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Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities in comprehen-
sively handling various types of natural lan-
guage processing (NLP) tasks. However, there
are significant differences in the knowledge and
abilities required for different tasks. Therefore,
it is important to understand whether the same
LLM processes different tasks in the same way.
Are there specific neurons in a LLM for differ-
ent tasks? Inspired by neuroscience, this pa-
per pioneers the exploration of whether distinct
neurons are activated when a LLM handles dif-
ferent tasks. Compared with current research
exploring the neurons of language and knowl-
edge, task-specific neurons present a greater
challenge due to their abstractness, diversity,
and complexity. To address these challenges,
this paper proposes a method for task-specific
neuron localization based on Causal Gradi-
ent Variation with Special Tokens (CGVST).
CGVST identifies task-specific neurons by con-
centrating on the most significant tokens dur-
ing task processing, thereby eliminating redun-
dant tokens and minimizing interference from
non-essential neurons. Compared to traditional
neuron localization methods, our approach can
more effectively identify task-specific neurons.
We conduct experiments across eight different
public tasks. Experiments involving the inhi-
bition and amplification of identified neurons
demonstrate that our method can accurately lo-
cate task-specific neurons.

1 Introduction

Large Language Models (LLMs) have gained
widespread attention due to their powerful capa-
bilities (Zhao et al., 2023b). Based on the unsu-
pervised pre-training followed by instruction fine-
tuning (IFT) paradigm (Brown et al., 2020), LLMs
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Figure 1: The upper shows different task-specific neu-
rons from the same LLM. The bottom checks if these
neurons affect the tasks by inhibiting and amplifying.

have developed the ability to comprehensively han-
dle various types of natural language processing
(NLP) tasks. The advantage of this paradigm is that
a single model deployment can perform multiple
tasks, showcasing the versatility and efficiency of
LLMs in NLP applications (Yuan et al., 2024).

However, there are significant differences in the
knowledge and abilities required for different tasks
by LLMs. For example, sentiment analysis focuses
on adjectives and adverbs (Benamara et al., 2007),
text classification emphasizes domain-specific ter-
minology (Avancini et al., 2006), while natural
language inference prioritizes the relationship be-
tween premise and conclusion sentences (Camburu
et al., 2018). This suggests that the processing
patterns of the same LLM may vary across differ-
ent tasks, highlighting the necessity to investigate
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the underlying mechanisms of task-specific pro-
cessing in LLM. Task-specific processing can be
traced by examining the neurons activated during
the inference of specific tasks. Therefore, the two
critical questions emerge: Are there neurons within
the same LLM that handle specific tasks?, and if
so, how does the model manage and differentiate
between various types of tasks?

In fact, neuroscience has discovered that differ-
ent brain areas control distinct behavioral abili-
ties (Bari and Robbins, 2013). For instance, while
higher cognitive functions such as learning, rea-
soning, decision-making and creativity are primar-
ily controlled by the frontal lobe, the neurons in-
volved in these processes remain distinct (Collins
and Koechlin, 2012). Inspired by these findings,
we hypothesize that although LLMs utilize a uni-
fied structure and parameters, the neurons engaged
in different tasks may vary significantly. Motivated
by this hypothesis, this paper investigates the exis-
tence of task-specific neurons in LLMs, specifically
examining whether the neurons activated by differ-
ent tasks exhibit distinct patterns. As shown in
Figure 1 upper, different task-specific neurons in
the same LLM are marked with different colors.

Current research has explored specific neurons in
LLMs that primarily handle knowledge (Dai et al.,
2022; Niu et al., 2024; Chen et al., 2024) and lan-
guages (Zhao et al., 2023a; Tang et al., 2024). On
the one hand, knowledge-specific neurons in LLMs
are key units that store factual information. By ad-
justing the activity of these neurons, we can control
how much certain knowledge is represented in the
model (Dai et al., 2022). This ability to manip-
ulate knowledge-specific neurons enables knowl-
edge editing, allowing for the modification of the
factual information stored in the model (Meng et al.,
2022a,b). On the other hand, language-specific neu-
rons in LLMs are specialized units that focus on
language-related tasks, such as language modeling
and machine translation. These neurons are respon-
sible for controlling the quality of language gener-
ation in the model (Zhao et al., 2023a). By manip-
ulating the activity of language-specific neurons, it
is possible to influence the way LLMs generate lan-
guage, such as translations or responses in different
languages. For example, researchers have shown
that adjusting these neurons can enable LLMs to
switch between languages more effectively (Tang
et al., 2024). Utilizing language-specific neurons
can help LLMs better handle linguistic tasks.

Moreover, current methods cannot directly ex-

plore task-specific neurons because they have
the following main different characteristics from
language- and knowledge-specific neurons: 1) Ab-
stractness: Unlike specific knowledge and lan-
guage, the competencies required for tasks are
more intricate and challenging to represent within
symbolic systems. 2) Diversity: While knowledge
and language can be examined through a finite num-
ber of enumerated examples, task examples exhibit
diversity and are difficult to comprehensively enu-
merate. 3) Complexity: The abilities necessary
for tasks may exhibit interdependencies or operate
independently, often lacking clear demarcations.

Specifically, we found that task-specific neurons
only need to solve the target task; for example,
sentiment analysis neurons do not need to contain
general English neurons. Thus, we believe that not
all tokens are crucial for identifying task-specific
neurons. A similar approach has been used in tasks
such as continuous learning (Lin et al., 2024) and
computer vision (Zeng et al., 2022). Different parts
of inputs, such as task definitions, and contextual
examples, play distinct roles in the inference pro-
cess over LLMs (Jiang et al., 2023b). In biology,
studies often use fluorescent markers to track neu-
ronal activity by injecting fluorescent agents and
observing their effects to monitor neurons (Chen
et al., 2013).

Inspired by this, we propose a novel task-specific
neuron detection method using Causal Gradient
Variation with Special Tokens (CGVST). We in-
troduced fluorescent markers into the LLM reason-
ing process to uncover the crucial role of special
tokens. By observing neuron activation patterns
triggered by these tokens, we can obtain abstract
semantic representations beyond individual exam-
ples. This approach also helps to control diversity
and complexity by focusing only on the special to-
kens. Finally, we perform causal masked language
model prediction for the task, recording the gra-
dient on special tokens, and identifying the most
active neurons as the task-specific neurons.

We also conduct detailed experiments on 8 dif-
ferent tasks (Wang et al., 2022b), including quanti-
tative experiments on neuron inhibition and ampli-
fication. Quantitative experiments demonstrate that
our method can accurately identify task-specific
neurons. As shown in Figure 1 bottom, inhibition
of these neurons significantly reduces performance
on the target task, while the effect on other tasks is
minimal. Conversely, amplifying these neurons
improves performance in the related tasks with
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minimal effect on other tasks. Furthermore, we
conducted comprehensive analyses of the neurons,
including cross-validation and neuron visualization.
The codes for this paper are available at GitHub1.

Our contributions can be summarized concisely
in the following three aspects:
• We propose the existence of task-specific neu-

rons, defining them as neurons that have a sig-
nificant impact on a specific task while having
minimal impact on other tasks.

• We introduce a method to identify task-specific
neurons based on Causal Gradient Variation with
Special Tokens (CGVST). By analyzing the im-
portance of special tokens and recording gradient
variation at them during task processing, we iden-
tify the most relevant task-specific neurons.

• We conducted several analytical experiments on
task-specific neurons. The results show that our
method can effectively locate them, and they
align more closely with the definition of task-
specific neurons compared to other methods.

2 Background

2.1 Memory Mechanism of FFN
Transformer is an efficient network architecture
employed in various tasks (Vaswani et al., 2017).
Mainstream LLMs often utilize multi-layer Trans-
former decoders. Each Transformer layer com-
prises two components: Multi-Head Self-Attention
(MHA) and Feed-Forward Network (FFN). Tak-
ing the mainstream LLMs LLama (Touvron et al.,
2023) and Mistral (Jiang et al., 2023a) as examples,
the Multi-Head Self-Attention mechanism can be
expressed as follows:

hl
a = Attn(hl−1Wl

q,h
l−1Wl

k,h
l−1Wl

v) ·Wl
o,

(1)

where hl−1 represents the output from the previous
layer, Wl

q, Wl
k, and Wl

v denote the weight matri-
ces for queries, keys, and values, respectively, and
Wl

o is the output weight matrix.
Next, Feed-Forward Network (FFN) is repre-

sented as follows:

hl+1 = fact(h
l
aW

l
gate) ◦ hl

aW
l
up ·Wl

down, (2)

where Wl
up and Wl

down are the weight matrices,
Wl

gate represents the gating parameter, and fact
is the activation function, such as ReLU (Agarap,

1https://github.com/Maxpa1n/task-neurons

Casual Tracing for In-Context Learning

 Example for In-Context Learning
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Figure 2: The top part of the figure displays examples
of ICL and the various roles involved. The bottom part
illustrates the causal tracing results for these roles on
the Y-axis. The X-axis represents the model’s layers,
with darker colors indicating a more significant impact
on task performance.

2019) or SiLU (Elfwing et al., 2017). Studies
have shown that language patterns and knowledge
are memorized in the FFN layer, and these mem-
ories are triggered by modulating the activation
state (Geva et al., 2021). Therefore, Wl

gate can be
inferred that memory in LLMs is derived from this
gating mechanism, which plays a crucial role in
regulating activation states within the FFN layers.

2.2 In-Context Learning

With the advancing capabilities of LLMs, In-
Context Learning (ICL) has emerged as a new
paradigm in NLP tasks (Dong et al., 2022). In this
approach, LLMs make predictions based solely on
contexts augmented with a prompt, a few exam-
ples and special tokens, as shown in Figure 2. The
process can be described as:

ŷ = argmax
yj∈Y

P (yj | xj , P, C, S) (3)

where C represents the context and
is defined as a set of pairs: C ∈
{(x1, y1), (x2, y2), . . . , (xn, yn)}. The pre-
diction space is denoted by Y , while P is the
prompt that defines the task. Special tokens play a
crucial role in regulating LLMs behavior within
the Chain of Thought framework. They help to
manage multiple rounds of dialogue, enabling
more coherent and contextually relevant responses.
By using these tokens, LLMs can maintain context
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over longer content and complex interactions,
enhancing performance in various NLP tasks.

3 Task-specific Neurons Identification

In this section, we propose a simple and innova-
tive strategy to identify task-specific neurons. By
tracking gradient changes of specific tokens, we
can locate neurons essential for task processing.

3.1 Causal Tracing of Context
In inference with ICL, task prompts define tasks
for LLMs, and contextual examples teach task pro-
cessing. High-quality examples can enhance task
performance (Zhang et al., 2023). Special tokens
mark the boundaries between different roles of in-
puts and absorb their representations.

To evaluate the significance of these three roles,
this study conducts a causal tracing analysis for
each token. We distinguish the roles within an
input (X ∈ {xp, xc, xs}, Y ). During inference, we
record the predicted probability pY of the correct
label based on the LLMs’ parameters θ,

pY = Pθ(Y |xp, xc, xs). (4)

Subsequently, we add noise to each token at each
FFN layer as a fluorescent vector and record the pre-
dicted probability for the correct label, to construct
a perturbation matrix A. The rows and columns
of the matrix correspond to the indices of the FFN
layers and the length of the inputs.

Aij = Pθ(Y | xp, xc, xs,h∗j
i ) (5)

h∗j
i = hj

iW
j
gate + ϵ (6)

hj+1
i = fact(h

∗j
i ) ◦ hj

iW
j
up ·Wj

down (7)

where Aij represents the noise-added prediction of
the i-th token of the j-th layer, h∗j

i is the fluores-
cent vector, and ϵ ∈ N (0, 1).

Next, we calculate the difference between the
values in the perturbation matrix and the original
confidence, determining the significance of each
token in each layer for the task. We categorize
these probabilities according to different roles to
identify which types of tokens most influence the
task. As shown in Figure 2, we find that perturbing
special tokens has the most significant effect on
task performance. Therefore, we suggest that the
effectiveness of LLMs in task processing is mainly
attributed to the representation of special tokens.

3.2 Causal Gradient Variation with Special
Tokens

Following the analysis, we discover that the gating
parameters in the FFN layer store the task pattern
memory. This means the model’s ability to han-
dle different tasks is encoded in a specific mem-
ory structure, allowing for efficient task-switching
and performance optimization. Using causal trac-
ing, we identify that special tokens in the context
are crucial for task performance. These token
representations contain the patterns for task pro-
cessing. Building on these insights, we propose
a novel method to identify task-specific neurons
based on Causal Gradient Variation with Special
Tokens (CGVST). This method uses the gradient of
special tokens to find neurons that are particularly
sensitive to specific tasks.

Initially, we perform a forward pass using task-
specific data, focusing on computing the loss func-
tion when special tokens are predicted, as follows:

Li
s = −

Txs∑

i=s

logP (xi | x1, x2, . . . , xi−1,

xi ∈ xs)

(8)

where s denotes the position of the special tokens,
and Txs represents the special token set.

Next, we calculate the gradient variation on the
training set for the specified task. The gradient of
the gated weight is determined based on these loss
values, as shown below:

δ =

Txs∑

i

∂Li
s

∂Wgate
(9)

where δ ∈ Rl×d×4d, with l is number of layer, and
d being the dimensionality of each layer.

Given that the size of the FFN gate value for
each layer is 4d-dimensional, we compressed the
gradient changes to d-dimensions to obtain a matrix
of the same size as hWgate. Subsequently, we
select the n positions with the largest variations
globally as the task-specific neurons, which are
considered crucial for the task. A single neuron is
denoted as αj

i , representing the i-th neuron of the
j-th layer.

3.3 Task Control by Task-Specific Neurons
Following the above steps, we can identify task-
specific neurons. These neurons exhibit significant
roles during task processing, indicating their crit-
ical function. Using these identified task-specific
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QA SA QU LTC TC CEC EC TM AVG ICP
P↓ R↑ P↓ R↑ P↓ R↑ P↓ R↑ P↓ R↑ P↓ R↑ P↓ R↑ P↓ R↑ P↓ R↑ -

BASE 38.7 59.3 68.8 55.0 64.9 55.6 76.0 54.0 66.2 55.4 54.4 57.1 37.4 59.5 47.7 58.0 56.8 56.8 -
RANDOM 38.9 57.8 69.4 52.2 63.9 57.0 70.3 52.1 62.2 56.2 54.5 51.3 37.1 52.8 47.8 54.3 55.3 54.2 -1.1
PV (Zhao et al., 2023a) 37.8 39.4 65.2 53.2 61.8 51.1 73.2 51.2 66.2 53.2 53.2 51.9 27.8 34.2 45.2 47.7 53.8 47.7 -6.1
LAPE (Tang et al., 2024) 31.7 3.6 59.6 49.4 41.4 46.9 56.7 46.9 22.9 23.9 54.3 50.0 25.8 20.3 45.9 41.7 42.3 35.3 -7.0
GV (Dai et al., 2022) 12.9 17.1 47.9 47.8 57.7 54.5 52.8 46.6 22.0 30.7 39.5 50.4 17.9 25.6 38.4 45.4 36.1 39.8 3.70
CGVST (ours) 3.4 27.3 3.3 18.4 17.2 31.4 16.4 24.4 7.4 29.4 35.7 29.8 2.2 19.7 27.8 34.3 13.8 26.8 14.0

Table 1: This table presents the results obtained after inhibiting task-specific neurons in various tasks. P denotes the
accuracy of the inhibited task, while R indicates the performance on other tasks when the current task is inhibited.
The Inhibition Comprehensive Performance (ICP) is calculated as (BASE −P )− |BASE −R|, balancing both P
and R. Underline indicates that tasks are almost ineffective. Bold represents the best result of the indicator.

neurons, we can further manipulate them to influ-
ence the overall performance of LLMs. Specif-
ically, we can amplify (by increasing activation
levels) or inhibit (by decreasing activation levels)
the activation value of task-specific neurons. The
operation is as follows:

hl+1 = fact(h
l
aW

l
gate) ◦ αl

∗ ◦ hl
aW

l
up ·Wl

down,
(10)

where αl
∗ represents the selected neuron in the l-th

layer. This neuron is set to a value less than 1 when
inhibited, greater than 1 when amplified, and equal
to 1 during normal inference.

4 Experiments

In this section, we conduct a series of detailed ex-
periments to investigate task-specific neurons. We
introduce 8 distinct tasks, each serving as an ob-
jective for identifying specific neurons. The ex-
periments aim to answer the following research
questions: RQ1: Can the proposed method locate
neurons? For the located neurons, does inhibiting
(§ 4.4) and amplifying them (§ 4.5) have corre-
sponding effects? RQ2: Do task-specific neurons
impact the model’s language ability? (§ 4.6). RQ3:
What is the relationship between neurons corre-
sponding to different tasks? (§ 4.7) And how are
they distributed in the model? (§ 4.8).

4.1 Dataset
We selected 8 tasks from the Super-Natural In-
struction dataset (Wang et al., 2022c)2 as follows:
Question Answering (QA) generates answers to
SQuAD 1.1 questions based on documents. Senti-
ment Analysis (SA) classifies the sentiment of an
English tweet as positive or negative in social me-
dia. Question Understanding (QU) determines if
a clarification for a query is correct by responding

2The numbers in the dataset are: 075, 195, 227, 274, 379,
391, 512, 1645.

with Yes or No in dialogue. Text Categorization
(TC) classifies the topic of an English news arti-
cle into one of four classes in news. Law Text
Categorization (LTC) classifies an English sen-
tence as either overruling or non-overruling in law.
Cause Effect Classification (CEC) decides if the
second sentence logically results from the first one
in commonsense reasoning. Emotion Classifica-
tion (EC) classifies the emotion of a Twitter post
into one of six classes: sadness, joy, love, anger,
fear, or surprise, in social media. Text Matching
(TM) classifies pairs of medical questions into two
categories in medicine and healthcare. All datasets
are evaluated using Exact Match accuracy.

4.2 Baseline

We compared the current neuron selection methods
with several baseline approaches. Language Acti-
vation Probability Entropy (LAPE) identifies the
most active neurons during inference by calculat-
ing the entropy of activation frequency and value,
considering these as task-relevant neurons (Tang
et al., 2024). Parameter Variation (PV) involves
training on the corresponding task and then iden-
tifying neurons with the least parameter changes
pre- and post-training, which are considered most
relevant to the task (Zhao et al., 2023a). Gradient
Variation (GV) determines task-relevant neurons
by finding the parameters with the largest gradients
across all tokens during task training (Dai et al.,
2022). The RANDOM method randomly selects
neurons from different layers and positions.

4.3 Implementation Details

For each task, we split the data into two parts: one
half for training to identify task-specific neurons,
and the other half for testing to evaluate model per-
formance. We utilize the LLama2-7b-chat model
with a 5-shot ICL for inference. The total number
of neurons is calculated as 32 (the number of model

7105



QA SA QU LTC TC CEC EC TM AVG ACP
P↑ R↑ P↑ R↑ P↑ R↑ P↑ R↑ P↑ R↑ P↑ R↑ P↑ R↑ P↑ R↑ P↑ R↑ -

BASE 38.7 59.3 68.8 55.0 64.9 55.6 76.0 54.0 66.2 55.4 54.4 57.1 37.4 59.5 47.7 58.0 56.8 56.8 -
RANDOM 37.9 56.8 65.4 54.2 62.2 54.7 71.4 53.4 66.1 55.1 55.1 52.2 38.4 56.4 47.8 56.7 55.53 54.93 -3.1
PV (Zhao et al., 2023a) 27.7 35.3 43.7 65.2 56.0 60.6 67.7 70.2 36.7 59.7 45.7 53.6 38.7 37.7 32.4 43.8 40.1 53.3 -20.2
LAPE (Tang et al., 2024) 39.1 38.3 63.0 64.9 64.2 65.6 62.1 60.3 45.1 46.2 54.3 53.7 31.0 32.4 45.3 40.1 48.8 50.2 -14.6
GV (Dai et al., 2022) 30.5 29.5 46.0 67.7 56.4 54.7 47.8 55.7 56.7 47.6 56.7 49.8 34.7 28.7 46.5 39.8 46.8 46.7 -20.1
CGVST (ours) 41.2 54.5 69.1 61.4 62.1 52.1 69.0 57.0 60.2 52.2 59.5 55.2 37.7 58.9 48.0 56.1 54.0 55.9 -3.7

Table 2: This table shows the results after amplifying task-specific neurons on different tasks. P indicates accuracy
on the amplified task. R indicates performance on other tasks when the current task is amplified. ACP (Amplification
Comprehensive Performance) is calculated as (P−BASE)−|BASE−R|. Underline indicates better performance
than BASE. Bold represents the best value of the corresponding indicator.

layers) multiplied by 11,008 (the size of the hidden
states). We designated 5% of the total neurons,
amounting to 17,613 neurons, as task-specific neu-
rons. The inhibition and amplification values range
from {0, 0.05} and {1.5, 2}, respectively. The pro-
posed method is realized through the Huggingface
Transformers library (Wolf et al., 2020). For each
task, we selected the optimal value. It is important
to note that some neurons cannot tolerate extremely
high or low activation values, as this can lead to
network instability and potential collapse.

4.4 Neurons Inhibition Evaluation

To determine the significance of task-specific neu-
rons on task performance, we inhibited these neu-
rons and measured the impact. As shown in Ta-
ble 1, our proposed approach outperforms existing
neuron search methods. Specifically, our method
achieved the highest performance, indicating that
the neurons it identified are the most relevant to
the given task. This relevance is demonstrated
by the 10.3 point improvement over the optimal
method. Inhibiting neurons chosen by other meth-
ods minimally reduces performance in the target
task and has little effect on other tasks, making
it hard to capture the task’s essence. Inhibiting
selected neurons significantly improves the target
task performance more than other tasks, showing
its effectiveness. In contrast, inhibiting neurons
chosen by other methods results in minimal perfor-
mance reduction for the target task and little effect
on other tasks, making it hard to capture the task’s
essence. Furthermore, we observed that the perfor-
mance of certain tasks, such as QA, SA, TC, and
EC, drops to almost zero. These tasks also exert
substantial influence on other tasks, demonstrating
the interconnected nature of task-related neurons.

4.5 Neurons Amplification Evaluation
To further confirm the effectiveness of task-specific
neurons, we tested whether amplifying these neu-
rons improves task performance. Thus, we am-
plified their activation signals and evaluated their
effectiveness in the target task and other tasks. As
shown in Table 2, our method surpasses the best
existing method by 10.9 points in ACP, demon-
strating its superiority in identifying task-specific
neurons. When the task-specific neurons are am-
plified, some tasks showed improvement, while
performance on others slightly decreased. The im-
provement effect of CEC increased to 5.1 at its best,
indicating that task-specific neurons can help the
model better understand and process the task. Ad-
ditionally, neurons in some tasks also improve the
performance of other tasks, indicating that these
tasks rely on the shared capabilities of the model.
However, there are still limitations in improving
task performance by amplifying task-specific neu-
rons, as performance did not exceed zero. Addi-
tionally, some neurons improved performance in
multiple tasks, suggesting that these tasks rely on
the model’s shared capabilities.

4.6 Language Ability Evaluation
To verify whether manipulating task-specific neu-
rons disrupts the linguistic capabilities of LLMs,
we evaluated the language abilities of the models
post-manipulation. We conducted Perplexity (PPL)
tests on the manipulated models using the Alpaca
Instruction (Taori et al., 2023). Figure 4 presents a
comparison of values under different operations for
task-specific neurons. The PPL of the basemodel
value is 3.4827. With the inhibiting, the highest
PPL is 3.6800 with QA, while the lowest is 3.3449
with QU. For the amplifying, the highest PPL is
3.6162 with EC, and the lowest is 3.5283 with TC.
Our evaluation indicates that manipulating task-
specific neurons does not negatively impact the
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Figure 3: The figure illustrates the effects of inhibiting and amplifying task-specific neurons across various tasks.
Task-specific neuron operation is depicted along the rows, while task performance is listed along the columns. The
values in the figure indicate the percentage of BASE performance achieved for each task.
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Figure 4: This figure shown that comparison of PPL
values under different task neurons and basemodel.

linguistic and conversational performance of the
models. The neurons selected by our method are
more specifically attuned to understanding and ex-
ecuting tasks.

4.7 Task Cross-Performance Analyzation

To understand the correlations between tasks, we
visualized their cross-performance. Figure 3 shows
the impact of inhibiting (left) and amplifying (right)
task-specific neurons on performance. Inhibiting
task-specific neurons significantly reduces the per-
formance of the target task more than other tasks.
Similar tasks, like SA and EC, which both clas-
sify emotional content, have the greatest impact on
each other. Amplifying task-specific neurons no-
ticeably improves the target task performance. QA
and ECE benefit the most from other tasks, indicat-
ing they rely on the model’s reasoning abilities to
improve effectiveness. From Figure 3, it is evident
that TC and LTC are significantly influenced by
other tasks, whether through inhibition or amplifi-
cation. This suggests that they rely on a singular

pathway to complete their tasks and depend on the
specific capabilities of LLMs, classifying them as
specialized tasks. Similarly, TM exhibits insensi-
tivity to inhibition and amplification and remains
unaffected by neurons from other tasks. It employs
a unique method for task processing, also classi-
fying it as a specialized task. In summary, these
three specialized tasks are domain-specific, and
LLMs utilize independent abilities when handling
such tasks. Conversely, tasks can be improved or
weakened by neurons manipulating other tasks, in-
dicating a crossover in their abilities, and these are
classified as general tasks.

4.8 Neurons Visualization

To visually demonstrate the activation locations of
task-specific neurons, we visualized the neurons in
the model. As shown in Figure 5, the distribution
of neurons for eight different tasks is illustrated.
Overall, task-specific neurons are predominantly
distributed between layers 5 and 11 of the model.
This suggests that the proposed method achieves
performance interference without altering the top-
most neurons. Instead, the neurons collected by
LAPE are primarily concentrated in the top layers
as shown in Appendix A. The visualization shows
that QA, LTC, and TC tasks rely less on lower-layer
neurons, indicating a reduced need for lower-level
semantic understanding. SA and EC tasks are simi-
lar tasks, as evidenced by their approximate distri-
butions. Additionally, QU and CEC tasks strongly
prefer the 10th layer, highlighting its importance
in determining sentence relatedness. Task-specific
neurons (like TC, LTC, and MT) are more concen-
trated and show less dispersion, whereas neurons
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Figure 5: This figure visualizes neurons associated with different tasks. The Y-axis represents the layers of the
model, while the X-axis indicates the positions of the neurons. Red denotes active task-specific neurons, whereas
Black indicates non-task-specific neurons. We combined every 100 adjacent neurons in each cell for easier display

involved in general tasks are more dispersed.

4.9 Case Study

Table 3 shows an example analysis of the operation
of task-specific neurons. In the cases of SA and
TC, the base model predicts an error, but the ampli-
fying neuron corrects the answer. The base model
initially predicts a non-label answer in the EC case,
which is corrected after amplification. Similarly,
in the QA and TM cases, the base model provides
two non-standard answers, which are subsequently
corrected to standard answers after amplification.
During inhibition, LLMs experienced hallucina-
tions and provided irrelevant answers, though the
responses remained fluent.

5 Related Work

LLMs have garnered widespread attention due to
their superior performance (Zhao et al., 2023b;
Brown et al., 2020). After instruction fine-tuning
and alignment, LLMs demonstrate strong perfor-
mance across multiple tasks (Ouyang et al., 2022;
Longpre et al., 2023). Especially, LLMs have
achieved further breakthroughs in task performance
with In-Context Learning (Dong et al., 2023). How-
ever, LLMs often produce hallucinations, which
impacts their applicability in real-world (Huang
et al., 2023). Therefore, studies have to explore
the mechanisms of LLMs to understand their op-
erating principles (Singh et al., 2024; Voita et al.,
2023). Among these studies, the internal attribu-
tion of LLMs has received extensive attention, with
various components of LLMs being investigated,
including embeddings (Morris et al., 2023), atten-
tion (Grosse et al., 2023), transformer layer (Xu

Task Ground Truth Base Prediction Amplification Inhibition

SA positive negative positive Great news!  Here are the bigge
st stars in pop culture ...

TC Business World Business
Institution known for low fuel c
osts 161 below Link 60% of the 
charts predicted...

EC surprise anonymous surprise wait solid good despite commun
ic while we continu...

QA seven 7 seven The beautiful mountain ranges o
f the Andes de files over...

TM Similar 
Similar[INST: Sente
nce1: I've been expe
riencing

Similar Man, that was fast! Here are the 
answers to the questions ...

Table 3: This table illustrates a case of neuronal inhibi-
tion and signal amplification.

et al., 2023), FFN (Bari and Robbins, 2013). The
FFN regulates the information output of the entire
layer. Consequently, some studies have concen-
trated on investigating neurons from FFN. These
neurons are divided into knowledge neurons (Dai
et al., 2022; Chen et al., 2024) and language neu-
rons (Zhao et al., 2023a; Tang et al., 2024), which
control the application of knowledge and the ex-
pression of task language. There have also been
studies investigating the existence of skill neurons
in large models (Wang et al., 2022a). However,
neurons from the task perspective are absent, mean-
ing that there has been little focus on identifying
and understanding neurons specifically activated
by different tasks. By identifying and analyzing
these neurons, we aim to understand how LLMs
process different tasks, which help us fine-tune and
optimize these models for specific uses.

6 Conclusion

In this study, we demonstrated that different NLP
tasks activate distinct neurons in LLMs. Using our
method, Causal Gradient Variation with Special
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Tokens (CGVST), we identified task-specific neu-
rons by focusing on significant tokens during task
processing. Our experiments across various tasks,
including 8 different NLP tasks, confirmed that ma-
nipulating these neurons affects task performance.

7 Limitations

This paper only discusses a limited set of represen-
tative tasks and does not explore neurons across a
large-scale set of tasks. For instance, the Natural In-
structions dataset contains 1600 tasks (Wang et al.,
2022c). We believe that exploring such a dataset
would reveal a more diverse range of task-specific
neurons. Additionally, due to equipment limita-
tions, our method could not be applied to larger
models for neuron exploration. In future work, we
will use larger models and more data to uncover a
richer set of task-specific neurons.
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QA SA QU LTC TC CEC EC TM
S 0.077 0.122 0.312 0.117 0.112 0.284 0.093 0.292
M 0.009 0.080 0.317 0.090 0.021 0.154 0.056 0.250
S 0.405 0.715 0.681 0.685 0.605 0.578 0.368 0.479
M 0.399 0.720 0.697 0.666 0.547 0.552 0.332 0.455

Table 4: The table compares the results of Multi-Task
Neurons (M) with the average results of several single-
task models (S), with inhibition results at the top and
amplification results at the bottom.

A Neurons Fusion Analyzation

We also conducted neuron fusion experiments to
explore the interaction between neurons. We se-
lected three groups of neurons with the greatest
impact on each task, then fused them and tested
their inhibition and amplification performance. As
shown in Table 4, when neurons are merged dur-
ing the inhibition phase, the reduction rate of task
performance is greater than the average reduction
observed for individual tasks. This suggests that
combining neurons amplifies their inhibitory ef-
fects on task performance. In the enhancement
phase, the merged neurons showed improved per-
formance on only two tasks: SA and QU. This
indicates that while neuron fusion can enhance per-
formance in specific contexts, its benefits are not
universally applicable across all tasks. In general,
task-specific neurons are more effective at limitaion
tasks, demonstrating a greater reduction in perfor-
mance when inhibited. However, they still face
challenges in enhancement tasks, as improvements
are limited and not consistently observed across
different tasks.

B Knowledge and Language Neurons
Visualization

We also present the visualization results of applying
language neuron and knowledge neuron detection
methods to tasks. As shown in Figures 6 and 7,
although both methods capture task information
to some extent, they contain excessive noise and
fail to focus on task-specific neurons. The LAPE
method tends to identify neurons in the last layer
to control language expression. In contrast, the GV
method detects neurons with a significant amount
of noise, making it less effective in intuitively inter-
preting the task compared to the CGVTS method.

In a more detailed analysis of the experimental
results, we observed that the LAPE method has cer-
tain advantages in controlling language expression,
but its selection often overly focuses on the last

layer of the model. This might lead to the neglect
of task-relevant neurons in the preceding layers.
While this concentrated selection can simplify in-
terpretation, it also risks making the interpretation
less comprehensive and in-depth.

On the other hand, although the GV method also
attempts to capture task-related neurons, the pres-
ence of a substantial amount of noise among the
detected neurons hinders its clarity and intuitive-
ness in task interpretation. The presence of noise
may be due to the GV method’s insufficiently strict
selection criteria or its failure to adequately distin-
guish between task-related and unrelated signals.

In contrast, the CGVTS method demonstrates a
higher task interpretation capability. It effectively
filters out noise and more accurately locates and
interprets task-related neurons. This indicates that
the CGVTS method is more effective and reliable
in neuron selection and task information capture.
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Figure 6: Knowledge neurons visualization by GV.
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Figure 7: Language neurons visualization by LAPE.
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