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Abstract

This study evaluates the effectiveness of pre-
trained language models in identifying argu-
ment structure constructions, important for
modeling both first and second language learn-
ing. We examine three methodologies: (1)
supervised training with RoBERTa using a
gold-standard ASC treebank, including by-tag
accuracy evaluation for sentences from both
native and non-native English speakers, (2)
prompt-guided annotation with GPT-4, and
(3) generating training data through prompts
with GPT-4, followed by RoBERTa training.
Our findings indicate that RoBERTa trained on
gold-standard data shows the best performance.
While data generated through GPT-4 enhances
training, it does not exceed the benchmarks set
by gold-standard data.

1 Introduction

Argument structure constructions (ASCs) are lexi-
cogrammatical patterns at the clausal level. They
consist of an argument structure and a main verb,
with each argument contributing to the clause’s
meaning (Goldberg, 1995). The characteristics of
ASC use, such as frequency and/or the strength of
association between a verb and its argument struc-
ture, have been actively explored in previous stud-
ies on first language (L1) and second language (L2)
learning and assessment (Tomasello and Brooks,
1998; Ellis, 2002; Ninio, 1999; Kyle and Crossley,
2017).

To effectively model human language learn-
ing/development using ASC features, ASCs must
be reliably identified in target texts. Recent studies
have shifted from manual (e.g., Ellis and Ferreira-
Junior, 2009) to automatic ASC analyses (e.g.,
Kyle, 2016; Kyle and Sung, 2023; Hwang and
Kim, 2023). However, building automated ASC
annotation systems has proven challenging due to
syntactic ambiguity. For example, while syntactic
analyses would represent the clauses (1) she ran [to

Figure 1: Distinguishing semantic roles in similar de-
pendency structures of two different types of ASCs,
visualized by DisplaCy (Honnibal et al., 2020)

the mountains] and (2) she ran [in the mountains]
identically based on the form (i.e., subject-verb-
prepositional phrase structures), they imply differ-
ent meanings and represent distinct ASC types. In
case (1), the prepositional phrase [to the mountains]
is an argument that completes the meaning by spec-
ifying the goal of the movement. In contrast, in
case (2), the phrase [in the mountains] modifies the
location of the event, as illustrated in Figure 1. One
potential reason for this mismatch is that human
language often employs a pre-built form-meaning
schema at the clausal level (Fillmore, 1968; Gold-
berg, 1995), which can be challenging to capture
from a bottom-up perspective. A top-down ap-
proach, directly assigning ASC types based on their
clausal contexts, is therefore likely more effective
than a bottom-up approach.

Recent advancements in pre-trained language
models (PLMs) may offer a promising solution to
these challenges, given their effectiveness in stor-
ing sentence-level contextual knowledge, as well
as part-of-speech and syntactic knowledge within
their word embeddings (Miaschi and Dell’Orletta,
2020; Hewitt and Manning, 2019). The follow-up
empirical question is whether these models can reli-
ably capture specific types of ASCs, both with and
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without top-down annotations provided by trained
human annotators focusing on the linguistic charac-
teristics of clausal forms. To address this, the cur-
rent study explores the use of PLMs for identifying
ASCs, evaluating three methodologies: (1) super-
vised training with a encoder model (RoBERTa)
using a gold-standard ASC treebank, (2) prompt-
guided annotation of unlabeled data with a decoder
mode (GPT-4), and (3) prompt-guided generation
of training data with GPT4, followed by training
with RoBERTa.

2 Backgrounds

2.1 Language learning and ASC use
Usage-based constructionist theories propose that
language development occurs as learners form
form-meaning pairings (i.e., constructions) through
statistical induction from diverse linguistic inputs.
In modeling language learning/development, a key
aspect of this approach involves ASCs, which are
clausal level constructions that convey the core
concepts of a sentence. They are also instrumen-
tal in communications as they encapsulate concep-
tual archetypes, such as motion or causative events
(Bencini and Goldberg, 2000; Goldberg, 1995,
2003; O’Connor and Kay, 2003; Rappaport Ho-
vav and Levin, 1998).

Building on theories that emphasize the signif-
icance of ASCs, empirical studies in language
learning (e.g., Ellis, 2002; Ninio, 1999; Tomasello,
2005; Gries and Wulff, 2005) have indicated that
the frequency of ASCs (and of verbs), along with
the strength of their associations, are key factors
in shaping their developmental trajectory. To be
specific, language learners make form-meaning
mappings between frequent linguistic forms (e.g.,
give-me-the-toy) and their corresponding meanings
(Ninio, 1999) early in their learning process. As
learners encounter more related but varied inputs
(e.g., hand-me-the-toy, bring-me-the-toy), they de-
velop schematic representations of these forms
like VERB-me-the-toy, or more abstractly, VERB-
Recipient-Object)1. In short, as they develop, learn-
ers adopt a broader range of less frequent ASCs,
utilize a wider range of verbs within specific ASCs,

1Research has shown that learners tend to initially over-
generalize schematic slots (Ambridge et al., 2013; Goldberg
et al., 2004; Ninio, 1999). For example, after learning how to
use a basic transitive ASC form (e.g., she opened the door), a
learner might mistakenly extend this construction to intransi-
tive verbs, resulting in ungrammatical sentences (e.g., she sits
the chair). However, they gradually fine-tune their linguistic
system through additional input and use.

and form stronger associations between verbs and
ASCs, thus reducing their use of atypical verbs in
these constructions.

The use of ASCs has proven to be a useful indi-
cator of language proficiency, applicable to NLP
applications such as automatic scoring and model-
ing human language development. Kyle and Cross-
ley (2017), for example, found that more proficient
L2 writers tended to use less frequent but more
strongly associated verb-ASC combinations. Addi-
tionally, they found that ASC-based indices were
better predictors of holistic writing scores than
classic indices of syntactic complexity (e.g., mean
length of T-unit, mean length of clause), which
focused on the structural elements of sentences
without accounting for the functional relationships
conveyed by ASCs. Relatedly, scholars have also
found that the use of particular ASC types indi-
cate L2 proficiency. For example, Hwang and Kim
(2023) found that more proficient L2 writers tended
to use a wider range of ASC types overall, and also
tended to use a higher proportion of passive and
caused-motion ASCs.

2.2 Identification of ASCs

To accurately and reliably identify ASCs, initial
studies relied on time-intensive manual analyses
(e.g., Ellis and Ferreira-Junior, 2009). However,
recognizing the need for efficiency, researchers
have increasingly been investigating the feasibility
of automated ASC analysis for some time now, as
illustrated below.

2.2.1 Use of dependency representations
The advent and popularization of syntactic de-
pendency representation in treebanks and parsers
(de Marneffe and Manning, 2008; Chen and Man-
ning, 2014) provided a helpful starting point for
automated ASC analysis. For example, O’Donnell
and Ellis (2010) used a dependency parsed ver-
sion of the BNC (Andersen et al., 2008) to ex-
plore the feasibility of extracting ASCs using de-
pendency tags. While this approach allowed for
some target constructions to be accurately ex-
tracted (e.g., VERB-preposition-noun construction:
[talked about it], Römer et al., 2014) overall accu-
racy was insufficient for broader use.

Over time, the introduction of NLP systems uti-
lizing neural networks (e.g., Chen and Manning,
2014) substantially increased dependency parsing
accuracy, sparking renewed efforts in automated
ASC annotation (e.g., Hwang and Kim, 2023; Kyle,
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2016; Kyle and Crossley, 2017). In summary, with
these more accurate parsers, researchers attempted
to extract ASCs based on syntactic frames (built
from dependency representations) and employed
mapping systems to categorize them. However, a
key issue with using only syntactic frames to iden-
tify ASCs is that current representations lack the
semantic information needed to disambiguate cer-
tain ASC types (e.g., between intransitive simple
and intransitive motion constructions, as illustrated
in Figure 1; also see Kyle and Sung, 2023). To
improve accuracy, an alternative approach that con-
siders the semantics of the clause is necessary.

2.2.2 Use of semantic role labels
Another approach involves leveraging the semantic
information in ASCs, as they contain “argument
roles” that often correspond to traditional semantic
roles (e.g., agent, patient, theme, goal). For scal-
able and automatic extraction of ASCs, databases
annotated with semantic role labels, such as Prop-
Bank (Palmer et al., 2005) or the Universal Propo-
sitions (UP) treebank (Akbik et al., 2015), or au-
tomated semantic role labeling systems(Gardner
et al., 2018; Shi and Lin, 2019), may prove use-
ful. This approach mirrors previous efforts where
researchers extracted ASCs based on syntactic in-
formation from dependency treebanks and parsers.

However, there are two major obstacles with
solely relying on semantic role labelling systems
at present. First, the accuracy of current automated
semantic role labeling systems is still not sufficient
for this task2. Second, it is sometimes not straight-
forward to map the output of semantic role labeling
systems to ASCs. Typically, these systems use ab-
stract semantic role labels (e.g., ARG0, ARG1) that
pose challenges in directly mapping to theoretical
ASC categorizations for some complex ASCs3.

To address this issue, one potential solution in-
volves automatically extracting semantic roles from
a clause, grouping them into semantic frames, and
mapping each frame to corresponding ASC types
using linguistic knowledge. Subsequently, these

2To our best understanding, the publicly-available seman-
tic role labeling achieved an F1 of 0.86 on argument tagging,
and 0.95 on predicate tagging (Gardner et al., 2018; Shi and
Lin, 2019). Note that these scores are for large-grained argu-
ment tags, which do not offer the precision required for ASC
identification.

3Particularly, ARG2 and ARG3 cover a number of seman-
tic categories. According to Jurafsky and Martin (Chapter
24.4), ARG2 includes benefactive, instrumental, attributive,
or end-state roles, while ARG3 encompasses start-point, bene-
factive, instrumental, or attributive roles.

semi-automatically mapped ASCs can be trained
using a sequential learning model. For example,
Kyle and Sung (2023) utilized a combination of UP
treebank (Akbik et al., 2015), VerbNet (Schuler,
2005), and FrameNet (Fillmore et al., 2003) to ex-
tract semantic roles and corresponding sentences
from a subset of the English Web Treebank (Sil-
veira et al., 2014). The extracted semantic roles
were grouped into semantic frames, and researchers
assigned ASCs to each frame, creating a silver-
annotated ASC treebank (ASC Treebank v1). They
then trained a transformer model using RoBERTa
embeddings with the semi-automatically annotated
ASC labels and compared its performance against
three probabilistic models: one based on verb lem-
mas, another on syntactic frames using dependency
parsing, and a third combining both verb lemmas
and syntactic frames. The results indicated that the
transformer model trained on silver-annotated sen-
tences based on the semantic role labels achieved
the highest classification accuracy (F1 = .918), out-
performing the other models. Despite this success,
there is room to improve the model’s accuracy (par-
ticularly at the ground truth level) by leveraging
gold-standard annotations (Kyle and Sung, 2023;
Sung and Kyle, 2024).

2.2.3 Use of the gold standard ASC treebanks
As discussed, researchers have employed scalable
databases and systems to extract ASCs. While
these approaches have demonstrated effectiveness,
they remain limited in their ability to differenti-
ate ambiguous cases that cannot be fully captured
by automatically extracted syntactic or semantic
frames. A potential alternative is going back to con-
struct a treebank from scratch, which echoes earlier
efforts to manually identify ASCs (e.g., Ellis and
Ferreira-Junior, 2009). However, the current goal
is to create (1) a training set for supervised learning,
specifically designed for sequential named entity
recognition (NER) tasks4, (2) input examples for
few-shot learning in unsupervised tasks, and (3) a
test set to evaluate the model’s accuracy.

Recently, Sung and Kyle (2024) released a gold-
standard annotated treebank of ASCs (ASC tree-
bank v2), which includes sentences from the En-
glish Web Treebank (EWT), as well as sentences
written by L2 users from ESL-WR (Berzak et al.,
2016), and spoken by L2 users from ESL-SP (Kyle
et al., 2022) (10,204 sentences; 22,069 ASC to-

4Methodologically, Kyle and Sung (2023) applied this
approach to the silver-annotated ASC treebank.
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kens). This treebank can be leveraged for more
robust training and precise evaluation of developed
models aimed at identifying ASCs.

3 Related work

3.1 Automated linguistic annotation with
encoder models

Recent advancements have underscored the po-
tential of PLMs in automated linguistic annota-
tion, as encoder models (e.g., BERT [Devlin et al.,
2018]; RoBERTa [Liu et al., 2019]) have demon-
strated impressive gains in supervised learning
tasks. Based on the Transformer architecture
(Vaswani et al., 2017), PLMs have been exten-
sively pre-trained on large text corpora and adeptly
store morpho-syntactic and sentence-level contex-
tual knowledge within their word embeddings (Mi-
aschi and Dell’Orletta, 2020; Hewitt and Manning,
2019). One fundamental application, often consid-
ered first in linguistic annotation, is dependency
tagging and parsing. The performance of these
models, specified for English, typically achieves an
F1 score above 0.90 (e.g., Honnibal et al., 2020).
Beyond syntactic analysis, Shi and Lin (2019)
demonstrated that a BERT-LSTM based model
could attain F1 scores of 0.90 on in-domain test sets
and 0.84 on out-domain test sets in semantic role
labeling. This was accomplished through argument
identification and classification, without the need
for auxiliary syntactic features like part-of-speech
tags or dependency trees.

While dependency parsing and semantic role la-
beling have focused on word-level linguistic an-
notations, a RoBERTa-based model has shown
promising results with discourse-level linguistic
annotation. For example, recently Eguchi and Kyle
(2023) applied a RoBERTa-based ensemble model
to identify and categorize rhetorical stance features
in academic English writing. By employing a dis-
course analytic framework and manually annotat-
ing 4,688 sentences across eight rhetorical stance
categories, they trained an ensemble model com-
bining RoBERTa and LSTM. This model achieved
a macro-averaged F1 score of 0.72 in span iden-
tification of stance-taking expressions, surpassing
pre-adjudication human annotator reliability.

3.2 Automated linguistic annotation with
decoder models

To effectively employ encoder models for fine-
grained linguistic analyses, it is important to collect

and precisely annotate a certain amount of training
data for the linguistic features of interest. However,
data annotation is often a costly process. This cost
encompasses the labor involved in researchers re-
cruiting, training, and managing human annotators,
as well as the time spent by annotators in labeling
raw data. In this context, recent studies have ex-
plored ways to effectively use decoder models (e.g.,
GPT) for data annotation with unsupervised learn-
ing (Radford et al., 2019). They have demonstrated
impressive zero-shot or few-shot learning abilities,
which allow them to perform tasks with minimal or
no task-specific training data (Brown et al., 2020).

For example, Ding et al. (2022) investigated
leveraging GPT-3 for data annotation in different
NLP tasks, including an NER task. They devel-
oped three distinct GPT-3-based data annotation
approaches: (1) prompt-guided unlabeled data an-
notation, (2) prompt-guided training data genera-
tion, and (3) dictionary-assisted training data gen-
eration. Subsequent experiments on both sequence-
and token-level NLP tasks were used to evaluate
their performance. The findings indicated that di-
rectly annotating unlabeled data was effective for
tasks with a small labelling task, while generation-
based methods proved more suitable for tasks with
a larger labelling task. Similarly, Yu et al. (2023)
investigates the application of GPT models to au-
tomate complex pragmatic-discourse features of
apology in zero and few-shot settings. By com-
paring the performance of GPT-3.5, GPT-4, and
human annotations in annotating apology compo-
nents, the study demonstrated that GPT-4’s accu-
racy approached that of human annotators.

On the contrary, the recent study by Ettinger et al.
(2023) found limited success using GPT-3, Chat-
GPT, and GPT-4 models for semantic annotations
(i.e., abstract meaning representation [Banarescu
et al., 2013]). The experiments included zero and
few-shot experiments, as well as an experiment fo-
cusing on PLMs’ ability to handle metalinguistic
queries (e.g., identifying primary sentence events
and predicates). A comprehensive evaluation of
parse acceptability demonstrated that, even with
few-shot examples, the models almost never suc-
ceeded in producing completely accurate parses.
The findings indicate that while these models cap-
ture some semantic elements, significant challenges
persist in achieving precise semantic analyses.
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4 Methodology

4.1 Datasets

In this study, we utilize two treebanks, namely
the silver (v1) and gold (v2) versions of the ASC
treebank. The first silver version (Kyle and Sung,
2023) includes 26,437 ASC tokens that were semi-
automatically annotated5. The second gold version
(Sung and Kyle, 2024) includes 22,069 manually
annotated ASC tokens6. The sentences in this tree-
bank were sampled from the English Web Treebank
(ETW) (Silveira et al., 2014), L2-Written (ESL-
WR) (Berzak et al., 2016), and L2-spoken (ESL-
SP) (Kyle et al., 2022) treebanks, which are all part
of the Universal Dependencies project (Nivre et al.,
2020). Given the relatively small representation of
L2-written (ESL-WR) and spoken (ESL-SP) data,
training, development, and test sets were resam-
pled with a 34/33/33 distribution. The L1 (EWT)
sentences retained their original sections and were
roughly distributed at 80/10/10.

Table 1 illustrates the nine ASC tags along with
the most prototypical semantic roles that were
mapped in two treebanks (Kyle and Sung, 2023;
Sung and Kyle, 2024), accompanied by examples
from the annotated dataset. Appendix A shows
ASC type frequencies in each dataset.

4.2 Experiment setup

The purpose of this study is to explore how to
leverage PLMs, specifically RoBERTa (an encoder
model) and GPT-4 (a decoder model), for ASC an-
notations which could assist in modeling and mea-
suring human language development. To achieve
this goal, we designed three different approaches
to utilize PLMs to evaluate and compare their per-
formance (Figure 2).

4.2.1 Experiment 1
The objective of the first experiment is to in-
vestigate supervised learning using gold-standard
data applied with RoBERTa embeddings (Liu
et al., 2019). To accomplish this, we trained a
transformer-based machine learning model, em-
ploying the open-access Python library, spaCy (ver-
sion 3.7.4; Honnibal et al., 2020) for a multi-class
NER task. The model leverages transformer-based

5This dataset (CC-BY-NA-SA 4.0) is publicly available at
the ASC-Treebank GitHub repository(https://github.com/
LCR-ADS-Lab/ASC-Treebank).

6This dataset (CC-BY-NA-SA 4.0) is publicly available at
the ASC-Treebank GitHub repository and the osf repository
(https://osf.io/v75qu/).

Figure 2: Experiment overview

RoBERTa embeddings (via the en_core_web_trf
pipeline), integrating pre-trained embeddings and
fine-tuning them for the NER task by adjusting the
model’s weights based on the labeled data used
for training. SpaCy’s method includes a transition-
based parser, which is primarily used for depen-
dency parsing but, in this case, provides syntac-
tic context that enhances the NER model’s perfor-
mance.

To evaluate the performance, we constructed
three comparative models: (1) a model using silver-
standard data, (2) a model trained with gold L1
data, and (3) a model trained with both gold L1 and
L2 data. Considering the necessity for accurate per-
formance on L2 data to capture non-native English
linguistic structures, we conducted detailed testing
on each L1, L2 written, and L2 spoken data. For
specifics on the hyperparameter settings, refer to
Appendix B.

4.2.2 Experiment 2
The goal of the second experiment is to explore
prompt-guided annotation of unlabeled data. To
this end, GPT-4 was employed to generate labels
for a subset of the test set from the gold-standard
treebank. Due to the high processing costs and
time, we streamlined the task by filtering the tag set
– reducing the number of tags from nine to seven by
removing the ATTR and PASSIVE tags. Moreover,
we utilized a random balanced extraction method to
select sentences for annotation, ultimately resulting
in a total of 282 sentences.

To evaluate performance, we provided GPT-4
with three distinct prompts for label generation on
the test set: (1) zero-shot, (2) 3-shot, and (3) 10-
shot. In cases of few-shot learning, examples were
randomly selected from the gold-standard ASC
treebank (including both L1 and L2 datasets). We
compared these results with baseline scores from
the best model trained under a supervised learn-
ing. This comparative model, as described in Ex-
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ASC (Annotated tag) Semantic frame Example

Attributive (ATTR) theme-V-attribute Ittheme is now visibleattribute on the street
Caused-motion (CAUS_MOT) agent-V-theme-destination Iagent put ittheme [on the calendars]destination

Ditransitive (DITRAN) agent-V-recipient-theme Iagent gave himrecipient [the address]theme

Intransitive motion (INTRAN_MOT) theme-V-goal Itheme won’t go [out the door]goal

Intransitive resultative (INTRAN_RES) patient-V-result Moneypatient may become tightresult

Intransitive simple (INTRAN_S) agent-V Iagent am working from the office
Passive (PASSIVE) theme-aux-Vpassive Theytheme were recommendedpassive by him
Transitive resultative (TRAN_RES) agent-V-result-result Iagent don’t want [my leg]result hurtresult

Transitive simple (TRAN_S) agent-V-theme Iagent should buy [a new one]theme

Table 1: ASCs representation

Figure 3: Example of prompting GPT-4 to generate
ASC labels in a zero-shot setting

periment 1, incorporated adaptations such as early
stopping7. Figure 3 shows an example of a zero-
shot learning.

4.2.3 Experiment 3
The objective of the third experiment is to explore
the use of prompt-guided generation of training
data for training RoBERTa. In this experiment, we
utilized GPT-4 to create a labeled dataset, which
was subsequently used to train with RoBERTa.

For data generation, GPT-4 was used to pro-
duce a balanced set of sentences with ASC tags,
starting with 3-shot and 10-shot settings, as the
model struggled to generate data without any ini-
tial examples. We divided the experiment into two
parts: the first involved training the model solely
using data generated by GPT-4; the second com-

7The model was trained for only 400 iterations.

bined these generated sentences with a similarly
balanced selection from the gold-standard dataset
to augment the training set. This approach allowed
the integration of artificially generated and gold
data into two additional experimental groups: one
trained with 3-shot (i.e., sentences generated from
3-shot setting) plus gold data, and another with
10-shot plus gold data. The data were converted
to IOB format to train RoBERTa. We then com-
pared the performance of these models to baseline
scores from a model trained on fewer gold data
sentences8. This comparison additionally aimed to
evaluate the effectiveness of augmenting training
sets with machine-generated data versus additional
human-annotated data. We ensured consistency in
hyperparameters and the number of training epochs
to facilitate comparability9. Figure 4 shows an ex-
ample of a few-shot learning.

5 Results

5.1 Experiment 1
We investigated the performance of supervised
learning using gold-standard data applied with
RoBERTa embeddings. The results, detailed in Ta-
ble 2, highlight the best performance of the model
trained using gold-standard data that includes both
L1 and L2 annotations (Gold L1+L2 train model).
It demonstrated the highest averaged F1 scores
across all tested datasets: L1 (F1 = 0.912), L2
Written (F1 = 0.915), and L2 Spoken (F1 = 0.928).
It also outperformed the other models in individ-
ual tag accuracy, securing the highest F1 scores
for seven out of nine annotation types in both the
L2 Written and Spoken datasets. Additionally, the

8This adjustment was made because the GPT-4 generated
sentences typically had fewer ASC types, necessitating a re-
duction in the gold training data for a fair comparison.

9We used the same hyperparameter settings as the first
experiment and also did the early stopping of stop at 400
iterations of the training data.
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Silver train model Gold L1 train model Gold L1 + L2 train model
ASC L1 L2Writ L2Spok L1 L2Writ L2Spok L1 L2Writ L2Spok
ATTR 0.982 0.955 0.971 0.972 0.954 0.986 0.968 0.971 0.988
CAUS_MOT 0.794 0.764 0.690 0.818 0.833 0.710 0.857 0.867 0.710
DITRAN 0.757 0.862 1.000 0.919 0.914 0.842 0.865 0.881 0.947
INTRAN_MOT 0.763 0.755 0.774 0.800 0.770 0.789 0.772 0.807 0.843
INTRAN_RES 0.667 0.741 0.000 0.750 0.788 0.800 0.625 0.813 0.833
INTRAN_S 0.806 0.770 0.853 0.779 0.806 0.817 0.808 0.803 0.865
PASSIVE 0.932 0.865 0.875 0.920 0.775 0.938 0.940 0.865 0.909
TRAN_RES 0.853 0.714 0.588 0.884 0.800 0.625 0.881 0.792 0.625
TRAN_S 0.922 0.904 0.933 0.931 0.929 0.927 0.936 0.943 0.948
weightedAv 0.902 0.885 0.907 0.908 0.900 0.905 0.912 0.915 0.928

Table 2: F1-scores across ASC types, models, and registers, with the highest scores per tag in each dataset shaded
(Experiment 1)

Figure 4: Example of prompting GPT-4 to generate
ASC labels in a few-shot setting

model trained on the gold-standard L1 dataset (ex-
cluding L2) achieved top F1 scores for four out
of nine tags in the L1 dataset. Overall, these re-
sults underscore the effectiveness of high-quality,
manually annotated gold-standard data, as models
trained on these datasets consistently outperformed
those trained on silver-standard data in the devel-
opment of effective ASC models.

5.2 Experiment 2

We explored prompt-guided annotation of unla-
beled data using GPT-4. The results demonstrate
that performance varied with the number of exam-
ples provided (Table 3). The zero-shot learning
yielded the lowest F1 score at 0.434, while the 10-
shot configuration showed an improvement, achiev-
ing the highest average F1 score of 0.63110. This

10We additionally tested zero-shot learning by explicitly
providing syntactic or semantic information about each con-
struction to the model, but observed no improvement. Refer

indicates that more extensive example-driven guid-
ance considerably enhances the model’s effective-
ness in automated ASC tagging tasks with GPT-4.
However, the overall F1 scores were lower than
the model trained solely on gold annotations (i.e.,
baseline11), and neither of the F1 scores for any
ASC type exceeded those of the baseline model.

ASC tag (#) zero-shot 3-shot 10-shot baseline
CAUS_MOT (55) 0.121 0.446 0.483 0.907
DITRAN (46) 0.612 0.673 0.667 0.945
INTRAN_MOT (54) 0.562 0.674 0.684 0.825
INTRAN_RES (41) 0.130 0.525 0.730 0.822
INTRAN_S (105) 0.327 0.421 0.552 0.817
TRAN_RES (46) 0.213 0.306 0.485 0.863
TRAN_S (307) 0.676 0.700 0.742 0.922
weightedAv 0.434 0.563 0.631 0.888
Cost ($) 3.82 3.71 29.56
Time (mins) 29 24 24

Table 3: F1-scores for ASC tagging using GPT-4 (Ex-
periment 2)

5.3 Experiment 3
We explore the use of prompt-guided generation
of training data for training RoBERTa. The ex-
periment was designed to first train the RoBERTa
model using only the data generated by GPT-4 and
then compare its performance with a model trained
using gold standard data, as detailed in Table 4.
The results reveal two key findings: First, increas-
ing the number of examples, from 3-shot to 10-shot,
enhanced model performance. The F1-scores gen-
erally improved with the number of examples pro-
vided, with the 10-shot configuration substantially
outperforming the 3-shot across most categories.

to Appendix C for detailed results and the prompts used.
11Among the three models in Experiment 1, the baseline

model most closely resembles the best model trained on gold
L1+L2 data, though it is not exactly the same, as it was only
trained for 400 iterations.
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This highlights the role of example-driven guid-
ance in enhancing the quality of machine-generated
training data; Second, despite the performance
gains observed with an increased number of exam-
ples, models trained solely with gold data (gold1)
consistently outperform those trained with the GPT-
4 generated data (both 3-shot and 10-shot), partic-
ularly in more complex ASCs (e.g., CAUS_MOT,
TRAN_RES). Although machine-generated data
showed some potential in the training process for
one ASC type (INTRAN_MOT), it still falls short
of the effectiveness of human-annotated data.

Category 3-shot 10-shot gold1
CAUS_MOT (55) 0.333 0.422 0.838
DITRAN (46) 0.367 0.632 0.867
INTRAN_MOT (54) 0.405 0.667 0.651
INTRAN_RES (41) 0.571 0.620 0.667
INTRAN_S (105) 0.303 0.485 0.742
TRAN_RES (46) 0.102 0.188 0.824
TRAN_S (307) 0.347 0.718 0.860
weightedAv 0.341 0.605 0.812
# of sentences 927 814 469
Cost ($) 3.31 6.59
Time (mins) 18 20

Table 4: Comparison of F1-scores for ASC tagging
using different training sets, trained with RoBERTa (Ex-
periment 3)

The second part of the experiment aimed to deter-
mine if augmenting the gold-standard training set
with GPT-4-generated data could enhance the per-
formance of the supervised learning model. As il-
lustrated in Table 5, introducing machine-generated
data (both 3-shot and 10-shot) into the gold data set
did not consistently improve performance across
all ASC tags12. The weighted average F1 score
indicated that models trained with a combination
of gold and machine-generated data (0.788 for 3-
shot+gold and 0.808 for 10-shot+gold) generally
performed less effectively or, at best, equally com-
pared to those trained solely on gold-standard data
(0.808).

Furthermore, the results demonstrate that the
most significant improvement in performance was
observed when gold data was augmented with ad-
ditional gold data (gold1+gold2), achieving the
highest weighted average F1 of 0.877. This under-
scores that while machine-generated data can im-
prove training effectiveness for certain ASC types
(e.g., TRAN_RES in 3-shot+gold, INTRAN_S in 3-

12There are some cases where it slightly enhances the
model’s effectiveness, as seen in the TRAN_RES and IN-
TRAN_S tags.

shot+gold and 10-shot+gold), incorporating more
human-annotated gold data (i.e., gold1+gold2) sig-
nificantly enhances model accuracy across all inves-
tigated ASC categories. Upon closer examination
of the machine-generated training data, it became
evident that despite the prompts directing GPT-4 to
generate sentences closely resembling the human-
produced examples in the 10-shot set, the model
struggled to capture the nuances present in sen-
tences from human sources, such as the web corpus
or L2 datasets (See Appendix D). In other words,
GPT-4-generated sentences tend to be shorter and
less complex, typically lacking multiple clauses,
unlike the more elaborate sentences crafted by hu-
mans. This limitation likely impacted the quality
of the training data and, consequently, the effective-
ness of the training outcomes.

ASC tag (#) gold1 gold1 gold1 gold1
+3-shot +10-shot +gold2

CAUS_MOT (55) 0.838 0.731 0.782 0.914
DITRAN (46) 0.867 0.756 0.824 0.920
INTRAN_MOT (54) 0.651 0.644 0.727 0.814
INTRAN_RES (41) 0.667 0.615 0.695 0.831
INTRAN_S (105) 0.742 0.760 0.751 0.816
TRAN_RES (46) 0.824 0.857 0.782 0.886
TRAN_S (307) 0.860 0.851 0.863 0.900
weightedAv 0.808 0.788 0.808 0.877
# of trained sentences 469 1396 1283 938

Table 5: Comparison of F1-scores for ASC tagging
using different training sets – combined with the gold-
standard data, trained with RoBERTa (Experiment 3)

6 Conclusions

This study highlights the potential of integrat-
ing PLMs into linguistic analysis frameworks,
particularly for examining the characteristics of
ASCs in the context of modeling L1 and L2 learn-
ing/development. RoBERTa, when trained on gold-
standard datasets, demonstrated the best perfor-
mance in ASC annotations, underscoring the im-
portance of comprehensive, high-quality annotated
data. Additionally, the use of GPT-4 for prompt-
guided annotation and data generation offered some
insights into the effectiveness of synthetic data in
model training. While these methods did not sur-
pass the F1 scores of the baseline model trained
solely on gold-standard annotations, they proved
effective in identifying and processing certain types
of ASCs.

Future directions This study serves as a promis-
ing foundation for automated annotation systems in
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both L1 and L2 language contexts. However, it did
not directly assess the effectiveness of ASC anno-
tation in automatic writing evaluation or feedback
systems, which represent critical avenues for fu-
ture research and applications of NLP for building
educational applications.

Limitations

The accuracy of ASC annotation was assessed
across three linguistic domains—L1 written, L2
written, and L2 spoken—but only a single register
within each domain was examined in Experiment 1.
Experiments 2 and 3 did not comprehensively ex-
plore model performance across different domains.
Consequently, the applicability of these models in
other registers, such as L2 written narratives or L2
argumentative speeches, remains uncertain, partic-
ularly with the RoBERTa model. Furthermore, the
GPT-4 model should have also included investi-
gations into two additional ASC types (PASSIVE,
ATTRIBUTE) and comparisons across different
linguistic domains. Additionally, due to the limited
scope of the L2 datasets, certain ASC types, such as
transitive and intransitive resultative constructions,
were underrepresented in the test sets. Therefore,
the annotation accuracy for these specific ASCs
should be interpreted with caution.

Supplementary Materials

All data and models are available in https://
github.com/LCR-ADS-Lab/ASC-Treebank. All
contributions are licensed under the Creative Com-
mons Attribution-NonCommercial-ShareAlike 4.0
International License (CC BY-NC-SA 4.0).
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A Distribution of ASC types and tokens

L1 L2 Written L2 Spoken

ASC Train Dev Test Train Dev Test Train Dev Test

ATTR 2,058 258 223 399 445 445 242 266 252
CAUS_MOT 641 61 64 26 30 31 18 18 17
DITRAN 235 31 19 59 47 54 16 12 9
INTRAN_MOT 502 55 50 86 79 85 91 82 67
INTRAN_RES 172 23 18 15 13 16 11 5 7
INTRAN_S 1,154 135 106 243 209 210 146 190 189
PASSIVE 867 102 89 72 59 73 16 18 16
TRAN_RES 622 77 64 25 28 23 6 5 5
TRAN_S 4,900 598 596 858 824 806 506 426 453
Total 11,151 1,340 1,229 1,783 1,734 1,743 1,052 1,022 1,015

B Hyperparameter values

Hyperparameter Selected
Num hidden units 200
Embedded vector space 50
Number of layers 1
Dropout rate of layers 0.5
Beam size 1
Attention type soft
Optimization algorithm Adam
Learning rate 0.001
Num epoch 60
Batch size 50
Max grad norm 5.0
GPU allocator pytorch
Seed 0
Batch size 128
Hidden width 64
Maxout pieces 2
Max batch items 4096
Transformer model name roberta-base
Window size (get spans) 128
Stride (get spans) 96
Accumulate gradient 3
Dropout (training) 0.1
Patience 1600
Max epochs 0
Max steps 20000
Eval frequency 200
Initial learning rate 0.00005
Warmup steps 250
Total steps (learn rate) 20000
L2 regularization 0.01
Grad clip 1.0
Epsilon (optimizer) 0.00000001

7313



C Experiment 2: Additional experiments

Table 6 and Figures 5 & 6 below present a compar-
ison of F1-scores for ASCs tagging using GPT-4
in zero-shot learning scenarios. These scenarios
vary by the inclusion of either syntactic (syn) or
semantic (sem) descriptions accompanying each
construction type.

Category (#) zero-shot zero-shot+syn desc zero-shot+sem desc
CAUS_MOT (55) 0.121 0.206 0.225
DITRAN (46) 0.612 0.436 0.512
INTRAN_MOT (54) 0.562 0.584 0.552
INTRAN_RES (41) 0.130 0.118 0.125
INTRAN_S (105) 0.327 0.239 0.248
TRAN_RES (46) 0.213 0.148 0.290
TRAN_S (307) 0.676 0.619 0.629
weightedAV (654) 0.435 0.389 0.416
Cost ($) 3.82 10.74 4.79
Time (mins) 29 27 24

Table 6: F1-Scores for ASC tagging using GPT-4 in
zero-shot learning, compared with when the prompt
included the syntactic (syn) or semantic (sem) descrip-
tions of each construction type.

Figure 5: Prompt for ASC tagging using syntactic (syn)
descriptions in zero-shot learning scenarios.

Figure 6: Prompt for ASC tagging using semantic de-
scriptions (sem) in zero-shot learning scenarios.

D Experiment 3: Comparison of human
and GPT-4 generated sentences

Table D presents examples of sentences randomly
extracted from the gold dataset used in Experiment
3, alongside sentences generated by the GPT-4
model under a 10-shot setting.

Human-generated Sentences

1. What if Google expanded on its search-engine (and now e-mail) wares into a full-fledged
operating system?
2. I doubt the very few who actually read my blog have not come across this yet, but I figured I
would put it out there anyways.
3. Click here to view it.
4. One of the pictures shows a flag that was found in Fallujah.
5. Compare the flags to the Fallujah one.
6. Let me join the chorus of annoyance over Google’s new toolbar, which, as noted in the linked
article, commits just about every sin an online marketer could commit, and makes up a few new
ones besides.
7. You don’t need to use their site, you can opt-out of sharing your information, you don’t need to
send stuff to anyone with a Gmail account, and if – wonder of wonders – you’re worried that you
might send something to someone who would forward an excerpt to someone who would then
store it on a Gmail account... you have far, far too much time on your hands.
8. On the other hand, it looks pretty cool.
9. Keep his cage open and go on your computer, or read a book, etc and maybe he will come out to
you.
10. Please let us know if you need anything else.

GPT-4 generated Sentences

1. I ran to the store to buy milk.
2. She was so excited to see her friends at the party.
3. The sun set, painting the sky with hues of orange and pink.
4. He gave me the book that I wanted.
5. The leaves fell from the trees as autumn arrived.
6. She baked the cake until it was golden brown.
7. He threw the ball to his dog.
8. The dog chased the cat up the tree.
9. The bird flew out of the cage.
10. The child threw the ball into the hoop.
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