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Abstract

Program of Thoughts (PoT) is an approach
characterized by its executable intermediate
steps, which ensure the accuracy of the logi-
cal calculations in the reasoning process. Cur-
rently, PoT primarily uses Python. However,
relying solely on a single language may result
in suboptimal solutions and overlook the poten-
tial benefits of other programming languages.
In this paper, we conduct comprehensive ex-
periments on the programming languages used
in PoT and find that no single language con-
sistently delivers optimal performance across
all tasks and models. The effectiveness of each
language varies depending on the specific sce-
narios. Inspired by this, we propose a task
and model agnostic approach called MultiPoT,
which harnesses strength and diversity from
various languages. Experimental results reveal
that it significantly outperforms Python Self-
Consistency. Furthermore, it achieves compa-
rable or superior performance compared to the
best monolingual PoT in almost all tasks across
all models. In particular, MultiPoT achieves
more than 4.6% improvement on average on
ChatGPT (gpt-3.5-turbo-0701)1.

1 Introduction

Program of Thoughts (PoT) aims to prompt Code
Large Language Models (Code LLMs) to de-
compose complex problems into successive exe-
cutable codes (Gao et al., 2023; Chen et al., 2022).
Through execution by an external interpreter, the
final results are accurately obtained, decoupling the
computational process from the LLMs. PoT signif-
icantly reduces computation errors and improves
reasoning performance (Wang et al., 2023a). Sub-
sequently, benefiting from its flexibility and scala-
bility, it is gradually applied to a broader spectrum
of fields like image reasoning (Surís et al., 2023;
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1Code and data are released at https://github.com/

Luowaterbi/MultiPoT

from datetime import datetime, timedelta
today = datetime(2008, 3, 31)
one_year_ago = today - timedelta(days=365)

library(lubridate)
today <- ymd("2008-03-31")
one_year_ago <- today - years(1)

PoT with Python

PoT with R

Answer:04/01/2007

Answer:03/31/2007

Today is the last day of the first quarter of 2008. 
What is the date one year ago from today?

let date = new Date(2008, 2, 31);
// months are 0-indexed in JavaScript
date.setFullYear(date.getFullYear() - 1);

PoT with JavaScript

Answer:03/31/2007

❌

✅

✅

Figure 1: Comparison of PoT with different PLs.
Python’s ‘timedelta’ lacks support for year compu-
tation, leading to a leap year (2008 has 366 days) error
by subtracting 365 days. R and JavaScript directly com-
pute the year and get the correct answer.

Gupta and Kembhavi, 2023), financial QA (Koncel-
Kedziorski et al., 2023) and robotic control (Li
et al., 2023a). Nowadays, PoT has become a key
method for enabling intelligence in agents (Yang
et al., 2024; Wang et al., 2024). The widespread
applicability highlights its significance.

Despite significant progress, PoT has a notable
limitation: to the best of our knowledge, all re-
search on PoT focuses on Python. However, since
Code LLMs are capable of multilingual genera-
tion,2 and most of the reasoning tasks are language-
independent, many other programming languages
(PLs) can also be applied to PoT, especially when
considering their unique strength and diversity.
From the perspective of tasks, different PLs repre-

2In this paper, our “multilingual” represents multiple pro-
gramming languages, not natural languages.
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sent PoT in different forms. As shown in Figure 1,
the representation and calculation of dates in R is
more concise than that in Python, which can reduce
the complexity when LLMs generate PoTs. From
the perspective of models, their multilingual abil-
ity is inconsistent. For instance, C++ of Deepseek
Coder outperforms Python on the code generation
task (Guo et al., 2024). It is natural to wonder
whether this phenomenon also occurs on reasoning
tasks. Therefore, a crucial question is raised with
these perspectives: Is Python truly the optimal lan-
guage for all tasks and models for PoT? Relying on
Python may lead to a local optimum. In Figure 1,
Python’s ‘timedelta’ does not support ‘year’, re-
sulting in a miscalculation for the leap year. In
contrast, R and JavaScript yield the correct answer.

Motivated by this, we conduct comprehensive
experiments for multilingual PoTs. Beyond Python,
we select four PLs: three widely used general lan-
guages (JavaScript, Java, and C++) and a niche
but comprehensive language (R). For a comprehen-
sive comparison, we identify five distinct sub-tasks
within reasoning tasks: math applications (Cobbe
et al., 2021; Patel et al., 2021; Miao et al., 2020),
math (Hendrycks et al., 2021), tabular, date, and
spatial (Suzgun et al., 2022). We select four back-
bone LLMs: ChatGPT (gpt-3.5-turbo-0701) and
three strongest Code LLMs (Starcoder (Li et al.,
2023b), Code Llama (Roziere et al., 2023), and
Deepseek Coder (Guo et al., 2024)). Under both
greedy decoding and Self-Consistency (Wang et al.,
2022) settings, we answer that “Python is not al-
ways the optimal choice, as the best language de-
pends on the specific task and model being used.”

In addition to the analysis contribution, to lever-
age the strength of multiple PLs, we further intro-
duce a simple yet effective approach, called Mul-
tiPoT (Multilingual Program of Thoughts). It is
a task and model agnostic approach, which uses
LLMs to synchronously generate PoTs with vari-
ous PLs and subsequently integrates their results
via a voting mechanism. The use of multiple PLs
also provides greater diversity and reduces the
probability of repeating the same errors compared
to single-language sampling. Experimental results
demonstrate that MultiPoT outperforms Python
Self-Consistency significantly. Furthermore, Mul-
tiPoT effectively matches or even surpasses the
top-performing languages across nearly all tasks
and models, and outperforms on averages. Espe-
cially on both ChatGPT and Starcoder, MultiPoT
performs the best on four out of five tasks, with

only a slight underperformance on the remaining
task, and shows an improvement of over 4.6% com-
pared to the best monolingual PoT on average.

Our contributions are summarized below:

• We conduct comprehensive experiments of
PoTs with different PLs across various reason-
ing tasks and models, revealing that the choice
of PL is dependent on tasks and models.

• We introduce a task and model agnostic ap-
proach called MultiPoT, which integrates mul-
tilingual PoTs and leverages strength and di-
versity across various PLs.

• Experimental results show that MultiPoT
outperforms Python Self-Consistency and
matches or surpasses the best language of
each scenario. On both the model and task
averages, MultiPoT enhances performance.

2 Related Work

2.1 Program of Thoughts
CoT is a specific form of in-context learning (Wei
et al., 2022; Brown et al., 2020; Chowdhery et al.,
2023). Its demonstrations consist of intermedi-
ate steps imitating the human thought process.
It significantly enhances model’s reasoning capa-
bilities (Yang et al., 2023) but suffers from er-
rors associated with calculations (Madaan and
Yazdanbakhsh, 2022). CoT always uses Self-
Consistency (Wang et al., 2023c) to improve an-
swer accuracy through sampling and voting.

PoT (Chen et al., 2022; Gao et al., 2023) is an
extension of CoT to avoid incorrect calculation.
It represents intermediate steps as comments and
code and executes the entire program with an inter-
preter to obtain answers. PoT not only excels in rea-
soning tasks but has rapidly extended to practical
applications, including chart understanding, image
reasoning, financial QA and robotic control (Zhang
et al., 2024; Surís et al., 2023; Gupta and Kem-
bhavi, 2023; Koncel-Kedziorski et al., 2023; Li
et al., 2023a). It has become a key method for
agents to perform complex reasoning and tool invo-
cation (Yang et al., 2024; Wang et al., 2024). It is
important to note that all previous PoT work only
use Python. For the first time, we are exploring
PoTs that use multiple PLs.

2.2 Usage of Multiple PLs
The training datasets naturally include a variety
of PLs, endowing Code LLMs with the ability to
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MultiPoT
Step1: construct multilingual prompts

Self-Consistent

Step2: integrate multiple programming languages

Python Prompt Multipot.py
Multipot.java

Multipot.r
Multipot.cpp

Java Prompt
R Prompt

C++ Prompt
JavaScript Prompt Multipot.js

PoT[1-5].py

Python PoT in Demostration
penguins = [
    {"name": "Louis”,...},
    {"name": "James",...},...]
penguins_less_than_8_years = 
sum(1 for penguin in penguins if 
penguin["age"] < 8)
sorted_penguins =
sorted(penguins, key=lambda p: 
p["name"])

            C++ PoT in Demonstration 
#include <algorithm>
#include <vector>
...
struct Penguin {string name;int age;...};
...
    for (const auto& penguin : penguins)
        if (penguin.age < 8) count++;
    sort(penguins.begin(), penguins.end(), 
[](const Penguin &a, const Penguin &b) 
return a.name < b.name;

Python Prompt

Results: 
6

5 5 5 
7 

Answer: 
5 Answer: 

6

Results:
6 6 6 6

5

Built-in Content 
Sepcial Syntax 
Type Definition 
Varibale Naming

Demonstration
Question

Python PoT
Question

Figure 2: An overview of MultiPoT and Self-Consistency. MultiPoT first constructs prompts for each PL, ensuring
a consistent reasoning process while also considering the distinct coding styles. It then integrates these PLs:
generating multilingual PoTs based on the prompts, executing them to gather results, and finally voting for the
answer. In contrast to Self-Consistency’s single-language focus, MultiPoT leverages multiple PLs.

handle multilingual programming (Kocetkov et al.,
2022; Nguyen et al., 2023; Gao et al., 2020; Ni-
jkamp et al., 2023; Chen et al., 2021). This capabil-
ity extends code tasks like generation, optimization,
translation, and repair to other languages beyond
Python (Gimeno et al., 2023; Shypula et al., 2023;
Zhang et al., 2023; Wu et al., 2023). Despite the
progress, current multilingual research (Jin et al.,
2023; Joshi et al., 2023; Khare et al., 2023) mainly
focuses on code-related tasks, neglecting the po-
tential of PLs as tools to assist in other tasks. Ad-
ditionally, these studies often treat each language
separately without interaction. Our study pioneers
the use of multiple PLs in reasoning tasks and in-
troduces a novel integrated approach, leveraging
the collective strength and diversity of various PLs
to enhance overall performance.

3 Methodology

Figure 2 provides an overview of MultiPoT and
Self-Consistency to highlight their differences.
Concretely, MultiPoT consists of two main steps.
First, a dedicated prompt is designed for each PL
to sufficiently leverage the capability of the model
with regard to the PL (Section 3.1). Second, PoTs
in various PL are respectively generated by prompt-
ing the LLM with the prompts. The final answer
is obtained by executing the PoTs and integrating
their results via a voting mechanism (Section 3.2).
Distinct from Self-Consistency, which relies on

a single PL, MultiPoT integrates various PLs to
utilize their strength and diversity.

3.1 Multilingual Prompts Construction

To instruct a LLM to generate PoT for a given ques-
tion, a demonstration is included in the prompt.
The demonstration consists of an example ques-
tion and PoT. To ensure fairness, demonstrations
of various PLs share the same example questions.
Based on that, to efficiently leverage the capability
of a LLM with regard to a PL, each PL is provided
with a dedicated example PoT, taking into account
its language-specific characteristics (Wang et al.,
2023b). Note that language-agnostic features, such
as algorithms and data structures, remain the same
for example PoTs of all PLs, ensuring an identical
reasoning process.

Concretely, the language-specific characteris-
tics of each PL for constructing its dedicated ex-
ample PoT includes Built-in Content, Special
Syntax, Type Definition, and Varibale Naming.
Figure 2 provides some examples of the charac-
teristics. (1) while Python can directly employ
the ‘sort’ function, C++ has to load it from the
‘algorithm’ library. Regarding variables, Python’s
‘list’ is more similar to C++’s ‘vector’ than its
array. (2) List comprehension like ‘sum(1 for
penguin in penguins if penguin["age"] <
8)’ is a standard syntax in Python. However, a
straightforward for-loop is the common practice
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in other PLs. (3) Static PLs such as C++ require
to define the variable type. We carefully define
‘int’ and ‘double’ variables to ensure computa-
tional accuracy and enhance flexibility by defining
‘struct’. (4) We keep the naming styles of each
PL. For instance, Python uses Snake Case, whereas
Java favors Camel Case (‘secondPenguin’). Ap-
pendix A.5 shows the demonstrations. The above
examples present the variations in example PoTs
across different PLs. To accurately assess the
model’s capability in a specific PL, it is crucial
to carefully consider its characteristics during the
process of constructing.

Based on identical reasoning process, we suc-
cessfully craft demonstrations of each PL exhibit-
ing its characteristics. By adding the question after
the demonstration, we get the prompt for each PL.

3.2 Integration

While Self-Consistency enhances performance by
sampling to explore more reasoning paths, it can
lead to repeated errors across different samples. In
contrast, MultiPoT constructs multilingual prompts
and generates PoTs in multiple PLs, significantly
increasing the diversity of results.

Specifically, after constructing prompts for each
PL, models generate corresponding PoTs, while
tracking cumulative probabilities. These probabili-
ties indicate the model’s confidence in each answer,
with higher probabilities denoting greater confi-
dence. PoTs are then executed and results are col-
lected. The final answer is determined by voting on
these results. In cases of tied votes, answers with
higher cumulative probabilities are favored. The
integration of multiple PLs introduces more poten-
tial correct answers and reduces the probability of
the same errors in candidate results.

4 Experiment Setup

4.1 Programming Languages

When selecting PLs to compare with Python, we
focus on diversity. JavaScript is the most popu-
lar language on GitHub (GitHub, 2023) and has
less overlap in application with Python, particu-
larly in the ML/AI domains. R is a flexible and
powerful language like Python but has much less
data in pre-training data. The three PLs above are
dynamic languages that do not require explicit vari-
able type definitions. To incorporate the diversity
of language types, we select the two most com-
mon static languages, Java and C++. The latter

is closer to low-level programming and has fewer
extension packages. We do not include C due to
its high similarity with C++. These five languages
offer a diverse range of application scenarios, data
volumes, and language types compared to Python.

4.2 Tasks

We select representative and discriminating tasks.
We initially select four tasks from Gao et al. (2023):
Math Application (Appl.), Date, Tabular and
Spatial, and add the task Math. Appl. contains
elementary-level mathematical application prob-
lems (GSM8K, SVAMP, Asdiv (Cobbe et al., 2021;
Patel et al., 2021; Miao et al., 2020)). Date, Tabu-
lar, and Spatial are extracted from BBH-Hard (Suz-
gun et al., 2022) (Date Understanding, Penguins
in a Table, Reasoning about Coloured Objects).
These tasks assess understanding and reasoning
about temporal sequences, structured text, and spa-
tial positioning respectively. Math, consisting of
the transformed MATH (Hendrycks et al., 2021)
dataset. The difference between Math and Appl.
lies in the level of difficulty. Math is more chal-
lenging and directly describes the math question
without scenarios. The five tasks are distinct and
representative of the evaluation of reasoning ca-
pabilities. They are language-agnostic, meaning
that they can be performed in any PL, effectively
demonstrating the model’s reasoning ability across
different languages. The additional details of the
tasks are in the Appendix A.1.

4.3 Metric

Remaining consistent with previous work (Chen
et al., 2022; Gao et al., 2023), the metric is accu-
racy. For tasks whose ground truth are real numbers
(Appl./Math), the answer is considered correct if its
difference from the ground truth is less than 1e-3;
for tasks with string-type ground truth (Date/Tabu-
lar/Spatial), the answer is considered correct only
if it is exactly the same as the ground truth.

4.4 Backbone LLMs

As the previously used code-davinci family is no
longer accessible, we select four backbone LLMs,
including the three strongest Code LLMs: Star-
coder (15B), Code Llama (34B), and Deepseek
Coder (33B). We select the base versions. The
experiments of the Python version are discussed
in Section 6.2, and the results are consistent with
our conclusions and methodology. ChatGPT is
also utilized as a representative of code-capable
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(a) Starcoder (b) Code Llama (c) Deepseek Coder

Python R C++ Java JavaScript

Date Date Date

Tabular Math Tabular TabularMath Math

Spatial Appl. Spatial SpatialAppl. Appl.

AVG AVG AVG

Figure 3: The greedy decoding performance of three models across five tasks in five different PLs. AVG denotes the
average performance of a PL across all tasks. Each language performance is expressed as a ratio to the highest-
performing language for that specific task. The center of the circle represents 50%. Detailed numerical data are
provided in the Table 11 in Appendix A.2.

Language Code LLMs ChatGPT

Appl. Math Date Tabular Spatial AVG Appl. Math Date Tabular Spatial AVG

Python 58.51 23.62 42.37 83.00 73.87 56.27 80.75 39.74 46.61 94.63 91.70 70.69
R 57.04 22.61 47.70 85.46 71.20 56.80 79.37 34.86 55.01 89.93 92.85 70.40
C++ 60.80 22.61 32.79 86.35 75.87 55.68 79.46 39.90 47.70 91.95 86.65 69.13
Java 60.11 23.75 43.81 87.92 75.82 58.28 80.63 42.65 51.22 87.92 86.70 69.82
JavaScript 60.14 24.35 42.82 83.89 71.58 56.56 81.25 36.07 55.01 92.62 90.15 71.02

Table 1: The performance of Code LLMs and ChatGPT for greedy decoding for five languages on five tasks. Code
LLMs are the average results for Starcoder, Code Llama, and Deepseek Coder. AVG means the average performance
of the language on five tasks. Bold denotes the highest performance on the task.

NL LLMs, invoking through the API of gpt-3.5-
turbo-0701. By choosing these backbone LLMs
with different sizes and characteristics, we can ob-
tain more realistic and credible results.

4.5 Inference Details

We combine Chen et al. (2022) and Gao et al.
(2023)’s prompt templates for few-shot inference.
We fix the questions from the previous work and
write code in the respective PLs. The number of
questions in each task is shown in Appendix A.1.
When sampling for Self-Consistency, we follow
Chen et al. (2022) and set t = 0.4, top_p = 1. For
a fair comparison with MultiPoT which integrates
five languages, we set k = 5.

5 Results

In this section, we first discover that Python is not
the best language for all tasks and all models from
the results of greedy decoding. There is no such
perfect language. The performance of each PL
varies greatly depending on the task and model
(Section 5.1). After Self-Consistency, the perfor-

mance discrepancy still exists. Finally, by inte-
grating multiple languages, MultiPoT significantly
outperforms Python. Furthermore, its performance
matches or exceeds the best monolingual PoTs in
almost all scenarios and achieves improvement on
task and model averages (Section 5.2).

5.1 Comparison among PLs

Python is not the optimal language choice. Fig-
ure 3 shows the performance gap between each lan-
guage and the best-performing language on each
task of the three Code LLMs. It illustrates that
Python does not achieve the best performance on
any of the tasks for any of the Code LLMs. On
Deepseek Coder, Python is even the worst on av-
erage. Table 1 shows the greedy decoding results
of ChatGPT. Although Python performs best on
Tabular, it falls short by 2.9% and 8.4% compared
to the best PL on Math and Date respectively. The
preference for Python among humans may be due
to its simple syntax and high readability, but it is a
subjective bias that PoT only needs it. Relying on
Python leads to a suboptimal outcome.
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ChatGPT Starcoder

Appl. Math Date Table Spatial AVG Appl. Math Date Table Spatial AVG

Python 82.31 45.76 47.70 94.63 93.60 72.80 47.04 19.69 34.96 79.19 70.00 50.18
R 80.95 40.61 58.81 93.29 94.60 73.65 44.21 17.74 37.13 77.85 65.90 48.57
C++ 81.40 43.77 49.05 93.29 88.45 71.19 47.34 16.74 18.70 82.55 70.95 47.26
Java 81.79 45.33 53.39 92.62 88.80 72.39 47.97 16.76 35.23 78.52 69.50 49.60
JavaScript 82.58 40.64 56.10 96.64 93.30 73.85 48.40 19.15 36.31 80.54 72.95 51.47

MultiPoT 84.33 49.92 58.54 98.66 95.30 77.35 49.67 20.41 40.38 87.25 71.55 53.85

Code Llama Deepseek Coder

Python 68.63 27.95 50.68 92.62 77.55 63.48 70.65 37.64 44.72 93.96 89.80 67.35
R 66.80 26.65 58.27 93.29 79.05 64.81 69.22 33.59 53.12 93.29 92.60 68.36
C++ 71.33 24.99 43.36 93.29 80.45 62.68 72.32 33.94 39.57 95.30 93.40 66.91
Java 70.10 27.93 56.91 93.96 81.80 66.14 72.10 35.35 55.56 93.96 88.75 69.14
JavaScript 68.97 26.16 50.41 87.25 80.35 62.63 71.89 35.60 52.57 93.29 86.10 67.89

MultiPoT 71.17 27.97 58.54 93.96 79.60 66.24 72.32 37.55 54.47 95.30 91.70 70.27

Table 2: Self-Consistency and MultiPoT results of four LLMs on five tasks and AVG.

However, it is important to note that there is no
one-size-fits-all language. The gap between PLs is
significant when considering each task and model.

The performance of each PL is task-
dependent. AVG performance does not fully cap-
ture the disparity among languages. Java and
JavaScript performances of Starcoder differ by only
0.41% on AVG, but by 6.71% on Tabular. While
the difference between the best and worst PLs of
ChatGPT on AVG is less than 2% in Table 1, there
are four tasks whose gap among languages exceeds
6%. Different languages are suitable for different
tasks. Table 1 indicates that, except for C++, all
PLs excel in at least one task on ChatGPT. More-
over, on ChatGPT, except for JavaScript, each lan-
guage also ranks as the least effective in at least
one task. A language that performs exceptionally
well in one task might underperform in another.
For instance, R demonstrates superior performance
on Date for both Code LLMs and ChatGPT, yet it
is the least effective on Appl. and Math.

The performance of each PL is model-
dependent. Code LLMs and ChatGPT differ sig-
nificantly. The results of three Code LLMs are av-
eraged and compared with ChatGPT in Table 1. It
shows that, on Appl., C++ performs best on Code
LLMs but ranks second-to-last on ChatGPT; on
Math, JavaScript excels on Code LLMs but sim-
ilarly ranks second-to-last on ChatGPT; and on
Spatial, Java ranks second-highest on Code LLMs
(with only a 0.05% less than C++) but is second-
to-last on ChatGPT. Even within Code LLMs, dis-
parities between models are evident. Figure 3
shows that Code Llama has a clear preference for

Java, which keeps the top two ranks across all tasks,
yet is not observed on the remaining models. On
Deepseek Coder, C++ leads on average, whereas
it ranks last on the other models. R ranks second
on Spatial on Deepseek Coder, but the worst on the
other two Code LLMs.

These variations demonstrate that different PLs
exhibit unique strengths and diversity due to
complex factors such as task suitability and model
preference. A further error analysis of the experi-
mental results is shown in Appendix A.3.

5.2 Comparision between Self-Consistency
and MultiPoT

Self-Consistency does not eliminate perfor-
mance disparities between PLs, despite it signifi-
cantly improving the performance. Table 2 presents
the Self-Consistency results. The inherent strength
of different languages persist. The optimal PL on
each scenario is generally consistent with greedy
decoding results, except Python emerges as the
superior language on Math on all model. The weak-
nesses of each language is further amplified. For
example, on Date of Deepseek Coder, C++ already
had the lowest performance in greedy decoding,
and Self-Consistency increases this gap even more.
As a result, C++ shifts from the highest average per-
formance in greedy decoding on Deepseek Coder
to the lowest in Self-Consistency, despite remain-
ing the best on Appl., Tabular, and Spatial. A single
language offers limited diversity. When faced with
tasks outside its strength, monolingual samples of-
ten make the same mistakes repeatedly, resulting
in incorrect answers being chosen through voting.

Different from Self-Consistency relying on a
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Figure 4: The reasoning ability, code generation ability,
and percentage in pre-training data for different lan-
guages. Generation lacks data for R. The horizontal
coordinates of each model are ranked according to the
rise in reasoning performance (excluding R).

single PL, MutliPoT integrates multiple PLs. It
not only leverages the distinct strength of each
PL, but also utilizes their greater diversity to
reduce the probability of repeating the same errors.

MultiPoT significantly outperforms Python
on almost all scenarios. It enhances performance
in tasks or models where Python is weak. Across
the four models, MultiPoT improves upon Python’s
performance on Date by at least 15%, and in aver-
age (AVG) performance by 4.33% to 7.32%. Fur-
thermore, MultiPoT also capitalizes on Python’s
strength. On Math, where Python excels, MultiPoT
also achieves the best results, except in Deepseek
Coder, where it slightly trails Python but remains
significantly ahead of other languages.

MultiPoT achieves comparable or superior
performance to the best monolingual results
across all tasks and models. It is task-agnostic.
It surpasses Self-Consistency on four tasks, rank-
ing second on the remaining task, regardless of
whether on Code LLMs average (Table 12) or Chat-
GPT. MultiPoT is also model-agnostic. It is the top
performer across all LLMs on Tabular. On AVG,
MultiPoT outperforms the best monolingual result
on all four models. Particularly on ChatGPT and
Starcoder, it exhibits an improvement of over 4.6%.

The performance of PLs depends on the task
and model. Analyzing the interplay of PL, task,
and model in practical applications is challenging.
Therefore, MultiPoT is a great choice which has
consistently high performance across scenarios.

6 Discussion

6.1 Reasoning Ability of Different Languages

In Section 5.1, we note that the ranking of the av-
erage performance of PL varies on each model.
The language distribution in the pre-training data
of Starcoder and Deepseek Coder offers insights
into whether data amount, defined as the percent-
age of each language in the pre-training corpus,
impacts reasoning capabilities. Moreover, we are
interested in examining whether code generation
and reasoning of multilingual ability are aligned.
The difference between the two tasks is elucidated
in Appendix A.4. To assess code generation ability,
we utilize the results of each model on the Multilin-
gual HumanEval benchmark, focusing on the four
available languages, excluding R due to a lack of
evaluation dataset.

Data distribution influences but does not com-
pletely determine reasoning ability. Figure 4
shows the relative relationships among reasoning
performance of C++, Python, and Java are consis-
tent with data distribution on Starcoder. However,
R demonstrates unexpectedly strong performance,
which has an extremely low percentage in both
models. C++ has less data amount than Java on
Deepseek Coder, but better reasoning performance.
This suggests that there are other factors affecting
performance besides data distribution.

Code generation abilities do not always align
with reasoning abilities. We compare the four
languages excluding R in Figure 4. On ChatGPT,
the reasoning and code generation abilities of C++,
Java, and Python align perfectly. However, an oppo-
site trend is observed in Deepseek Coder’s Python,
JavaScript, and Java, where the two abilities di-
verge significantly. It highlights the necessity of
testing the reasoning abilities of different PLs.

Zero-shot reasoning ability shows consider-
able inconsistency when compared to 3-shot rea-
soning ability. Table 3 presents the results of zero-
shot and 3-shot experiments using Code Llama 34B
on Appl., where AC denotes accuracy, and incor-
rect outcomes are further classified into Runtime
Errors (RE) and Wrong Answers (WA). The results
reveal particularly steep declines in R, C++, and
JavaScript, largely driven by a significant increase
in RE. This suggests that different PLs exhibit vary-
ing levels of sensitivity to shot settings. Two promi-
nent error patterns emerge from the zero-shot out-
puts: (1) LLM frequently generates repetitive com-
ments until reaching the maximum sequence length,
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#Shots 0 3

RE WA AC RE WA AC

Python 17.33 29.97 52.71 2.72 32.14 65.14
R 55.81 15.45 28.74 2.08 34.47 63.44
C++ 59.61 14.90 25.48 0.34 30.87 68.79
Java 14.86 33.25 51.89 0.54 32.07 67.38
JavaScript 69.26 13.77 16.96 1.74 32.41 65.84

Table 3: Comparison for different PLs under zero-shot (0) and 3-shot (3) demonstrations. RE represents Runtime
Error. WA means Wrong Answer. AC represents ACcuracy.

StarC. C. Llama Deep.C. GPT

Python 61.03 73.23 75.80 77.62
R 58.86 75.11 76.02 79.00
C++ 59.75 72.82 75.80 77.82
Java 61.32 75.62 78.06 78.08
JavaScript 62.60 74.15 76.62 77.65

MultiPoT 64.52 75.71 78.41 83.94

Table 4: The average coverage rate on five tasks of Self-
Consistency and MultiPoT on each model.

Stability Metric Starcoder Deepseek Coder

Default 53.85 70.27
Length Short 53.36 69.99
Length Long 53.16 69.76
Random 53.71 69.99
Data Amount Little 53.18 70.20
Data Amount Large 53.55 69.43

∆ 0.69 0.84

Table 5: The performance of MultiPoT with different
sorting methods. Length Short/Long represents the as-
cending/descending order according to the length of
PoTs, respectively. ∆ denotes the range of change.

and (2) LLM generates CoT without correspond-
ing executable code. These observations highlight
the importance of high-quality, language-specific
demonstrations; only with effective demonstrations
can the model fully harness the reasoning capabili-
ties of different PLs.

6.2 MultiPoT Analysis

MutliPoT has the highest coverage rate. Unlike
the voting mechanism which requires a majority
for the correct answer, the coverage rate is the per-
centage of questions that have at least one correct
answer in five candidate answers in the dataset. For
example, if the candidate answers to a question are
“(6 5 5 5 7)” and the ground truth is “7”, the ques-
tion is covered. Coverage rate can be considered
as an upper bound because this metric represents
the proportion of all potentially solvable problems,
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Figure 5: The impact of the number of integrating PLs.
We test the different order of adding languages.

assuming there exists a selection mechanism bet-
ter than the current voting mechanism. Table 4
demonstrates coverage rates on all four models and
MultiPoT achieves the highest. The monolingual
sampling covers less than the multilingual attempts,
highlighting that the strength of different PLs ex-
ists. MultiPoT effectively utilizes the strength of
different PLs and has the highest upper bound.

MutliPoT has stable performance. When re-
sults are tied, the top-ranked result is selected. Dif-
ferent sorting methods reflect the stability. Table 5
shows the performance fluctuation. MultiPoT is
less than 1% across various sorting criteria, in-
cluding PoT length, randomness, or data amount
from pre-training, compared to the default cumula-
tive probability sorting. This indicates that Multi-
PoT consistently selects the correct answer directly,
with few instances of ties with incorrect answers.
This also suggests a lower probability of different
PoTs making the same errors.

More PLs are better. We investigate the im-
pact of the number of PLs on MultiPoT. On both
Starcoder and Deepseek Coder, we incrementally
add languages in both ascending and descending
order of data amount in Figure 5. The results show
that MultiPoT’s performance improves with more
PLs, regardless of the order. This suggests that
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Model Method Appl. Math Date Table Spatial AVG

Base Python 68.63 27.95 50.68 92.62 77.55 63.48
MultiPoT 71.17 27.95 58.54 93.96 79.60 66.24

Python Python 69.54 28.46 48.24 91.28 74.65 62.43
MultiPoT 70.67 27.46 55.83 92.62 76.70 64.65

Table 6: The performance of Python Self-Consistency and MultiPoT on Code Llama Base and Code Llama Python.

Type Starcoder ChatGPT

All Dynamic 50.41 74.92
Dynamic + Static 51.87 75.77

Table 7: The impact of different language type combina-
tions on MultiPoT. All Dynamic indicates that the three
languages are all dynamic, and Dynamic+Static indi-
cates a combination of dynamic and static languages.

MultiPoT is highly scalable and performance can
be further enhanced by incorporating more PLs.

More language types are better. Python, R,
and JavaScript are dynamic languages, while C++
and Java are static. To investigate whether a di-
verse set of language types enhances MultiPoT’s
performance, we focus on three PLs. On Starcoder
and ChatGPT, JavaScript emerges as the highest-
performing dynamic language, surpassing Java,
which leads between the static languages. Con-
sequently, we integrate JavaScript, Python, and
R as All Dynamic and combine Java, Python,
and R to represent Dynamic + Static. The re-
sults in Table 7 indicate that replacing the higher-
performing JavaScript with the lower-performing
Java improves performance. This suggests that
more language types can provide more diversity to
MultiPoT, thereby further enhancing performance.

MultiPoT also works on Python model. Our
prior experiments with Code LLMs utilize the Base
version. However, Code LLMs also have a Python-
specific version trained with additional Python cor-
pora. Evaluating MultiPoT on this Python ver-
sion, as shown in Table 6, we find that Python
Self-Consistency improves on Appl. and Math
but declines on the other tasks compared to the
Base model. Moreover, MultiPoT still outperforms
Python Self-Consistency on all tasks except Math,
highlighting the adaptability of MultiPoT. Notably,
MultiPoT’s performance on the Python model is
lower across all tasks than on the Base model. This
suggests that extensive training on monolingual cor-
pora might diminish the Base model’s multilingual
abilities on reasoning tasks.

MultiPoT is better than CoT Self-Consistency.

Date Table Spatial

CoT 82.38 91.28 97.70
PoT 79.40 97.28 97.95
MultiPoT 80.22 98.66 99.10

Table 8: Comparison between Self-Consistency of CoT,
PoT (Python), and MultiPoT. CoT results are based on
Deepseek LLM v2, while PoT and MultiPoT are based
on Deepseek Coder v2.

To compare the performance of CoT and PoT in
scenarios where precise mathematical calculations
are not required, we conduct experiments on Date,
Table, and Spatial—using Deepseek LLM v2 (a
405B MoE LLM) for CoT and Deepseek Coder
v2 (continually pretrained from Deepseek LLM
v2) for PoT. The results, shown in Table 8, indicate
that PoT achieves better Self-Consistency than CoT
on Table and Spatial, with MultiPoT further im-
proving performance. On Table, the improvement
demonstrates the advantage of PoT in understand-
ing and reasoning over structured data. On Date,
however, PoT slightly underperforms CoT, which
is primarily due to PoT interpreting the difference
between two dates as exclusive, while natural lan-
guage typically considers it inclusive. Nevertheless,
the results suggest that PoT remains valuable in sce-
narios where precise calculations are unnecessary,
and MultiPoT continues to be effective.

7 Conclusion

Regarding the reliance on Python in PoT, we con-
ducted extensive experiments across various mod-
els and tasks using multiple PLs. Our findings
show that Python is not always the best choice; the
optimal language depends on the specific task and
model. Building on this insight, we introduce Mul-
tiPoT, a simple yet effective multilingual integrated
method that leverages the strengths and diversity of
different PLs. MultiPoT significantly outperforms
Python and achieves matches or exceeds perfor-
mance to the best monolingual outcomes in nearly
all scenarios. With its high stability, MultiPoT of-
fers a promising avenue for future research.
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Limitations

Our study is comprehensive, but has certain limita-
tions that we plan to address in future research. Due
to computational resource constraints, we confine
our experiments to a select number of commonly
used programming languages (PLs). While these
PLs are representative, they do not encompass the
entire spectrum of languages used in programming.
Future research could investigate the advantages
of incorporating a broader range of programming
languages. This may reveal further insights and
improve the relevance of our findings.

Ethical Considerations

Our research utilizes publicly available models and
datasets with proper citations and adheres to the
usage guidelines of ChatGPT, minimizing the risk
of generating toxic content due to the widely-used,
non-toxic nature of our datasets and prompts.
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A Appendix

A.1 Tasks

Subset #Original #Filtered

Algebra 1,187 1,068
Counting & Probability 474 474
Geometry 479 466
Intermediate Algebra 903 721
Number Theory 540 528
Prealgebra 871 842
Precalculus 546 370

SUM 5,000 4,469

Table 9: After filtering, the statistics of MATH dataset.

Appl. comprises the GSM8K (Cobbe et al.,
2021), SVAMP (Patel et al., 2021), and As-
div (Miao et al., 2020) datasets. These datasets
contain elementary-level math problems set in spe-
cific application scenarios, focusing on mathemati-
cal abstraction and modeling skills, with relatively
low difficulty. Since they are the same type of
questions, we merge them into one task. Math, con-
sisting of the transformed MATH (Hendrycks et al.,
2021) dataset, whose answers to the problems are
expressed using LaTeX. It’s too hard to construct
prompts in other languages that meet all the require-
ments, we select those that can be calculated to a
single number, excluding problems with interval
or formula-based answers. The filtered results are
shown in Table 9.

Task #Data #Shots

Appl. 4,415 3
Math 4,469 3
Date 369 6
Tabular 149 3
Spatial 2,000 3

Table 10: Summarization of selected reasoning tasks.

Here are the details of our selected tasks, includ-
ing the number of questions in each task (#Data)
and the number of shots in demonstrations.

A.2 Additional Data

Table 11 is the raw data of Figure 3, shows the
greedy decoding results of each PL of each Code
LLMs. Table 12 shows that on the average perfor-
mance of three Code LLMs, MultiPoT surpasses all
Self-Consistency on four tasks, and is only lower
slightly than C++ on Spatial.

A.3 Error Analysis

We further classify incorrect results into Wrong An-
swer (WA) and Runtime Error (RE), representing
cases where the program runs but produces incor-
rect answers and where the program encounters
errors during execution, respectively. Tables 13 to
Table 16 show the results for the four models.

It is evident that there are significant differences
in the proportion of runtime errors (RE) across dif-
ferent languages and models for each task. Even
languages with similar performance exhibit differ-
ent distributions of errors. For instance, on Appl.
of Deepseek Coder, the accuracy difference be-
tween Java and JavaScript is less than 0.1%, yet
JavaScript has an RE rate of 2.06%, while Java’s
is only 0.63%. It indicates that the types of errors
vary significantly among languages.

A further categorization of the types of RE is
conducted. We classify all REs into eight error
types. Redeclaration represents duplicate naming
of variables. Division by Zero represents the de-
nominator in the division is zero. Illegal Output
represents the answer can not be parsed or con-
verted correctly. Time Limit Error represents the
program runs out of time and sometimes it is due to
stack space overflow. Compile Error often means
there are some syntax error in the program. Unde-
fined Identifier includes Undefined Variables and
Undefined Functions, which means the variables
or functions are not defined before they are used.
Variable Type Error indicates that the types of
variables are mismatched when they are involved
in some operations, for example addition or divi-
sion. Table 17 shows the proportion of different
RE types for Deepseek Coder across five tasks and
five languages. Table 18 presents the proportion of
various RE types for four LLMs on Appl. across all
languages. Deepseek Coder and the Appl. task are
selected because the languages have the most simi-
lar performance on them. The results demonstrate
that even in scenarios where languages exhibit sim-
ilar performance, the proportions of RE differ sig-
nificantly among languages. For instance, the RE
rate on ChatGPT’s Appl. of R and C++ differs by
only 0.02%, yet Illegal Output account for 82.46%
of C++ errors, in comparison to only 24.71% for
R. Given that each prompt is accurate, the differing
error distributions are attributable to the intrinsic
characteristics of the languages, thereby demon-
strating their diversity and the non-repetitive nature
of their errors.
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Appl. Math Date Tabular Spatial AVG

Starcoder

Python 43.06 15.78 32.79 74.50 63.55 45.94
R 40.63 14.63 34.96 77.85 52.60 44.13
C++ 44.21 14.43 18.43 77.18 61.90 43.23
Java 43.87 14.39 31.98 81.21 60.40 46.37
JavaScript 45.64 17.30 32.79 74.50 63.65 46.78

Code Llama

Python 65.14 23.09 51.76 89.26 74.60 60.77
R 63.44 23.58 57.99 89.93 71.35 61.26
C++ 68.79 22.76 39.57 88.59 74.90 58.92
Java 67.38 24.84 55.28 91.28 82.55 64.27
JavaScript 65.84 23.45 46.07 85.91 76.90 59.63

Deepseek Coder

Python 67.34 32.00 42.55 85.23 84.45 62.31
R 67.04 29.60 50.14 88.59 89.65 65.00
C++ 69.40 30.63 40.38 93.29 90.80 64.90
Java 69.08 32.02 44.17 91.28 84.50 64.21
JavaScript 68.95 32.29 49.59 91.28 74.20 63.26

Table 11: The greedy decoding results of each PL of each Code LLMs. The detailed numerical data for Figure 3.

Appl. Math Date Table Spatial

Python 62.11 28.43 43.45 88.59 79.12
R 60.08 25.99 49.50 88.14 79.18
C++ 63.66 25.23 33.88 90.38 81.60
Java 63.39 26.68 49.23 88.81 80.02
JavaScript 63.09 26.97 46.43 87.02 79.80

MultiPoT 64.39 28.64 51.13 92.17 80.95

Table 12: The average performance of three Code LLMs for Self-Consistency and MultiPoT in each task.

Upon further analysis of generated contents, sev-
eral common failure patterns emerge:

• Date Calculation: PoTs often misinterpret
the difference between two dates as exclu-
sive, contrary to natural language conventions,
where the interval is typically inclusive. Nev-
ertheless, R demonstrates comparable perfor-
mance to CoT on Date, indicating its potential
for temporal reasoning tasks.

• Output Content: PoTs frequently respond
to yes/no questions by outputting attributes
instead of directly answering the question. For
example, when asked, ‘On the desk, there is a
teal pen and a yellow textbook. Is the textbook
yellow?’, the correct answer is ‘yes’, but PoT
might respond with ‘yellow’.

• Demonstration Constraint: Demonstrations
are less restrictive for JavaScript, as it tends
to output extra information beyond what is
required, including descriptive sentences and
variables, even when only the final answer is
needed.

• Syntax Preference: C++ and Java tend to
leverage language-specific constructs like for-

loops, often reaching correct solutions in pat-
tern recognition problems. In contrast, other
languages that attempt step-by-step calcula-
tions may add or omit steps, leading to errors.

• Resource Constraints: Low-resource lan-
guages like R may cause the model to call
non-existent packages, particularly in com-
plex mathematical problems that rely on ex-
ternal tools.

A.4 Difference Between Code Generation and
PoT

Figure 4 illustrates that performance in code gen-
eration does not fully align with that in reasoning
tasks.

Although both tasks involve generating code to
solve problems, their objectives differ. The code
generation task assesses the LLM’s ability to assist
development in an engineering environment, cov-
ering real-world engineering issues. For example,
consider the following problems: ’Given a positive
floating point number, return its decimal part’ and
’Given a list of integers, return a tuple containing
the sum and product of all the integers in the list.’
Although these problems require some reasoning,
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Appl. Math Date Tabular Spatial

AC WA RE AC WA RE AC WA RE AC WA RE AC WA RE

Python 67.34 30.06 2.60 32.00 48.00 20.00 42.55 57.18 0.27 85.23 6.04 8.72 84.45 12.65 2.90
R 67.04 31.51 1.45 29.60 53.79 16.60 50.14 43.63 6.23 88.59 8.05 3.36 89.65 6.65 3.70
C++ 69.40 30.15 0.45 30.63 61.74 7.63 40.38 59.62 0.00 93.29 6.71 0.00 90.80 8.95 0.25
Java 69.08 30.28 0.63 32.02 60.80 7.18 44.17 47.15 8.67 91.28 7.38 1.34 84.50 14.65 0.85
JavaScript 68.95 28.99 2.06 32.29 55.36 12.35 49.59 49.86 0.54 91.28 7.38 1.34 74.20 19.45 6.35

Table 13: The execution result of programs generated from Deepseek Coder for five languages on five tasks. AC
represents Accept, which means the program can generate a correct answer. Wrong means the answer is not right.
RE represents Runtime Error, which means the program does not execute normally.

Appl. Math Date Tabular Spatial

AC WA RE AC WA RE AC WA RE AC WA RE AC WA RE

Python 43.06 53.70 3.24 15.78 60.66 23.56 32.79 63.41 3.79 74.50 14.09 11.41 63.55 29.65 6.80
R 40.63 57.94 1.43 14.63 66.08 19.29 34.96 55.83 9.21 77.85 19.46 2.68 52.60 28.65 18.75
C++ 44.21 54.74 1.04 14.43 71.81 13.76 18.43 81.57 0.00 77.18 18.12 4.70 61.90 37.75 0.35
Java 43.87 54.65 1.47 14.39 74.71 10.90 31.98 61.52 6.50 81.21 17.45 1.34 60.40 31.80 7.80
JavaScript 45.64 52.21 2.15 17.30 66.68 16.02 32.79 67.21 0.00 74.50 24.16 1.34 63.65 30.10 6.25

Table 14: The execution result of programs generated from Starcoder.

the focus is primarily on language comprehension
and engineering skills.

In contrast, reasoning tasks aim to test the LLM’s
logical reasoning abilities. The generated code acts
as a carrier of logic and facilitates the use of tools,
such as more precise calculations, dictionaries for
storing and retrieving attribute information, or cal-
endars to aid in date reasoning. Reasoning tasks
focus on a subset of a programming language’s
capabilities, rather than its entire spectrum in engi-
neering practice.

Therefore, although there is some overlap be-
tween code generation and reasoning tasks, they
are not entirely the same. This is why there is
only partial consistency between the two tasks in
Figure 4 and highlights the necessity of testing dif-
ferent programming languages in reasoning tasks..
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Appl. Math Date Tabular Spatial

AC WA RE AC WA RE AC WA RE AC WA RE AC WA RE

Python 65.14 32.14 2.72 23.09 57.04 19.87 51.76 48.24 0.00 89.26 8.72 2.01 73.60 18.85 7.55
R 63.44 34.47 2.08 23.58 61.42 14.99 57.99 41.73 0.27 89.93 9.40 0.67 71.35 24.00 4.65
C++ 68.79 30.87 0.34 22.76 71.69 5.55 39.57 59.89 0.54 88.59 10.74 0.67 74.90 23.80 1.30
Java 67.38 32.07 0.54 24.84 68.20 6.96 55.28 38.75 5.96 91.28 6.71 2.01 82.55 17.05 0.40
JavaScript 65.84 32.41 1.74 23.45 67.69 8.86 46.07 53.39 0.54 85.91 12.75 1.34 76.90 21.50 1.60

Table 15: The execution result of programs generated from Code Llama.

Appl. Math Date Tabular Spatial

AC WA RE AC WA RE AC WA RE AC WA RE AC WA RE

Python 80.75 15.61 3.65 39.74 22.76 37.50 46.61 52.85 0.54 94.63 4.70 0.67 91.70 8.00 0.30
R 79.37 16.78 3.85 34.86 25.53 39.61 55.01 42.82 2.17 89.93 7.38 2.68 92.85 5.75 1.40
C++ 79.46 16.67 3.87 39.90 39.94 20.16 47.70 50.95 1.36 91.95 4.03 4.03 86.65 12.20 1.15
Java 80.63 16.44 2.92 42.65 41.96 15.39 51.22 40.92 7.86 87.92 6.71 5.37 86.30 11.00 2.70
JavaScript 81.25 15.24 3.51 36.07 24.23 39.70 55.01 44.17 0.81 92.62 4.70 2.68 90.15 9.70 0.15

Table 16: The execution result of programs generated from ChatGPT.

Task Language Redecl
aration

Division
by Zero

Illegal
Output

Time Limit
Error

Compile
Error

Undefined
Identifier

Variable
Type Error

Other
Error

Appl.

Python - - 61.74 2.61 9.57 23.48 2.61 -
R - - 32.81 4.69 39.06 23.44 - -
C++ 60.00 - 15.00 10.00 5.00 5.00 - 5.00
Java 46.43 7.14 - 3.57 14.29 3.57 25.00 -
JavaScript 5.49 - 84.62 2.20 2.20 5.49 - -

Math

Python - 2.57 19.91 31.21 4.70 31.1 7.61 2.91
R - - 20.22 10.65 10.24 38.27 1.35 19.27
C++ 2.93 - 17.60 28.15 21.11 7.04 4.40 18.77
Java 1.25 3.12 16.20 28.97 16.51 8.72 3.12 22.12
JavaScript 1.09 - 23.01 22.64 6.34 32.43 - 14.49

Date

Python - - - - - 100 - -
R - - - 95.65 4.35 - - -
C++ - - - - - - - -
Java - - - - 3.12 56.25 - 40.62
JavaScript 50.00 - - - - 50.00 - -

Tabular

Python - - - - 84.62 - 7.69 7.69
R - - - - - - 20.00 80.00
C++ - - - - - - - -
Java - - - - 50.00 - - 50.00
JavaScript - - - - - 100 - -

Spatial

Python - - - - 1.72 1.72 96.55 -
R - - - - - - 22.97 77.03
C++ - - 20.00 - 80.00 - - -
Java - - - - 5.88 - 17.65 76.47
JavaScript - - - - 0.79 96.85 - 2.36

Table 17: Runtime Error concrete analysis for five languages on five tasks of Deepseek Coder.
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Model Language Redecl
aration

Division
by Zero

Illegal
Output

Time Limit
Error

Compile
Error

Undefined
Identifier

Variable
Type Error

Other
Error

Starcoder

Python - - 69.93 1.40 3.50 17.48 1.40 -
R - - 38.10 1.59 23.81 34.92 1.59 -
C++ 28.26 - 8.70 17.39 17.39 8.70 - 19.57
Java 6.15 3.08 3.08 3.08 24.62 3.08 56.92 -
JavaScript 29.47 - 53.68 3.16 2.11 9.47 - 2.11

Code Llama

Python - - 49.17 1.67 6.67 39.17 1.67 1.67
R - - 36.96 3.26 4.35 51.09 1.09 3.26
C++ 13.33 - 6.67 6.67 20.00 33.33 - 20.00
Java 8.33 - 4.17 - 12.50 8.33 58.33 8.33
JavaScript 9.09 - 68.83 1.30 2.60 14.29 - 3.90

Deepseek Coder

Python - - 61.74 2.61 9.57 23.48 2.61 -
R - - 32.81 4.69 39.06 23.44 - -
C++ 60.00 - 15.00 10.00 5.00 5.00 - 5.00
Java 46.43 7.14 - 3.57 14.29 3.57 25.00 -
JavaScript 5.49 - 84.62 2.20 2.20 5.49 - -

ChatGPT

Python - - 51.55 0.62 10.56 35.40 1.24 0.62
R - - 24.71 0.59 23.53 43.53 1.18 1.76
C++ - 0.58 82.46 4.68 - 8.19 - 4.09
Java 0.78 2.33 67.44 2.33 1.55 9.3 13.95 2.33
JavaScript 2.58 - 50.32 1.29 0.65 36.13 - 9.03

Table 18: Runtime Error concrete analysis for five languages on Appl. of four LLMs.
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A.5 Prompts
Here are our multilingual prompts. We show
prompts of Tabular(3-shots) as an example and
prompts for other tasks are in the released code.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Define the table of penguins with their attributes
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15},
  {"name": "James", "age": 12, "height": 90, "weight": 12}
]

# Count the number of penguins that are less than 8 years old
penguins_less_than_8_years = sum(1 for penguin in penguins if penguin["age"] < 8)

ans = penguins_less_than_8_years

Figure 6: Python Prompt of the first question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Define the data for the penguins
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15}
]

# Find the youngest penguin
youngest_penguin = min(penguins, key=lambda p: p["age"])
ans = youngest_penguin["name"]

Figure 7: Python Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Creating a list of dictionaries to represent each penguin and their attributes
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15}
]

# Sorting the list of penguins by their names in alphabetical order
sorted_penguins = sorted(penguins, key=lambda p: p["name"])

# Extracting the name of the second penguin in the sorted list
ans = sorted_penguins[1]["name"]

Figure 8: Python Prompt of the third question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <vector>

using namespace std;

// Define a structure for storing penguin data
struct Penguin {
  string name;
  int age;
  int height;
  int weight;
};

int main() {
  // Create a vector of Penguin structures
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15},
    {"James", 12, 90, 12}
  };

  // Count penguins less than 8 years old
  int count = 0;
  for (const auto& penguin : penguins) {
    if (penguin.age < 8) {
      count++;
    }
  }
  int ans = count;
  // Print the result
  cout << ans << endl;

  return 0;
}

Figure 9: C++ Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <string>
#include <vector>

using namespace std;

struct Penguin {
  string name;
 int age;
 int height;
 int weight;
};

int main() {
  // Create a list of penguins
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15}
  };

  // Initialize variables to track the youngest penguin
  Penguin youngest = penguins[0];

  // Iterate through the list to find the youngest penguin
 for (const Penguin& penguin : penguins) {
   if (penguin.age < youngest.age) {
      youngest = penguin;
    }
  }

  string ans = youngest.name;
  // Output the name of the youngest penguin
  cout << ans << endl;

 return 0;
}

Figure 10: C++ Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct Penguin {
  string name;
 int age;
 int height;
 int weight;
};

int main() {
  // Creating a list of penguins
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15}
  };

  // Sorting the penguins by name using a simpler lambda function
 sort(penguins.begin(), penguins.end(), [](const Penguin &a, const Penguin &b) {
   return a.name < b.name;
  });

  // Displaying the name of the second penguin after sorting
  string ans = penguins[1].name;
  cout << ans << endl;

 return 0;
}

Figure 11: C++ Prompt of the third question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.ArrayList;
import java.util.List;

public class PenguinAgeCounter {
 public static void main(String[] args) {
   List<Penguin> penguins = new ArrayList<>();

   // Add penguins to the list
   penguins.add(new Penguin("Louis", 7, 50, 11));
   penguins.add(new Penguin("Bernard", 5, 80, 13));
   penguins.add(new Penguin("Vincent", 9, 60, 11));
   penguins.add(new Penguin("Gwen", 8, 70, 15));
   penguins.add(new Penguin("James", 12, 90, 12));

   // Count the number of penguins less than 8 years old
   int count = 0;
   for (Penguin penguin : penguins) {
     if (penguin.age < 8) {
        count++;
      }
    }
   int ans = count;
   System.out.println(ans);
  }
}

class Penguin {
 String name;
 int age;
 int height; // in cm
 int weight; // in kg

 public Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }
}

Figure 12: Java Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.ArrayList;
import java.util.List;

public class PenguinAgeFinder {
 public static void main(String[] args) {
   // Create a list of Penguin objects
   List<Penguin> penguins = new ArrayList<>();
   penguins.add(new Penguin("Louis", 7, 50, 11));
   penguins.add(new Penguin("Bernard", 5, 80, 13));
   penguins.add(new Penguin("Vincent", 9, 60, 11));
   penguins.add(new Penguin("Gwen", 8, 70, 15));

   // Call the method to find the youngest penguin
   Penguin youngest = findYoungestPenguin(penguins);

   // Print the name of the youngest penguin
   String ans = youngest.name;
   System.out.println(ans);
  }

 // Method to find the youngest penguin
 public static Penguin findYoungestPenguin(List<Penguin> penguins) {
   Penguin youngest = penguins.get(0);
   for (Penguin penguin : penguins) {
     if (penguin.age < youngest.age) {
        youngest = penguin;
      }
    }
   return youngest;
  }
}

// Define the Penguin class with relevant attributes
class Penguin {
 String name;
 int age;
 int height; // in cm
 int weight; // in kg

 // Constructor to initialize a Penguin object
 Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }
}

Figure 13: Java Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.*;

public class Main {
 public static void main(String[] args) {
   // Step 2: Create Penguin objects
   Penguin louis = new Penguin("Louis", 7, 50, 11);
   Penguin bernard = new Penguin("Bernard", 5, 80, 13);
   Penguin vincent = new Penguin("Vincent", 9, 60, 11);
   Penguin gwen = new Penguin("Gwen", 8, 70, 15);

   // Step 3: Add Penguins to a list
   List<Penguin> penguins = new ArrayList<>();
   penguins.add(louis);
   penguins.add(bernard);
   penguins.add(vincent);
   penguins.add(gwen);

   // Step 4: Sort the list by name
   Collections.sort(penguins, Comparator.comparing(Penguin::getName));

   // Step 5: Find and print the name of the second penguin
   Penguin secondPenguin = penguins.get(1); // Lists are zero-indexed
   String ans = secondPenguin.getName();
   System.out.println(ans);
  }
}

// Step 1: Define the Penguin class
class Penguin {
 private String name;
 private int age;
 private int height; // in cm
 private int weight; // in kg

 // Constructor
 public Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }

 // Getters
 public String getName() {
   return name;
  }
}

Figure 14: Java Prompt of the third question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Step 1: Create an array of penguin objects
let penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Step 2: Add James to the array
penguins.push({ name: "James", age: 12, height: 90, weight: 12 });

// Step 3: Initialize a counter
let count = 0;

// Step 4: Iterate over the array
for (let penguin of penguins) {
 // Step 5: Check if the penguin's age is less than 8
 if (penguin.age < 8) {
   count++;
  }
}

let ans = count;

Figure 15: JavaScript Prompt of the first question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Step 1: Create an array of penguins
const penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Step 2: Find the youngest penguin
let youngest = penguins[0];

for (let i = 1; i < penguins.length; i++) {
 if (penguins[i].age < youngest.age) {
   youngest = penguins[i];
  }
}

ans = youngest.name;

Figure 16: JavaScript Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Define the array of penguins
let penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Sort the penguins array by the name property
penguins.sort((a, b) => {
 if (a.name < b.name) {
   return -1;
  }
 if (a.name > b.name) {
   return 1;
  }
 return 0;
});

// The name of the second penguin after sorting
let ans = penguins[1].name;

Figure 17: JavaScript Prompt of the third question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create the data frame
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen", "James"),
age = c(7, 5, 9, 8, 12),
height = c(50, 80, 60, 70, 90),
weight = c(11, 13, 11, 15, 12)

)

# Filter and count the penguins younger than 8 years
num_penguins_younger_than_8 <- nrow(subset(penguins, age < 8))

ans = num_penguins_younger_than_8

Figure 18: R Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create a data frame representing the penguins
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen"),
age = c(7, 5, 9, 8),
height_cm = c(50, 80, 60, 70),
weight_kg = c(11, 13, 11, 15)

)

# Find the youngest penguin by locating the minimum age
youngest_index <- which.min(penguins$age)

ans = penguins$name[youngest_index]

Figure 19: R Prompt of the second question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create a data frame with the penguins' information
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen"),
age = c(7, 5, 9, 8),
height = c(50, 80, 60, 70),
weight = c(11, 13, 11, 15)

)

# Sort the data frame by the 'name' column
sorted_penguins <- penguins[order(penguins$name),]

# Extract the name of the second penguin in the sorted list
ans <- sorted_penguins$name[2]

Figure 20: R Prompt of the third question.
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