., 2021) for data aug-
mentation, and assembles predictions of relation
triples after each round of relation extraction. How-
ever, their practices are inapplicable to generative
models. For a fair comparison, we devise a general
data augmentation method and model ensemble
method for the task. To obtain augmented samples,
we randomly replace entities within the train data
with their synonyms. For model ensemble, our sys-
tem first vote on the tree structures predicted by
multiple models and then vote on the content (logi-
cal operator and relation triples) of each node. Note
that, our top models outperform SOTA baselines
even without these tricks (see Section 3.2).

3 Experiments

3.1 Data and Evaluation Metrics

We conduct experiments on the only available medi-
cal decision tree extraction dataset, Text2DT, which
is from a shared task of the 8th China Health Infor-
mation Processing Conference (Zhu et al., 2022)
and get included in the CBLUE 3.0 benchmark
(Zhang et al., 2022). Built on a rich corpus of Chi-
nese medical textbooks and guidelines, it covers
diagnosis and treatment knowledge of around 200
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Paradigm Method Triple F1(%) Node F1(%) Path F1(%) Tree Acc(%)

Discriminative
BERT-Biaffine (2022)† 90.19 74.80 52.71 37.00
PromptRE (2022)†‡ 94.39 85.31 69.27 55.00

Sequence-to-sequence

CPT (NL) 92.67±0.20 83.54±0.26 66.27±0.51 51.00±0.89
CPT (NL)† 92.96±0.33 83.68±0.41 66.55±0.64 52.50±1.01
CPT (NL)†‡ 94.08 86.45 70.63 59.00
CPT (AugNL) 93.21±0.19 85.06±0.32 68.13±0.55 55.50±1.06
CPT (AugNL)† 94.18±0.29 86.97±0.26 69.47±0.58 58.00±0.99
CPT (AugNL)†‡ 95.04 88.43 78.26 66.00

Autoregressive ICL

ChatGPT (JSON) 73.12±0.42 63.56±0.57 44.61±0.73 28.00±1.22
ChatGPT (NL) 70.60±0.61 58.59±0.74 35.08±0.98 22.00±1.30
ChatGLM (JSON) 54.56±0.45 42.86±0.52 23.25±0.66 9.00±1.07
ChatGLM (NL) 58.67±0.70 49.52±0.83 27.11±0.93 17.00±1.36

Autoregressive SFT
ChatGLM (NL) 92.26±0.37 87.70±0.42 71.51±0.67 60.00±0.98
ChatGLM (NL)† 91.60±0.34 87.59±0.39 72.41±0.60 61.50±0.93
ChatGLM (NL)†‡ 93.92 90.00 77.05 66.00

Final Ensemble†‡ 95.43 90.48 77.91 67.00

Table 1: Main Results. † or ‡ mean using data augmentation or model ensemble respectively. The version of
ChatGPT is gpt-3.5-turbo. Final Ensemble is the ensemble of CPT (AugNL)† and ChatGLM (NL)†. The highest
scores are in bold and the second-highest scores are underlined. Standard errors are included when applicable.

CD RQC RTC HRC Triple F1(%) Node F1(%) Path F1(%) Tree Acc(%)

89.43 79.68 60.10 45.75
✓ 92.63 82.35 63.45 48.25
✓ ✓ 92.88 81.65 61.31 47.00
✓ ✓ 92.67 83.54 66.27 51.00
✓ ✓ 92.83 83.23 64.87 50.25

Table 2: Results of ablation experiments on sequence-to-sequence models with NL-style linearization (without data
augmentation and model assemble). “CD”, “RQC”, “RTC” and “HRC” are abbreviations of Constrained Decoding,
Relation Query Context, Relation-centric Textual Context and Harmonized Relation Context respectively.

diseases. Six categories of relation are annotated
in the dataset, including “symptom”, “medication”,
“treatment”, “usage”, “caution” and “basic info”.
All annotations are verified by clinical experts to
ensure clinical validity. Dataset statistics is pro-
vided in Appendix F.

The performance of different medical decision
tree extraction methods is evaluated using the fol-
lowing metrics: 1) Triple F1 Score: for each triple
in the extracted decision tree, it is considered cor-
rect only if it is identical to a triple in the ground-
truth decision tree; 2) Node F1 Score: for each
node in the extracted decision tree, it is considered
correct only if it is identical to a node in the ground-
truth decision tree; 3) Path F1 Score: for each path
(from the root node to a leaf node) in the extracted
decision tree, it is considered correct only if all
nodes within are identical to those of a path in the
ground-truth decision tree; 4) Tree Accuracy: an
extracted decision tree is considered correct only if

its structure and all contained nodes are identical
to those of the ground-truth decision tree.

We compare our models with SOTA medical de-
cision tree extraction methods, BERT-Biaffine and
PromptRE (see Section 4.3 for an introduction). All
results without ensemble are averaged over 5 runs
and reported with standard errors. Otherwise, the
results are recorded for the ensemble of 5 models
under different random seeds and it is inapplica-
ble to compute the standard errors. Please refer to
Appendix E for more details on implementation.

3.2 Main Results

The overall performance of different models on
Text2DT is shown in Table 1. In comparison of
different paradigms, sequence-to-sequence and au-
toregressive models (under the SFT setting) exhibit
top-2 capacity on the task, achieving tree accu-
racy of 55.5% and 60% respectively without data
augmentation and model ensemble, outperforming
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RQC RTC HRC RQE RTE HRE Triple F1(%) Node F1(%) Path F1(%) Tree Acc(%)

✓ 92.09 82.62 65.21 49.50
✓ ✓ 92.86 83.97 62.03 52.50

✓ ✓ 93.12 84.69 67.51 54.50
✓ ✓ 93.00 84.32 66.98 54.00

✓ 92.27 82.36 64.94 48.75
✓ 92.74 83.45 66.49 51.00

✓ ✓ 93.21 85.06 68.13 55.50

Table 3: Results of ablation experiments on sequence-to-sequence models with AugNL-style linearization (without
data augmentation and model assemble). “RQE”, “RTE” and “HRE” are abbreviations of Relation Query Embed-
dings, Relation-centric Textual Embeddings and Harmonized Relation Embeddings respectively.

RE TS PDS Triple F1 Path F1 Tree Acc
87.44 66.55 53.00

✓ 89.65 67.98 57.00
✓ 90.10 68.35 57.00

✓ ✓ 90.44 70.83 59.50
✓ ✓ ✓ 92.26 71.51 60.00

Table 4: Ablation results of autoregressive models under
the SFT setting (without data augmentation and model
assemble). “RE”, “TS” mean the auxiliary Relation
Triple Extraction and Tree Shape Extraction tasks re-
spectively. “PDS” stands for the progressively-dynamic
sampling strategy. We omit the “%” marks here.

the SOTA discriminative method by a large mar-
gin. After applying data augmentation and model
ensemble, both models reach 66% tree accuracy,
higher than the current SOTA by 11%. The tree
accuracy further increases to 67% when combining
these two families of models.

The evaluation results of sequence-to-sequence
models suggest AugNL-style linearization is re-
markably better than NL style for sequence-to-
sequence generation, boosting the tree accuracy by
4.5%, 5.5% and 6% respectively under 3 different
settings of data augmentation and model ensemble.

The evaluation results of autoregressive models
in the ICL setting demonstrate the superiority of
ChatGPT over ChatGLM on generating JSON code
and Chinese language. However, the gap between
ChatGLM and ChatGPT is much smaller on Chi-
nese language generation than on JSON code gen-
eration. The results also show that barely relying
on LLMs and ICL is insufficient to solve the task
of medical decision tree extraction. Although Chat-
GPT reaches 28% tree accuracy when prompted to
generate JSON-style linearized decision tree, it is
still far from satisfaction.

3.3 Ablation Study

We conduct extensive ablation experiments on the
proposed generative models to verify the contribu-
tions of different components and determine the
optimal design choice among alternative compo-
nent designs. The results are shown in Tables 2-4.

Table 2 presents the results for sequence-to-
sequence models with NL-style linearization. By
applying constrained decoding, the tree accuracy
improves from 45.75% to 48.25%, validating
the necessity of constrained decoding. Besides,
relation-centric textual context works better than
relation query context or harmonized relation con-
text, boosting tree accuracy by 2.75%. This result
indicates a higher acceptance of relation-centric tex-
tual context by the pretrained decoder, compared
to the relation query representations output by the
relation set generator. The reason may lie in the se-
mantic space consistency between relation-centric
textual context and natural language, making it
more conducive to natural language generation.

For sequence-to-sequence models with AugNL-
style linearization, the combination of relation-
centric textual context and harmonized relation
embeddings works better than other alternatives,
as shown in Table 3. This is expected, since harmo-
nized relation embeddings are designed to bridge
the relational context and textual context.

For autoregressive models under the SFT set-
ting, the auxiliary relation triple extraction and
tree shape extraction tasks contribute equally to
model performance, leading to 4% absolute tree
accuracy increment respectively. When the two
auxiliary tasks are applied together, tree accuracy
increases from 53% to 59.5%. By incorporating
progressively-dynamic sampling, tree accuracy fur-
ther increases by 0.5% and reaches 60%.
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Figure 3: Error distributions (on the test split) of different generative models.

3.4 Error Analysis
To discover the performance bottleneck of this task
and facilitate future research, we analyze the errors
by our top-performing models. Error distributions
on the test split of Text2DT are shown in Figure 3,
from which we can observe that: 1) The amount of
Logical operator errors is the least, while relation
triple errors occur most frequently, especially for
generative models with NL-style linearization. 2)
Sequence-to-sequence models with NL-style lin-
earization have difficulty in correctly predicting
the tree structures. 3) Assembling CPT (AugNL)
and ChatGLM (NL) reduces relation triple errors
but not the logical operator errors or tree structure
errors. 4) Compared to sequence-to-sequence mod-
els, autoregressive models produces much more
subject/object entity errors, which means they are
weak at identifying entity boundaries.

4 Related Work

4.1 Sequence-to-sequence Generation
The idea of sequence-to-sequence was originated
from Sutskever et al. (2014), and then dominated
neural machine translation (Wu et al., 2016; Zhang
et al., 2019) with Transformer (Vaswani et al.,
2017). There are many encoder-decoder language
models, e.g. T5 (Raffel et al., 2019) and CPT (Shao
et al., 2021), that are pretrained with sequence-
to-sequence learning tasks. Some works accom-
plish generating a linearized structure from text
in a sequence-to-sequence manner, e.g. neural
AMR (Konstas et al., 2017) for AMR parsing, and
Text2Event (Lu et al., 2021) for event extraction.
Compared to events and AMR graphs, medical
decision trees additionally carry logical semantic
knowledge, which is non-trivial to capture.

4.2 Autoregressive Generation
The autoregressive generation paradigm employs
a single decoder network to generate an output

sequence by iteratively predicting the next token
conditioned on the current prefix, without the use
of an encoder network. Despite its simplicity, this
paradigm is shown to generalize better under the
zero-shot and few-shot settings (Wang et al., 2022).
Besides, it is easier to scale up, leading to LLMs,
e.g. GPT-4 (Achiam et al., 2023) and ChatGLM
(Du et al., 2022). Many works tackle information
extraction tasks by prompting LLMs to autoregres-
sively generate structural content in JSON or other
formats (Xu et al., 2023).

4.3 Medical Decision Tree Extraction

Existing medical decision tree extraction methods
(Wu, 2022; Jiang et al., 2022) rely on discrimi-
native models. Wu (2022) proposes to combine
a BERT-style language model (Cui et al., 2021)
with a Biaffine model (Dozat and Manning, 2016)
to extract the relation triples, classify the logical
connection among triples, and compose the tree.
SOTA method, PromptRE (Jiang et al., 2022), for-
mulates medical tree extraction as a multi-round
conditional relation extraction task, where each par-
ent node is a condition for extracting relation triples
of its left/right child from text. Concurrent with
our work, Text2MDT (Zhu et al., 2024) comes up
with an expanded version of the Text2DT dataset
(unavailable yet) and reports some new results.

5 Conclusion

In this study, we present several generative mod-
els to extract medical decision trees, which are
valuable for CDSS but costly to acquire manually.
The proposed models inherit two mainstream text
generation paradigms, i.e. sequence-to-sequence
generation and autoregressive generation, which
bring advantage in modeling both source text and
the intrinsic logical connection among tree compo-
nents. Experiments show that our method wins the
SOTA discriminative method by a large margin, es-
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tablishing new SOTA with 67% tree accuracy and
78% path F1 score. Besides, an in-depth analysis
of error distribution reveals the pros and cons of dif-
ferent models, paving the way for future research
on this area. Another direction for future efforts is
the evaluation of predicted decision tree’s clinical
usefulness in real-world scenario, which requires
consideration of potential ethical risks and careful
experimental designs.

6 Limitations

In this section, we summarize the limitations of our
work as follows:

• Although the proposed method is applicable
to languages like English, we only experiment
on a public Chinese dataset, since there are no
other available datasets.

• Entity normalization is not covered in this
work, which means the extracted rules are
not readily compatible with existing biomedi-
cal knowledge bases like UMLS. Future work
should include entity normalization a step of
post processing, or enhance the formulation
and models to support entity normalization.

• We only look into the extraction of medical de-
cision rules in this study, but not decision rules
on other knowledge-intensive domains, such
as mineral exploration (Duda et al., 1981) and
mathematics (Beeson, 1989). However, the
proposed method is in fact domain-agnostic
and we believe there is no barrier to extend
our method to other domains.
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A Details of Query-based Entity-relation
Extraction

The input of the query-based entity-relation extrac-
tor is the concatenation of embedded text X and a
series of learnable entity/relation queries Qe/Qr:

X̃ = [X;Qe;Qr] ∈ R(L+Me+Mr)×d (6)

where d is model dimension, Me and Mr are the
numbers of entity/relation queries (set as the max-
imum amount of entity/relation in a single text of
the corpus).

The bidirectional self-attention of the pretrained
encoder is modified into one-way self-attention.
Concretely, the upper right L × (Me + Mr) sub-
matrix of the attention mask gets filled with nega-
tive infinity value so that the entity/relation queries
become invisible to the token encodings, while the
entity/relation queries can still attend to each other
and the token encodings. After multiple one-way
self-attention layers and feed-forward layers, the
encoder outputs the contextual token encodings as
well as the contextual entity/relation queries.

The entity-relation shared decoder consists of
one-way self-attention layers that mimics the
ones in the encoder, as well as bidirectional self-
attention layers that updates the entity/relation
queries via modeling the interaction among them.
It outputs the updated token representations Hx,
entity queries He and relation queries Hr.

The entity generator consists of an entity decoder
and an entity predictor. It first linearly transforms
the token encodings Hx into entity-view:

Hx
e = FC(Hx) (7)

where FC means a fully connected linear layer.
The entity decoder, equipped with cross-

attention and bidirectional self-attention, receives
Hx

e as decoding context and the entity queries He

as decoder input, and outputs the final representa-
tion of entity queries H̃e:

H̃e = EntityDecoder(He|Hx
e ) (8)

For the i-th entity query, the entity predictor
predicts the probability distribution of start/end
(P start

i /P end
i ) and the probability distribution of en-

tity type P te
i as follows:

Sδ
i = FC

(
Relu(FC(H̃e

i ) + FC(Hx
e ))

)
(9)

P δ
i = Softmax(Sδ

i ), δ ∈ {start, end} (10)

P te

i = Softmax(MLP(H̃e
i )) (11)

During inference, the predicted boundary and
entity type corresponding to the k-th entity query
are calculated as:

scorek(i, j) = P start
k [i] + P end

k [j] (12)

( ˆstartk, ˆendk) = argmax
(i,j): 0<j−i<L

scorek(i, j) (13)

t̂ek = argmaxP te

k (14)
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Note that, entities whose predicted type label is ∅
will be excluded from the generated entity set.

The relation generator consists of a relation de-
coder, a subject-object predictor and a relation type
predictor. The relation decoder work in the same
manner as the entity decoder, except that the rela-
tion decoder splits relation queries into head/tail
queries before decoding:

[Hh;Ht] = FC(Hr) (15)

Hx
r = FC(Hx) (16)

H̃h, H̃t, H̃r = RelDecoder(Hh, Ht, Hr|Hx
r )
(17)

The subject-object predictor then predicts the
boundary and entity type of the head/tail entity
associated with each relation queries. This process
is similar to the entity prediction process. The only
difference is that the entities queries becomes the
head/tail queries H̃h/t and the token encodings is
now in relation-view Hx

r .
The relation type predictor classifies the category

of i-th relation query according to H̃r
i :

P tr

i = Softmax(MLP(H̃r
i )) (18)

To train the entity-relation extractor, a combina-
tion of optimal-assignment-based prediction loss,
bipartite consistency loss and entity-relation link-
ing loss are utilized. Please refer to He and Tang
(2023) for information about the loss functions.

B Original Chinese-language Prompts

The prompts shown in Figure 2(b) are translated
from Chinese into English for ease of reading. Fig-
ure 4 illustrates the original prompts.

C NL/AugNL-style Linearization

Algorithm 1 illustrates the concrete procedure of
linearizing a medical decision tree into NL/AugNL-
style sequence.

D JSON-style Linearization

To linearize a medical decision tree in JSON style,
we only need to pack the tree nodes along with their
content as nested key-value pairs in pre-order. An
example of the utilized JSON template is included
in Figure 5.

Algorithm 1 NL/AugNL-style Linearization

Require: tree (a medical decision tree)
1: seq ⇐ “”
2: while tree.preorderNext() do
3: node = tree.preorderNext()
4: if isCondition(node) then
5: if isLeft(node) then
6: seq += “if”
7: else
8: seq += “else, if”
9: end if

10: else
11: if isLeft(node) then
12: seq += “then”
13: else
14: seq += “otherwise”
15: end if
16: end if
17: if isOrLogic(node) then
18: seq += “or”.join(node.triples())
19: else
20: seq += “and”.join(node.triples())
21: end if
22: end while
23: return seq

E Implementation details

Our sequence-to-sequence models is initialized
with CPT-large(Shao et al., 2021), which has 20-
layer encoder and 4-layer decoder. The numbers
of entity queries and relation queries are set as 30,
25 respectively. We train the models in 2 stages: in
the first stage (70 epochs), the pretrained language
decoder are frozen and the encoder, entity-relation
extractor are optimized with the entity-relation ex-
traction loss; in the second stage (100 epochs), all
modules are jointly optimized. The learning rate of
the encoder and decoder are set as 3e-5 and 4e-5
respectively. An AdamW(Loshchilov and Hutter,
2017) optimizer with linear warm-up is employed.

For ICL, the autoregressive models are two plug-
and-play commercial natural language assistant:
1) ChatGPT (gpt-3.5-turbo version); 2) ChatGLM
(chatglm_pro version). We invoke them via API.
The default temperature is applied and the number
of examples within each prompt is set as 5. The 5
examples are randomly sampled from the training
set in a stratified manner (each instance correspond-
ing to one tree structure). For SFT, the autoregres-
sive models are initialized with ChatGLM-6B and

7045



Figure 4: Original Chinese prompts for the main decision tree extraction task (with NL-style linearization) and
auxiliary tasks (relation triple extraction, tree shape extraction) introduced in Section 2.3.2.

Item Count

Texts 500
Train/Dev/Test Splits 300/100/100
Avg. Text Length 66.5
Relation Classes 6
Relations per Text 6.39

Relation Name Count (Proportion)

Symptom 1374 (42.51%)
Medication 910 (28.15%)
Treatment 561 (17.36%)
Usage 222 (6.87%)
Caution 83 (2.57%)
Basic Info 82 (2.54%)

Tree Structure (Pre-order) Count (Proportion)

CDD 134 (26.80%)
CDCDD 253 (50.60%)
CCDDD 47 (9.40%)
CDCDCDD 45 (9.00%)
CCDCDDD 17 (3.40%)
CCDDCDD 2 (0.40%)
CDCDCDCDD 2 (0.40%)

Table 5: Statistics of the Text2DT Dataset (“C”/“D”
represents a “condition”/“decision” node)

tuned with LoRA(Hu et al., 2021). The LoRA rank,
learning rate, batch size and number of training sets
is set as 8, 2e-4, 8 and 2000 respectively.

The number of parameters of our sequence-to-
sequence models is less than 1B. Whereas the num-
ber of parameters of our autoregressive models
based on ChatGLM is 6B. All experiments are con-

ducted on an NVIDIA A100 server, and the com-
putational budget for training each model does not
exceed 4 GPU hours.

F Dataset Statistics

Detailed statistics of the Text2DT dataset are listed
in Table 5.

G Performance on Generating Trees of
Different Depths

There are 7 types of tree structures in the dataset
and the depth of annotated decision trees ranges
from 2 to 5, as illustrated in Table 5. To analyze the
difference between generative models on extracting
trees of different complexity, we split the test set
according to tree depth and evaluate the model
performance on each split respectively. The results
are illustrated in Figure 6, from which we can draw
the following conclusions:

• Deeper trees are more difficult to be correctly
generated than shallower ones.

• For sequence-to-sequence models, the perfor-
mance gap between NL and AngNL styles of
linearization lies on extracting deeper trees.

• In the ICL setting, ChatGPT with JSON-style
linearization gains most of its points from
trees of depth 2. Under other circumstances,
both ChatGPT and ChatGLM perform quite
poorly, regardless of the linearization style.
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Figure 5: The prompt for generating the JSON-style linearized medical decision tree (utilized by autoregreesive
large language models under the ICL setting). It includes 5 instances for demonstration, which are randomly
sampled from the training set in a stratified manner (each instance corresponding to one tree structure).

• Supervised fine-tuned ChatGLM outperforms
sequence-to-sequence models with AngNL
linearization on generating trees of depth 4,
but is sub-optimal on generating trees of depth
2 or 3.

• Assembling CPT (AugNL) and ChatGLM
(NL, SFT) leads to the most balanced perfor-
mance on extracting trees of different depths.

H Diversity of Trees Generated by
Different models and Its Influence

The performance gains after ensemble vary with
different paradigms of models, as observed in Ta-
ble 1. We suspect this is due to the difference in the

“diversity" of trees generated by different models.
To verify that, we measures the similarity between
medical decision trees using edit distance. The edit
distance for medical decision trees is the minimum
number of tree edit operations (i.e., inserting or
deleting a node, changing a node role, inserting or
deleting a triplet and modifying a logical operator)
required to transform one tree into another. For a
group of trees, the average edit distance between
each pair of trees is denoted as the “diversity". Fig-
ure 7 shows the diversity of trees generated by
various models. It is observed that the diversity
of trees by sequence-to-sequence models is much
stronger than that of autoregressive models, and
that the diversity is the strongest when integrating
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Figure 6: Comparison of different generative models on extracting trees of different depths. Results here are
recorded for 5-model ensembles and it is inapplicable to include error bars. Trees of depth=5 only exist in the
training data but not the evaluation data, so there is not result for depth=5.

Figure 7: Diversity of trees generated by different models and its correlation with the performance gain after
ensemble.

these two paradigms of models.
In Figure 7, a scatter plot with a (least square)

fitted line depicts the correlation between tree di-
versity and performance increment after ensemble.
It certifies that the tree diversity has a weak positive
correlation with the increment of Triple/Node F1
after ensemble, and a strong positive correlation
with the increment of Path F1 and Tree Acc after
ensemble.
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