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Abstract

In this paper, we investigate whether Large
Language Models (LLMs) actively recall or
retrieve their internal repositories of factual
knowledge when faced with reasoning tasks.
Through an analysis of LLMs’ internal factual
recall at each reasoning step via Knowledge
Neurons, we reveal that LLMs fail to harness
the critical factual associations under certain
circumstances. Instead, they tend to opt for
alternative, shortcut-like pathways to answer
reasoning questions. By manually manipulat-
ing the recall process of parametric knowledge
in LLMs, we demonstrate that enhancing this
recall process directly improves reasoning per-
formance whereas suppressing it leads to no-
table degradation. Furthermore, we assess the
effect of Chain-of-Thought (CoT) prompting,
a powerful technique for addressing complex
reasoning tasks. Our findings indicate that CoT
can intensify the recall of factual knowledge
by encouraging LLMs to engage in orderly and
reliable reasoning. Furthermore, we explored
how contextual conflicts affect the retrieval of
facts during the reasoning process to gain a
comprehensive understanding of the factual re-
call behaviors of LLMs.

1 Introduction

Recent advancements in Large Language Mod-
els have underscored their exceptional reason-
ing prowess with natural language understanding
across a broad spectrum of tasks (Chen et al.,
2023a; Kojima et al., 2022; Brown et al., 2020;
Creswell et al., 2023). However, amidst these
achievements, a specific form of reasoning has
been somewhat overlooked and insufficiently inves-
tigated: reasoning tasks that require the utilization
of internal factual knowledge associations. For in-
stance, when presented with a 2-hop question such
as "Who is the chairperson of the manufacturer

*Equal contribution.
†Corresponding author.

Figure 1: An unsuccessful case of reasoning due to
factual retrieval failure of the triplet (General Motors,
chairperson, Marry Barra).

of the Holden Caprice?" in Figure 1, LLMs must
first identify that the manufacturer of the Holden
Caprice is General Motors, and subsequently re-
trieve the name of General Motors’ chairperson
from their internal knowledge, also referred to
as parametric knowledge (Neeman et al., 2023;
Zhong et al., 2024). Previous work has shown fac-
tual knowledge emerges in both GPT (Meng et al.,
2022) and Bert models (Petroni et al., 2019; Jiang
et al., 2020). Unlike mathematical (Floyd, 2007)
and logical reasoning (Pan et al., 2023), factual
reasoning heavily relies on the factual knowledge
encoded within LLMs, acquired through extensive
pretraining on vast corpora, rather than on user-
inputted premises. At the same time, it differs
from commonsense reasoning (Zhao et al., 2023;
Trinh and Le, 2019), which taps into general knowl-
edge acquired through dynamic training to foster
a holistic understanding of the world, instead of
emphasizing specific factual information.

Intuitively, it is reasonable to expect LLMs
to harness extensive parametric knowledge to
tackle reasoning tasks. Yet, an important ques-
tion emerges: How effectively can LLMs actually
retrieve and utilize their internal knowledge for
reasoning purposes? Delving into this question is
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crucial for several reasons. First, efficient use of
parametric knowledge may significantly reduce re-
liance on external data sources, thereby lowering
operational costs of data retrieval and API usage.
Second, this dynamic capability allows the knowl-
edge within LLMs to flow and interconnect (Onoe
et al., 2023), showcasing these models as organic
entities rather than static information repositories
(Petroni et al., 2019). From a practical perspective,
the accurate retrieval and application of parametric
knowledge lead to more reliable and interpretable
reasoning, enhancing their utility and trustworthi-
ness in real-world applications.

Transformer-based language models have accu-
mulated substantial knowledge through extensive
pretraining (Vaswani et al., 2017). A significant
body of recent research has focused on the factual-
ity issues of LLMs (Wang et al., 2023). One stream
of this research has concentrated on pinpointing the
locations within these models’ architectures where
factual knowledge is stored and encoded (Meng
et al., 2022; Dai et al., 2022; Wallat et al., 2020;
Geva et al., 2022, 2021). Simultaneously, there has
been a concerted effort to understand the mecha-
nism by which this knowledge is accessed during
the inference phase (Geva et al., 2023; Yang et al.,
2024). Another line of work discusses the balance
of the retrieved knowledge and its parametric coun-
terparts (Kwiatkowski et al., 2019; Kandpal et al.,
2022; Yu et al., 2023). However, the majority of
these studies have either been confined to elemen-
tary retrieval tasks, such as recalling a single fact
object o from a given triplet (s, r, o), or have not
delved into the intricacies of factual knowledge re-
call and utilization in more advanced challenges,
particularly within complex reasoning scenarios.
Our work addresses these limitations by examining
the inner dynamics of factual recall within LLMs
during the two-hop factual reasoning process, pro-
viding fresh insights into the behavior of factual
recall in reasoning and highlighting avenues for en-
hancing the robustness and reliability of reasoning
through more sophisticated knowledge utilization
strategies.

In this work, we investigate the harness of inter-
nal knowledge for reasoning through the lens of
Knowledge Neurons (KNs). We focus on the basic
setting of factual reasoning involving the composi-
tion of two facts (for example, "Who is the chair-
person of the manufacturer of Holden Caprice?" in
Figure 1). To achieve this, we carefully craft two-
hop reasoning questions dataset that seamlessly

integrates with the KN technique. We assess the
level of factual recall at each reasoning step by in-
troducing a novel metric, KN Scores. We examine
KN Scores under three conditions of two-hop rea-
soning: no CoT, zero-shot CoT, and few-shot CoT,
unveiling the pitfalls existing in the reasoning pro-
cess and the enhancement effect of CoT (Wei et al.,
2022). Then we conduct targeted interventions on
KNs to enhance or suppress the factual retrieval
process, finding the contributing impact on reason-
ing performance. Furthermore, we provide a de-
tailed analysis of factual shortcuts (Ju et al., 2024;
Du et al., 2023; Li et al., 2024), potentially caused
by redundant information stored in models’ param-
eters within LLMs used for reasoning. Finally, we
explore how the presence of knowledge conflict
outside LLMs influences the factual recall process.
Our findings can be summarized as follows:

• LLMs do not consistently retrieve the pertinent
factual knowledge essential for reasoning, with
more than a third of reasoning errors stemming
from deficiencies in the retrieval of factual as-
sociations.

• CoT could remarkably enhance the recall of
factual knowledge by facilitating engagement
in step-by-step reasoning, thereby reducing the
likelihood of shortcuts.

• By enhancing and suppressing the recall pro-
cess, we demonstrate that successful factual re-
trieval is a pivotal factor in improving reasoning
performance.

• The presence of knowledge conflict in context
could enhance the retrieval of the corresponding
fact in the reasoning process to a degree.

2 Preliminaries

2.1 Problem Formulation

We represent facts, such as "(Holden Caprice, man-
ufacturer, General Motors)", as a triplet (s, r, o),
where s is the subject, r is the relation, and o
is the object. We formulate two-hop factual rea-
soning questions as a composition of two linked
facts ((s, r1, o1), (o1, r2, o2)), with a bridge entity
o1 connecting them. To query LLMs, these triplets
must be converted into natural language queries.
For a single relation r, we instruct ChatGPT (gpt-
3.5-turbo) to generate query templates as QTr(·).
For instance, the single-relation triplet (Holden
Caprice, manufacturer, General Motors) can be
converted as QTmanufacturer(HoldenCaprice):
"Which company manufactures Holden Caprice?".
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Similarly, for a composition of two relations r1
and r2, we prompt ChatGPT to generate a query
template as QTr2(r1(·)), with r1(·) denoting the
description of the entity related to s via r1 rela-
tion (e.g. The manufacturer of Holden Caprice).
We refer to the single-hop query as QT1H and the
two-hop query as QT2H .

We consider an autoregressive language model
F : X → Y , which accepts an input x ∈ X and
produces a prediction y ∈ Y , continuing the input
x. We deem that the model "knows" a fact (s, r, o)
if the output F (QTr(s)) matches the ground la-
bel o and that LLMs can reason a question involv-
ing two-hop fact triplets ((s, r1, o1), (o1, r2, o2))
successfully if the output F (QTr2(r1(s)) matches
the ground label o2. It is noteworthy that query
templates, even for the same single relation, are
generated with diversity by ChatGPT. This diver-
sity discourages models from making predictions
based on the occurrence of specific words, ensur-
ing that they recall knowledge from within them-
selves instead. We denote the set of two-hop factual
questions as Ω, with ΩT representing the subset of
questions that LLMs can answer correctly and ΩF

denoting the subset of questions that LLMs cannot
answer correctly. For simplicity, we use ζ to denote
((s, r1, o1), (o1, r2, o2)), thus we have:

ΩT =
{
ζ | Fθ(QTr2(r1(s))) = o2, ∀ζ ∈ Ω

}
(1)

ΩF =
{
ζ | Fθ(QTr2(r1(s))) ̸= o2, ∀ζ ∈ Ω} (2)

2.2 Knowledge Neurons

Pretrained language models store vast amounts of
factual knowledge and have a strong ability to re-
call this factual knowledge without further training
(Petroni et al., 2019; Jiang et al., 2020). Drawing
inspiration from the key-value-memory nature of
feed-forward layers (Geva et al., 2021), Dai et al.
(2022) proposes that factual knowledge is stored
in specific neurons within the Feed-Forward Net-
works (FFNs) of the Transformer models, termed
as knowledge neurons. They find that knowledge
neurons are activated by knowledge-expressing
prompts. The higher the activation of these knowl-
edge neurons is, the more significantly their corre-
sponding facts are expressed. Therefore, to assess
the recall and utilization of the fact triplet (s, r, o)
necessary in the reasoning process, we refer to the
activity of KNs as an indicator of factual recall. We
make the following invariant assumptions: the
KNs responsible for the expression of particular

relational facts remain consistent across different
application contexts. A specific fact is indicated by
the same set of KNs under both single-hop queries
and reasoning queries, which is a cornerstone for
subsequent experiments. In Appendix B, We de-
tail a methodology that utilizes integrated gradi-
ent (Sundararajan et al., 2017) method to compute
the contribution of all neurons in the intermedi-
ate layers of FFNs to the correct prediction of a
multi-token ground truth, identifying neurons with
greater contributions as KNs.

3 TFRKN: Two-hop Factual Reasoning
for Knowledge Neurons

To investigate the behavior of factual recall in rea-
soning tasks for LLMs, we have developed a spe-
cialized dataset for knowledge neurons called Two-
hop Factual Reasoning for Knowledge Neurons,
TFRKN.

Dataset Construction Our dataset consists of
two-hop factual questions, where each question in-
volves two facts that are connected by an intermedi-
ate entity. LLMs are more likely to recall triplets re-
lated to popular entities(Mallen et al., 2023). There-
fore, for entity selection, we use the cumulative
pageview count over the past 12 months as a metric
and select the top 500 popular entities from Wiki-
data (Vrandečić and Krötzsch, 2014) based on this
criterion. Two-hop fact triplets are then extracted
from sub-graphs consisting solely of a set of man-
ually selected relations and entities. To identify
KNs for each-hop fact, we reformulate each fact
triplet into more than five varied natural questions
using ChatGPT (Appendix A). The TFRKN dataset
encompasses 4,550 distinct instances covering 213
unique relational combinations with a sample in-
stance shown in Table 6.

4 Diagnose the Pitfalls of Factual Recall
in Reasoning

In the realm of two-hop factual reasoning, an opti-
mal and dependable reasoning trajectory is a multi-
hop reasoning approach (Welbl et al., 2017; Ju
et al., 2024). This process requires identifying the
bridge entity first and then using it to solve the sec-
ond hop question, necessitating that LLMs recall
the relevant fact at each hop step by step, culminat-
ing in the formulation of the correct answers. In
this section, we investigate whether LLMs faith-
fully retrieve factual knowledge at each hop when
undertaking reasoning tasks.
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Figure 2: Scaled visualization of neuron activities
within the intermediate layers of FFNs in Mistral-7B
for the same case (A 32-layer×14336-neuron matrix).
The vertical axis shows the depth of layers, while the
horizontal axis shows the neuron index in the FFN’s in-
termediate layers. It is evident that KNs are distributed
in the middle and final layers.

4.1 KN Scores

To evaluate the efficacy of factual recall within
LLMs during reasoning tasks, we devise a novel
metric termed KN Scores as follows:

FFN(l)(H(l)) = W
(l)
2 SiLU(H(l)W

(l)
1 ) (3)

ωl
i = SiLU(H(l)W

(l)
1 )[i], ∀ωl

i ∈ ω (4)

KN Scores =
1

|ω|
∑

ωl
i,∀ωl

i ∈ ω (5)

where H(l) represents the input to the FFN of the l-
th layer, which consists of the outputs from the l-th
attention layer combined with the residual stream;
ωl
i denotes the i-th neuron in the l-th intermedi-

ate layer of FFN; ω represents the KNs associ-
ated with a specific fact triplet, denoted as (s, r, o);
|ω| denotes the size of the set, i.e., the number of
KNs; and SiLU denotes the activation function.
For the first-hop and second-hop fact, we designate
their respective sets of KNs as ω1 and ω2. Under
the context of a single-hop query, we denote KN
Scores as {ω|QT1H}. Similarly, within the two-
hop reasoning context, KN Scores are represented
as {ω|QT2H}.

4.2 Experiment

Setup We begin by filtering out reasoning ques-
tions where LLMs are unable to recall all individual
facts, ensuring that any reasoning failures are due to
the models’ inability to retrieve factual information
rather than a lack of the foundational knowledge
necessary for performing reasoning tasks. We then
proceed to employ Fact1Query and Fact2Query (in
Table 6) from each data point to pinpoint the posi-
tions of KNs for each-hop fact. Then we hook
the values of each neuron belonging to ω1 and
ω2 across various query scenarios to compute KN
Scores. Using the KN Scores metric, we evaluate

Models Mistral-7B LLaMA2-7B LLaMA3-8B

ω1 ω2 ω1 ω2 ω1 ω2

Single-hop 2.44 2.61 2.01 1.89 1.70 1.72

∆ω1 ∆ω2 ∆ω1 ∆ω2 ∆ω1 ∆ω2

No CoT -10.84 -11.77 -13.18 -8.18 -10.79 -8.96
Zero-shot 11.56 -8.48 -2.49 -8.30 11.19 6.24
Few-shot 17.36 2.42 1.32 2.46 13.00 7.31

Table 1: KN Scores for three conditions across three
models. ω is the KN Score of a specific fact while ∆
indicates the change ratio (in percentages) of values
compared with the single-hop baselines.

the recall of each fact under three distinct experi-
mental conditions: no CoT, zero-shot CoT, and
few-shot CoT. For each condition, we record KN
Scores for both the first-hop {ω1|QT2H} and the
second-hop {ω2|QT2H} facts within the context of
two-hop reasoning questions. We select the KN
Scores {ω1|QT1H} and {ω2|QT1H} under single-
hop queries as baselines since KNs are significantly
active in that straightforward context. We experi-
ment with the instructed versions of three popular
open-source models: LLaMA2-7B (Touvron et al.,
2023), LLaMA3-8B, Mistral-7B (Jiang et al., 2023)
(see Appendix C for more experimental details).

4.3 Results

Single-hop vs. Muti-hop Reasoning In reason-
ing scenarios, LLMs access their internal knowl-
edge less frequently in comparison to the straight-
forward retrieval of single-hop facts. Table 1 il-
lustrates a notable decrease in KN Scores for all
single-hop facts when addressing two-hop reason-
ing questions. This observation strongly indicates
that, in reasoning contexts, LLMs tend to either fail
to recall the bridge entity or struggle to identify the
second-hop relation, leading to the failure of exe-
cuting the remaining multi-hop reasoning as antic-
ipated. Compared to directly recalling single-hop
facts (e.g., "Who is the chairperson of General Mo-
tors?"), it is more challenging for LLMs to recall
and organize relevant facts for reasoning. LLMs
may take alternative salient pathways existing in
their parameters, such as shortcuts, rather than en-
gaging in systematic, step-by-step reasoning.

CoT vs. No CoT CoT, whether zero-shot or few-
shot, markedly improves factual knowledge utiliza-
tion in LLMs over no CoT (KNs are more activated
under CoT settings in Figure 2), which is evidenced
by a higher ∆ω1 and ∆ω2 compared with no CoT
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Figure 3: Overall reasoning performance on TFRKN under different CoT situations.

setting, as shown in Table 1. We posit that this
enhancement is likely driven by the step-by-step
thinking process, which further stimulates the
recall of facts as multi-hop reasoning progresses.
This hypothesis can be supported by comparing the
zero-shot and few-shot CoT settings. Across three
models, it is clear that zero-shot CoT struggles
to significantly improve the recall of the second-
hop fact compared to the reinforcement of the first-
hop fact recall. However, consistent improvement
across both triplets can be observed for few-shot
settings. This observation strongly suggests that
the reasoning direction in zero-shot scenarios is
unclear, which prevents models from effectively
identifying which relations of facts concerning the
bridge entity to retrieve. In stark contrast, few-shot
scenarios often mitigate this issue. Through the
acquisition of knowledge from contextual demon-
strations, models are more inclined to determine
the subsequent phase in the reasoning trajectory
and, in turn, adeptly utilize the relevant factual in-
formation via their attention mechanisms.

Factual Recall vs. Reasoning Accuracy The
combination of Figure 3 and Table 1 illustrates
a positive correlation between the recall of rele-
vant fact triplets and reasoning accuracy. This re-
lationship is especially pronounced in the case of
LLaMA3-8B model under few-shot CoT, where the
maximum increase in the recall of both ∆ω1 and
∆ω2 leads to the highest reasoning accuracy. How-
ever, the eliciting effect of CoT on factual recall
across various LLMs is not uniform. For instance,
zero-shot CoT mitigates the forgetting of factual in-
formation to some extent for LLaMA2-7B, whereas
for LLaMA3-8B, zero-shot CoT enhances the re-
trieval of factual information to a level comparable
to few-shot CoT. This adequately illustrates that the

efficacy of CoT is also contingent upon the intrinsic
capabilities of the LLMs themselves.

5 Interventions on the Recall of Facts

5.1 Enhance and Suppress KNs

To gain a deeper understanding of factual recall
behaviors, we intervene in the retrieval of specific
knowledge within LLMs by manually adjusting
the activation levels of KNs. Specifically for each
factual triplet (s, r, o), we modulate the internal
recall by adjusting the values of the KNs associated
with this triplet, either amplifying or diminishing
them according to Equation 6.

{
Enhance:ωl

i = n× ωl
i, n > 1,∀ωl

i ∈ ω

Suppress:ωl
i = 0, ωl

i ∈ ω
(6)

5.2 Experiment

Setup We have meticulously designed four sets
of controlled experiments on TFRKN to monitor
changes in reasoning outcomes. The experimen-
tal paradigms are as follows: (1) Base: We allow
LLMs to respond to two-hop questions under stan-
dard conditions (2) Enhance: For questions an-
swered incorrectly under Base situation, we am-
plify the activation level of KNs and subsequently
assess the reasoning accuracy. (3) Suppress: Con-
versely, for two-hop questions correctly answered
in the Base scenario, we reduce the activation of
relevant KNs and evaluate the reasoning accuracy
afterward. (4) Random: To establish a baseline
for comparison with conditions (2) and (3), we
randomly select an equal number of neurons and
enhance or suppress their activation accordingly,
facilitating a comparative analysis.
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Mistral-7B LLaMA2-7B LLaMA3-8B

Base 64.09 – 47.48 – 69.03 –

Enha. ∆ ER ∆ ER ∆ ER

ω1 3.92 18.19 8.79 19.58 4.48 21.24
ω2 6.16 28.57 13.15 30.39 7.28 34.51
ω12 15.11 31.05 15.30 34.97 8.02 38.05
ωr 4.57 2.74 7.65 17.79 0.19 0.88

Supp. ∆ SR ∆ SR ∆ SR

ω1 -20.06 32.28 -18.00 38.07 -24.53 38.07
ω2 -29.01 46.70 -24.35 50.78 -39.18 53.03
ω12 -49.53 77.29 -30.32 63.85 -62.59 91.61
ωr -5.78 9.02 -12.12 25.54 -2.52 3.65

Table 2: Results of the controlled experiments after
interventions on ω1, ω2 and ω12 under no CoT setting.
∆ denotes variation in accuracy and ωr is established as
the baseline for enhancing or suppressing KNs of both
facts, with ER/SR values expressed as percentages.

Metrics We design a novel metric, termed En-
hance Ratio (ER), which serves to quantify the
impact of factual retrieval failures on reasoning
outcomes. ER is calculated by calculating the per-
centage of reasoning instances that are initially in-
correct but are successfully resolved following the
enhancement of KNs as Equation 7. Analogously,
we define another metric Suppress Ratio (SR) to
measure the obstructive effect of suppressed KNs
on the reasoning process. The SR is ascertained by
evaluating the ratio of cases where correct reason-
ing is converted to incorrect after the suppression
of KNs, as outlined in Equation 8:

ER =
|{ζ | Fθ′(QTr2(r1(s))) = o2}|

|ΩF |
,∀ζ ∈ ΩF (7)

SR =
|{ζ | Fθ′′(QTr2(r1(s))) ̸= o2}|

|ΩT |
, ∀ζ ∈ ΩT (8)

where θ′ denotes the parameters of the enhanced
model while θ′′ represents the parameters of the
suppressed model. QTr2(r1(s)) represents the rea-
soning question derived from two-hop fact triplets
((s, r1, o1), (o1, r2, o2)) with the ground truth o2.

5.3 Results

Finding 1 In Table 2, more than one-third of
reasoning failures are caused by issues of factual
retrieval. The ER values show a consistent and pro-
gressive increase as the interventions progress from
targeting ω1, to KNs associated with the second-
hop ω2, and ultimately to a combined intervention
on both, ω12. This pattern indicates that many ini-
tially incorrect answers stem from retrieval failure

Models Mistral-7B LLaMA2-7B LLaMA3-8B

Enha. ωbase ω12 ωbase ω12 ωbase ω12

No CoT 2.74 31.05 17.79 34.97 0.88 38.05
Zero-shot 7.44 53.50 23.36 56.23 23.97 54.79
Few-shot 2.92 39.60 12.51 48.09 2.04 51.02

Supp. ωbase ω12 ωbase ω12 ωbase ω12

No CoT 9.02 77.29 25.54 63.85 3.65 91.61
Zero-shot 9.76 68.43 10.80 71.80 8.25 74.16
Few-shot 0.11 50.48 5.33 32.09 0.21 65.92

Table 3: ER/SR Results of enhancing and suppressing
the expression of both triplets under both CoT and no
CoT conditions. In the enhancement scenario, the num-
bers represent ER metrics, whereas in the suppression
scenario, they denote SR metrics.

of either the first hop, the second hop, or both dur-
ing the reasoning process. Additionally, recalling
the second-hop facts is more challenging for LLMs,
as shown by the higher ER after enhancing ω2 com-
pared to ω1. Suppressing factual information sig-
nificantly harms reasoning performance, with accu-
racy dropping by over 77% on average when both
factual elements are suppressed. Therefore, the
successful retrieval of factual associations at each
reasoning step is crucial for correct reasoning.

Finding 2 CoT strengthens a passive internal re-
trieval of relevant facts, implicitly prompting the
expression of factual triplets. Evidence 1: In Table
3, across the scenarios of no CoT, zero-shot CoT,
and few-shot CoT, suppression of factual KNs re-
sults in SRNo_cot > SRZero_shot and SRNo_cot >
SRFew_shot, which indicates that CoT likely stimu-
lates the hydra effect (McGrath et al., 2023), which
implements actively self-repairing computations to
compensate the suppression effects caused by low
activation levels of KNs. Evidence 2: Similarly,
enhancement of factual KNs results in ERNo_cot <
ERZero_shot and ERNo_cot < ERFew_shot, which
suggests that CoT further stimulates the internal
recall process within LLMs, thus strengthening the
enhancement effects of KNs. Therefore, CoT in-
deed can contribute to the recalling process.

6 Analysis of Shortcuts

In this section, we investigate whether successful
two-hop reasoning implies the successful recall of
factual knowledge. In other words, we examine
whether accurate reasoning outcomes stem from a
thorough grounding in multi-hop knowledge rea-
soning or are facilitated by alternative shortcuts.
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Figure 4: An in-depth analysis of shortcut scenarios under no CoT. TT represents successful recall of both facts.

6.1 Experiment
Setup We investigate the utilization of individual
fact triplets in correctly answered two-hop ques-
tions by analyzing the KN Scores for each triplet.
We compare these scores with those observed dur-
ing single-hop queries to establish a threshold, de-
noted as τ , which serves as a benchmark for iden-
tifying the effective use of facts in the reasoning
process. If the activation level of KNs falls signifi-
cantly below this threshold in comparison to single-
hop queries, this indicates an under-utilization of
the corresponding fact. Conversely, if it exceeds the
threshold, the fact is considered adequately utilized.
Using this criterion, we classified the correctly an-
swered questions into four distinct categories: (1)
FT: Unsuccessful recall of the first-hop fact but
successful second-hop recall; (2) TF: Successful
first-hop recall but unsuccessful second-hop recall;
(3) FF: Neither fact successfully recalled and (4)
TT: Both facts successfully recalled. Except for TT,
the other three situations are defined as Shortcuts.

Models Mistral-7B LLaMA2-7B LLaMA3-8B

MH SC MH SC MH SC

No CoT 55.75 44.25 60.51 39.49 71.89 28.11
Zero-shot 70.84 29.16 64.26 35.74 95.66 4.34
Few-shot 91.23 8.77 89.02 10.98 97.65 2.35

Table 4: The fraction of MH and SC in correctly an-
swered examples (TT+FT). MH denotes successful re-
trieval of both facts while others denote by SC.

6.2 Results Analysis
According to Table 4, under normal conditions, a
considerable proportion of correctly answered ques-
tions under no CoT setting rely on shortcuts, possi-
bly due to word associations intrinsic to LLMs,as
observed by Yang et al. (2024). Notably, the
Mistral-7B model stands out for its unexpected
reliance on shortcuts to solve over 44 percent of the
questions successfully. Even with large-scale mod-
els possessing 7 billion parameters, LLMs still rely

on certain segments of the reasoning chain to arrive
at answers. The introduction of CoT effectively
decreases the trend of taking shortcuts by forcing
LLMs to recall more relevant facts and engage in
multi-hop reasoning. Under few-shot CoT setting,
all LLMs solve over 90 percent of questions on
average through multi-hop reasoning, reducing the
ratio of shortcuts to nearly zero.

Figure 4 provides a closer look at the shortcut
phenomenon. The percentage of FF is significantly
low, illustrating that it is hard for LLMs to fail
to retrieve any factual information relevant when
presented with the clues of overlapping entities or
relational vocabulary in queries. For most instances
of shortcuts, LLMs prefer to utilize the second-hop
fact to directly answer reasoning questions, skip-
ping the intermediate reasoning steps and relying
on the object o2 in the second-hop to cheat (a high
ratio for FT). For TF cases, there might exist direct
associations between the head entity s and the tail
entity o2 leveraged to derive correct answers. In
conclusion, experimental results show that recall-
ing two-hop facts (TT) benefits the model’s reason-
ing performance. Specifically, with the presence of
CoT, the proportion of TT significantly increases
and the model’s reasoning accuracy improves sub-
stantially.

7 Impact of Contextual Conflict

The capacity of utilizing internal factual knowledge
is contingent not solely upon the intrinsic properties
of LLMs, but is also significantly influenced by the
context within which they operate. This section
elucidates how the presence of knowledge conflicts
within a given context can impact the mechanisms
of the retrieval process during reasoning.

7.1 Experiment
Setup For each data point, we formulate a single-
hop conflict fact by devising a set of potential ob-
jects denoted as Ocandi for its r. From this set,
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Relational Facts Type Examples

⟨ Middlemarch,
author,
George Eliot⟩

⟨George Eliot,
place of death,
London⟩

Distraction Context: Carl Sagan works at Cornell University.
Question: Where did the author of Middlemarch pass away? A:

Conflict 1 Context: The author of Middlemarch is Jean Genet.
Question: Where did the author of Middlemarch pass away? A:

Conflict 2 Context: George Eliot died in the city of Atlanta.
Question: Where did the author of Middlemarch pass away? A:

Table 5: Knowledge conflict and knowledge distraction examples

Figure 5: Results of constructing the knowledge distrac-
tion and knowledge conflict for the first-hop fact.

we deliberately select an object o∗ ̸= o to intro-
duce a knowledge conflict. In contradistinction, we
also fabricate an entirely unrelated fact for each
data point to serve as a distractor, referred to as
knowledge distraction (See detailed construction
in Appendix D). We then respectively append the
knowledge conflict and knowledge distraction sen-
tences before the two-hop question under no CoT
setting, which is input into LLMs. Then we ob-
serve the values of KN Scores for each-hop fact.
The examples of knowledge conflict and distrac-
tion for the first-hop and the second-hop facts are
shown in Table 5.

7.2 Results Analysis

The presence of knowledge conflict within the
context consistently augments the faithfulness of
LLMs in the corresponding fact. According to Fig-
ure 5 and Figure 6, the context of knowledge con-
flict results in the highest KN Scores of the corre-
sponding hop fact 1, which indicates counterfactual
context significantly improves the internal retrieval
of that corresponding hop fact. It illustrates LLMs
exhibit greater confidence in their encoded knowl-
edge when confronted with knowledge conflict, a
finding that aligns with the studies conducted by
Zhou et al. (2023) and Li et al. (2023). When the

1The results were obtained from a one-tailed paired sample
t-test, conducted at a significance level of 0.05.

Figure 6: Results of constructing the knowledge distrac-
tion and knowledge conflict for the second-hop fact.

knowledge presented in the context conflicts with
the second-hop fact, it not only reinforces the re-
trieval of the second-hop fact but also enhances the
recall of the first-hop fact. It is plausible that the
introduction of the subject o1 encourages LLMs to
recall the precise triplet (s, r1, o1). However, this
effect does not extend to the first-hop fact. The
occurrence of knowledge distraction appears not to
cause much obstruction to the factual recall within
LLMs. On the contrary, it may even stimulate
LLMs to retrieve more facts sometimes, as evi-
denced by the high KN Scores for the first-hop
fact of LLaMA2-7B when the knowledge distrac-
tor corresponding to the second-hop fact appears
in Figure 6.

8 Related Work

Multi-hop Reasoning Multi-hop reasoning
poses a significant challenge for LLMs. Several
studies have endeavored to address this chal-
lenge through the development of more faithful
reasoning techniques (Creswell and Shanahan,
2022; Chen et al., 2023b; Creswell et al., 2023).
One such approach is CoT, which stimulates
LLMs to produce deductive intermediate steps,
fostering a step-by-step analytical process (Chu
et al., 2024). Another line of research is focused
on visualizing the implicit logical structures
within LLMs from the perspective of mechanistic
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interpretability (Yang et al., 2024). For example,
a recent study by Hou et al. (2023) recovers the
reasoning tree from models’s attention patterns
using MechanisticProbe.

CoT Mechanism A large body of literature is
dedicated to the theoretical and empirical explo-
ration of the mechanism underlying CoT (Saparov
and He, 2023; Tan, 2023; Feng et al., 2023; Prys-
tawski et al., 2023; Xie et al., 2024). Some research
endeavors to delve into a reverse-engineering anal-
ysis of CoT prompting, uncovering the intricate
information pathways that facilitate the generation
of responses (Dutta et al., 2024). However, the ma-
jority of these studies concentrate on the rationales
produced by CoT and have largely overlooked the
broader implications for factual retrieval processes.
In our current work, we complement this aspect and
present compelling evidence that CoT significantly
bolsters the internal recall of factual information.

9 Conclusions

This paper aims to provide a comprehensive under-
standing of factual recall behaviors for LLMs. We
find that a considerable portion of reasoning fail-
ures are due to retrieval failures. Manually enhanc-
ing the internal recall within LLMs can improve
reasoning performance. For LLMs, they not only
rely on multi-hop reasoning but also rely on other
inference ways in LLMs such as shortcuts. CoT
can significantly stimulate LLMs to recall more
facts by compelling models to engage in step-by-
step thinking, diminishing the possibilities of tak-
ing shortcuts. The knowledge conflict existing in
context could improve the confidence of parametric
knowledge, therefore enhancing the internal recall.

Limitations

While our study provides novel insights into the
internal factual recall behaviors of LLMs during
reasoning tasks, it is important to acknowledge
several limitations.

Generalizability: While the current study is pri-
marily based on specific LLMs and the TFRKN
dataset, future research should extend these find-
ings to verify their generalizability across various
models and datasets

Theoretical Analysis: Although empirical evi-
dence has been provided through targeted interven-
tions, a deeper theoretical analysis is needed to

fully comprehend the underlying reasons for the
observed phenomena.

Practical Applications: The paper discusses the-
oretical aspects and potential improvements in rea-
soning accuracy but does not delve into how these
findings can be applied in practical scenarios to
enhance the reasoning capabilities of LLMs.

Impact of Contextual Factors: While the paper
touches upon the influence of contextual conflicts
on knowledge retrieval, a more comprehensive anal-
ysis of various contextual factors and their impact
on reasoning is needed.
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A Details of Dataset Construction

A.1 Sampling two-hop factual triples

Our dataset is constructed based on Wikidata
(Vrandečić and Krötzsch, 2014), a structurally
optimized database covering nearly all domains.
The dataset is available at https://github.com/
wangyifei0047/TFRKN.

First we show manually selected relations that
are used to construct two-hop relations:

• P30, P36, P35, P1037, 1308, P164, P449, P488,
P178, P159, P286, P413, P641, P800, P937

• P136, P106, P495, P740, P37, P407, P170,
P50,P364,P112, P108, P175, P27, P40, P69,
P19

While LLMs have been shown to store a vast
amount of factual knowledge, studies indicate that
they are more likely to recall triplets related to pop-
ular entities (Mallen et al., 2023). Therefore, when
constructing the dataset, we employ the cumula-
tive pageviews count over the past 12 months as
a measure and select the top 500 popular entities
based on this criterion. Two-hop reasoning chains
are then extracted from the sub-graphs consisting
solely of the aforementioned relations and entities,
like (Holden Caprice, manufacturer, General Mo-
tors), (General Motors, chairperson, Mary Barra).

A.2 Generating Queries using ChatGPT
Having acquired the triplet format of reasoning
queries, our current objective is to transform these
triplets into natural language expressions in queries.
Moreover, for effective integration of the Knowl-
edge Neuron technique, it is essential to rephrase
individual triplets into multiple natural language
expressions. As knowledge neurons demonstrate
indifference towards specific knowledge represen-
tations, employing diverse question formats aids in
identifying authentic knowledge neurons. Whether
in the formulation of reasoning queries or the gen-
eration of individual triplet queries, we capitalize
few-shot learning capabilities of ChatGPT (gpt-3.5-
turbo) to autonomously generate natural language
questions. Concretely, we leveraged few-shot ca-
pabilities in LLMs to generate multiple queries for
individual fact (s, r, o), as well as reasoning ques-
tions from two-hop facts ((s1, r1, o1), (o1, r2, o2)).
For the generation of single-fact queries, we pro-
vide relation labels and relation definitions as addi-
tional information for LLMs to generate accurate
subject-relation queries (Figure 8). For the gen-
eration of reasoning questions, two-hop relation
labels and explanations are also provided besides
four in-context demonstrations (Figure 7).

An instance from TFRKN is depicted in Table 6.
This approach not only surpasses the limitations im-
posed by manual templates but also guarantees the
production of high-quality and diverse questions.
Overall, the dataset comprises 4,550 instances span-
ning 213 unique combinations of relations.

B Knowledge Neurons

In this part, we detailedly illustrate the method-
ology of the identification of KNs using the in-
tegrated gradient method. Given a specific rela-
tional fact: (s, r, o); A set of knowledge-expressing
queries ( Fact1Query and Fact2Query in Table 6):
< query1, query2, · · · , queryL >. We define the
representation of the i-th neuron in the l-th inter-
mediate layer in FFNs as wl

i,

P[t1,··· ,tn],y(w
(l)
i ) = P (y| [t1, · · · , tn] , w(l)

i =
∼
w

(l)

i ) (9)

where [t1, t2, · · · , tn] represents the token se-

quence of inputs,
∼
w

(l)

i represents the constant value
assigned to w

(l)
i , and Equation 9 denotes the prob-

ability of next token y predicted by LLMs, given
the token sequence [t1, t2, · · · , tn] after w(l)

i is as-

signed the value
∼
w

(l)

i .
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System: 
You are a powerful cloze template generator for wikidata relations.
Users will provide 2 Wikidata triples (s1,r1,o1),(o1,r2,o2) and you will help write a 2-hop

question to introduce o2 from s1. Don’t mention any bridge entities. Users will give the
descriptions of relation r1 and r2 to help you construct the template for the question.

input:
Triples:(Amazon Prime Video, developer, Amazon), (Amazon, industry, e-commerce),
Two-hop relations:[ developer, industry],
<developer>: organization or person that developed the item,
<industry>: specific industry of company or organization,

Output:
Question: What is the specific industry of the developer of Amazon Prime Video?
[The other three in-context demonstrations abbreviated]

User :
input:

Triples:(French Revolution, country, French), (French, official language, French)
Two-hop relations:[country, official language],
< country >: sovereign state that this item is in (not to be used for human beings),
< official language >: language designated as official by this item,

Output: xxx

Figure 7: An example of using ChatGPT to generate 2-hop questions from Wikidata triples.

System: 
You are a powerful question generator for wikidata relations. Users will provide a wikidata triple (s, r, o),and you will help 
write complete questions in natural English to ask o from subject s. 
Don't mention o in questions and be as clear and concise as possible. The questions should only 
include the entity s. Users will give the definition of r to help you construct questions.
input:

<triple>: [Al Gore, place of birth, Washington, D.C.]
<relation label>: place of birth
<relation description>: most specific known (e.g. city instead of country, or hospital 
instead of city) birth location of a   
person, animal or fictional character
Write more than 5 possible questions in natural English.

output:
1.Where was Al Gore born?
2.In which city was Al Gore born?
3.What's the place of Al Gore's birth?
4.What is Al Gore's birth city?
5.What is the birth city of Al Gore?
6.Where did Al Gore originate from?
[The other three in-context demonstrations abbreviated]

User : input:
<triple>: [Ellie Kemper, country of citizenship, United States of America]
<relation label>:country of citizenship
<relation description>: the object is a country that recognizes the subject as its citizen
Write more than 5 possible questions in natural English.

Output: xxx

Figure 8: An example of using ChatGPT to generate single-fact queries from triples and relation information(labels
and descriptions).

The attribution scores quantify the contribution of
individual neurons to correct predictions. By grad-
ually restoring each neuron’s value from 0 to its
original level, the gradients of the probability of
the correct token with respect to each neuron are
integrated, as shown in Equation 10.

Equation 10 is applied to the calculation of attribu-
tion scores for single-token target o. The method
for computing attribution scores for multi-token
target o is described in Equation 11. Assuming
the tokenized sequence of a relational-fact query
and the corresponding ground truth respectively are
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Triples
(Holden Caprice, manufacturer, General
Motors)
(General Motors, chairperson, Mary Barra)

Fact1Query

1. Who or what company manufactures
Holden Caprice?
2. What company created Holden Caprice?
3. Who is responsible for making Holden
Caprice?
4. What entity produces Holden Caprice?
5. Which organization is behind the
production of Holden Caprice?

Fact2Query

1. Who is the chairperson of General
Motors?
2. Who is the head of General Motors?
3. Who presides over General Motors as its
chairperson?
4. Who currently serves as the chairperson
of General Motors?
5. What is the name of the person who
chairs General Motors?

Reason_Q Who is the chairperson of the manufacturer
of Holden Caprice?

Table 6: An instance from TFRKN

[q1, q2, · · · , qn] and [gt1, gt2, · · · , gtm].

Attr(w
(l)
i ) = w

(l)
i

∫ 1

β=0

dP[t1,··· ,tn],y(βw
(l)
i )

dw
(l)
i

dβ (10)

∼
Attr(query, w(l)

i ) =

1

m

m∑

k=1

w
(l)
i,k

∫ 1

β=0

dP[q1,··· ,qn,··· ,ak−1],gtk (βw
(l)
i,k)

dw
(l)
i,k

dβ

(11)

where ai represents the generated token with the
highest predicted probability at i-th time. Due to
the intractability of the continuous integration in
Equation 10, an approximation is made using Rie-
mann integration (equation 12). Substituting Equa-
tion 12 into Equation 11 yields Equation 13.

Attr(w
(l)
i ) =

w
(l)
i

N
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)

N
)
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Given that knowledge neurons surpass linguistic
expressions and govern the expression of authentic
knowledge, we retain knowledge neurons shared
by more than p% queries as Equation 14.

KN =
L⋂

k=1

KNqueryk

KNqueryk ={w(l)
i |

∼
Attr(queryk, w

(l)
i ) > τ,∀i, l}

(14)

C Experimental Details

We present a comprehensive overview of our ex-
perimental setup.

Intersection of LLMs Experiments are con-
ducted using a refined subset of TFRKN dataset.
To ensure that LLMs know each factual element
required by the factual reasoning questions, we
meticulously filtered out unqualified data points for
each model. By taking the intersection of these
filtered datasets, we culled a dataset comprising
1072 qualified data points.

Indentification of KNs The process of identify-
ing KNs for each fact triplet proves to be the most
computationally intensive, with each model taking
96 GPU hours to find all KNs. In the context of the
location experiment, we configured the integrated
gradient steps to 20 and set the parameter of the
shared percentage of coarse neurons to 0.2. The
experiments were executed on a system equipped
with NVIDIA A100 80GB GPUs, and further de-
tails of the software environment are available in
our code repository. All experimental results are
the mean values of three repetitive experiments.

D Construction of Contextual Conflict

Knowledge Distraction We manually con-
structed a set of irrelevant fact statements S. S
does not involve any entities or relations in TFRKN
to ensure "unrelated" property. Each two-hop ques-
tion randomly selects a knowledge distraction from
this set.

Knowledge Conflict We constructed contexts
that conflict with the first-hop fact and that con-
flict with the second-hop fact for each two-hop
question respectively. The method is as follows:
we manually designed templates T for all relations
involved in the TFRKN dataset. Assuming there
is a fact (s, r, o), we collect the set of candidate
objects related to r in the dataset, select an o∗ that
is not equal to o as the new fabricated fact (s, r, o∗),
and apply the template of the relation in T to ob-
tain the knowledge conflict context corresponding
to (s, r, o).

E Additional Experimental Results

Non-overlap of Knowledge Neurons Based on
the KNs identified in our experiments, we con-
ducted a verification of non-overlap. To achieve
this, we randomly sampled 6,000 pairs of distinct
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LLaMA2 LLaMA3 Mistral

Avg. Med. Max. Avg. Med. Max. Avg. Med. Max.

Number of KNs per fact 26.4 22.0 53.0 28.3 25.0 52.0 22.3 26.0 59.0
Number of pairwise intersections 2.7 2.0 6.0 3.7 3.0 4.0 1.0 0.0 4.0

Table 7: The KNs for different facts may vary significantly (Avg.: average, Med.: median, Max.: maximum).

Sentences ending with Paris LLaMA2-7B LLaMA3-8B Mistral-7B

The capital of France is 1.98 2.25 2.04
The capital city of France is 2.01 2.27 2.06

The Louvre Museum is situated in the city of 1.10 1.46 1.55

The Seine River flows gracefully through the heart of 1.27 1.47 1.70

The City of Love refers to the city of 1.24 1.70 1.41

The City of Light refers to the city of 1.25 1.65 1.53

The capital The football club Paris Saint-Germain is
based in the city of France is

1.24 1.40 1.66

The Eiffel Tower is one of the most iconic landmarks
in the city of

1.37 1.80 1.64

Table 8: KN Scores corresponding to (France, capital, Paris) for different sentences which end with Paris.

relational facts and calculated the number of inter-
secting KNs between each pair. The statistics of
overlapping KNs are shown in Table 7.

Verification of Basic Assumptions We present
compelling results from small-scale case studies,
which prove that when LLMs predict the same
word, the metric of KN Scores would be high only
when the process involves fact retrieval. For il-
lustration, we use (France, capital, Paris) as an
example, whose KNs cover 26 neurons. KN Scores
are computed across these 26 neurons as the metric.
Then we construct sentences that end with "Paris"
and then replace "Paris" with a blank, prompting
LLMs to predict the missing word. To ensure that
the LLMs predict "Paris" as the final token, we de-
sign straightforward and commonsense sentences
and verify that the LLMs would indeed predict
"Paris" and then assess the knowledge-expressing
prompts and compare them with non-knowledge-
expressing prompts by analyzing their KN Scores.

"The capital of France is" and "The capi-
tal city of France is" are knowledge-expressing
prompts, which consistently exhibit higher KN
Scores compared to other examples, even
though LLMs predict "Paris" for all these sen-
tences. This experiment illustrates that KNs

for (France, capital, Paris) are activated mostly
when LLMs recall (France, capital, Paris), not
when they make a specific predictive word "Paris".
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