
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 7421–7432
November 12-16, 2024 ©2024 Association for Computational Linguistics

EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees

Yuhui Li1,3*, Fangyun Wei2, Chao Zhang1, Hongyang Zhang3,4†

1School of Intelligence Science and Technology, Peking University,
2Microsoft Research, 3University of Waterloo, 4Vector Institute.

yuhui.li@stu.pku.edu.cn, fawe@microsoft.com
c.zhang@pku.edu.cn, hongyang.zhang@uwaterloo.ca

Abstract

Inference with modern Large Language Mod-
els (LLMs) is expensive and time-consuming,
and speculative sampling has proven to be
an effective solution. Most speculative sam-
pling methods such as EAGLE use a static
draft tree, implicitly assuming that the accep-
tance rate of draft tokens depends only on their
position. Interestingly, we found that the ac-
ceptance rate of draft tokens is also context-
dependent. In this paper, building upon EA-
GLE, we propose EAGLE-2, which introduces
a new technique of context-aware dynamic
draft tree into drafting modeling. This improve-
ment leverages the fact that the draft model
of EAGLE is well-calibrated: the confidence
scores from the draft model approximate ac-
ceptance rates with small errors. We con-
ducted extensive evaluations on three series of
LLMs and six tasks, with EAGLE-2 achieving
speedup ratios 3.05x-4.26x, which is 20%-40%
faster than EAGLE-1. EAGLE-2 also ensures
that the distribution of the generated text re-
mains unchanged, making it a lossless acceler-
ation algorithm. The code is open sourced at
https://github.com/SafeAILab/EAGLE.

1 Introduction

Modern Large Language Models (LLMs) (OpenAI,
2023; Touvron et al., 2023) exhibit impressive ca-
pabilities and are widely applied across various do-
mains. However, their parameter sizes have grown
substantially, even exceeding hundreds of billions.
During autoregressive generation, each token gen-
eration requires accessing all model parameters. In
a single dialogue, hundreds to thousands of tokens
might be generated, making LLM inference slow
and expensive. Speculative sampling (Leviathan
et al., 2023; Chen et al., 2023a) methods aim to ad-
dress this issue by rapidly generating draft tokens

*The work is done when Yuhui Li is an intern student at
University of Waterloo.

†Corresponding author.

Vicuna 7B
Vicuna 13B

LLaMA2-Chat 7B

LLaMA2-Chat 13B

Models

0

2

4

Sp
ee

du
p 3.05x

2.13x
1.50x

3.80x

2.32x
1.62x

3.19x
2.22x

N/A

3.92x

2.68x

N/A

EAGLE-2 EAGLE Speculative sampling

Figure 1: Speedup ratios of different methods at tem-
perature=1. For speculative sampling, the Vicuna series
uses Vicuna-68M as the draft model. LLaMA2-Chat
lacks a suitable draft model, and is marked as N/A.
Methods like Medusa relax acceptance conditions under
non-greedy settings, which do not guarantee lossless
acceleration. In this paper, we only compare with specu-
lative sampling based methods ensuring the output text
distribution remains constant. In Table 1, we present
comparisons with additional methods, but this figure
only showcases a subset, including the fastest among
these methods, EAGLE.

and then verifying them in parallel. These methods
generate multiple tokens in a single forward pass,
significantly reducing inference latency.

Standard speculative sampling (Leviathan et al.,
2023; Chen et al., 2023a) uses a chain-structured
draft. To improve acceptance length, recent work in
speculative sampling has employed tree-structured
drafts. Sequoia (Chen et al., 2024) explicitly as-
sumes that the acceptance rate of a draft token de-
pends only on its position in the tree. EAGLE (Li
et al., 2024b) and Medusa (Cai et al., 2024) use the
same static draft tree structure in all contexts: at the
i-th step of the draft phase, k candidates are added,
with k being fixed. This implicitly assumes the
aforementioned hypothesis. However, this assump-
tion appears to contradict the insight of speculative
sampling that some tokens are simpler and can
be predicted by smaller models. Our experiments
(see Section 3.1) reveal that the acceptance rate of
draft tokens is not only position-dependent but also
highly context-dependent. Therefore, the static
structure of draft trees has inherent limitations. Dy-
namically adjusting the draft tree structure based

7421

https://github.com/SafeAILab/EAGLE

Vicuna 7B
Vicuna 13B

LLaMA2-Chat 7B

LLaMA2-Chat 13B

LLaMA2-Chat 70B

LLaMA3-Instruct 8B

LLaMA3-Instruct 70B

Models

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

3.62x

2.90x

1.91x1.82x

4.26x

3.07x

2.07x1.93x

3.43x

2.78x

1.61x

N/A

4.21x

3.03x

1.58x

N/A

3.51x
3.01x

1.52x1.45x

3.46x

2.72x

1.50x
N/A

3.29x
2.83x

1.43x1.41x

EAGLE-2 EAGLE Medusa Lookahead Speculative sampling

Figure 2: Speedup ratios of different methods at temperature=0. For speculative sampling, the Vicuna series uses
Vicuna-68M as the draft model. LLaMA2-Chat 7B, 13B, and LLaMA3-Instruct 8B lack suitable draft models and
are marked as N/A. LLaMA2-Chat 70B and LLaMA3-Instruct 70B use LLaMA2-Chat 7B and LLaMA3-Instruct
8B as draft models, respectively. In Table 1, we present comparisons with additional methods, but this figure only
showcases a subset, including the fastest among these methods, EAGLE.

on the acceptance rates of draft tokens in different
contexts can yield better results.

However, obtaining the acceptance rate of draft
tokens requires the forward results from the origi-
nal LLM, which conflicts with the goal of specula-
tive sampling to reduce the number of forwards for
the original LLM. Fortunately, we find that EAGLE
is well-calibrated: the confidence score (probabil-
ity) of the draft model is a good approximation of
the acceptance rate of draft tokens (see Section 3.2).
This makes it feasible to use a context-dependent
dynamic draft tree structure.

We propose EAGLE-2, which leverages the con-
fidence scores from the draft model to approximate
acceptance rates. Based on this, it dynamically
adjusts the draft tree structure, increasing the num-
ber of accepted tokens. We conducted comprehen-
sive and extensive tests on six tasks: multi-turn
conversation, code generation, mathematical rea-
soning, instruction following, summarization, and
question answering. The datasets used were MT-
bench (Zheng et al., 2023), HumanEval (Chen et al.,
2021), GSM8K (Cobbe et al., 2021), Alpaca (Taori
et al., 2023), CNN/Daily Mail (Nallapati et al.,
2016), and Natural Questions (Kwiatkowski et al.,
2019). Our comparisons included six advanced
speculative sampling methods: standard specula-
tive sampling (Leviathan et al., 2023; Chen et al.,
2023a; Joao Gante, 2023), PLD (Saxena, 2023),
Medusa (Cai et al., 2024), Lookahead (Fu et al.,
2023), Hydra (Ankner et al., 2024), and EAGLE
(Li et al., 2024b). We conducted experiments on
three series of LLMs: Vicuna, LLaMA2-Chat, and
LLaMA3-Instruct. In all experiments, EAGLE-
2 demonstrated the best performance, achieving

a speedup of 2.5x-5x. Figures 1 and 2 show the
speedup ratios of EAGLE-2 and other speculative
sampling methods on MT-bench. MT-bench is a
multi-turn conversation dataset that closely resem-
bles real-world scenarios for models like ChatGPT
and is frequently used to evaluate state-of-the-art
open-source and closed-source models. On the MT-
bench dataset, EAGLE-2 is approximately 2x faster
than Medusa and about 2.3x faster than Lookahead,
while ensuring the output distribution remains un-
changed.

Besides performance, EAGLE-2 offers the fol-
lowing advantages:

• Out-of-the-box usability. Comparing to EA-
GLE, EAGLE-2 does not require training any
extra models. It does not train a separate
model to predict the draft tree structure. In-
stead, it adjusts the draft tree structure based
on the confidence scores from the draft model,
which is essential for speculative sampling.
Therefore, EAGLE-2 requires no additional
training.

• Reliability. EAGLE-2 does not fine-tune or
update the parameters of the original LLM,
nor does it relax acceptance conditions. This
ensures that the distribution of the generated
text remains exactly the same with that of the
original LLM, provably.

2 Preliminaries

2.1 Speculative Sampling
The core idea of speculative sampling (Leviathan
et al., 2023; Chen et al., 2023a; Sun et al., 2024c,b)

7422

Speculative Sampling
Feature Autoregressive

Draft Model
𝑓3

𝑓4

EAGLE

𝑡4

𝑡5

𝑓1

𝑡2
𝑓2

𝑡3

𝑓2

𝑡3
𝑓3

𝑡4
𝑓1

𝑡2 Feature Autoregressive
Draft Model

Token Autoregressive
Draft Model

𝑡4

𝑡5

𝑡2 𝑡3

𝑡3 𝑡4𝑡2
Token Autoregressive

Draft Model

Speculative Sampling EAGLE

𝑡4

𝑡5

Original
LLM

✓

×

𝑡4

𝑡5

Original
LLM

𝑡6

✓

× ✓

(a) Drafting stage.

Speculative Sampling
Feature Autoregressive

Draft Model
𝑓3

𝑓4

EAGLE

𝑡4

𝑡5

𝑓1

𝑡2
𝑓2

𝑡3

𝑓2

𝑡3
𝑓3

𝑡4
𝑓1

𝑡2 Feature Autoregressive
Draft Model

Token Autoregressive
Draft Model

𝑡4

𝑡5

𝑡2 𝑡3

𝑡3 𝑡4𝑡2
Token Autoregressive

Draft Model

Speculative Sampling EAGLE

𝑡4

𝑡5

Original
LLM

✓

×

𝑡4

𝑡5

Original
LLM

𝑡6

✓

× ✓

(b) Verification stage.

Figure 3: Comparison of standard speculative sampling and EAGLE. For simplicity, EAGLE’s tree-structured draft
is shown only in the verification stage, while the illustration of the drafting stage uses a chain-structured draft. Here,
ti denotes the i-th token embedding, and fi denotes the i-th feature vector in the second-to-top-layer of LLM before
LM head.

is to first draft and then verify: quickly generate
a potentially correct draft and then check which
tokens in the draft can be accepted. We use ti to
denote the i-th token and Ta:b to represent the token
sequence ta, ta+1, · · · , tb. Speculative sampling
alternates between drafting and verification stages.

Consider a prefix T1:j , in the drafting stage,
speculative sampling invokes a draft model (a
smaller LLM than original LLM) to autoregres-
sively generate a draft T̂j+1:j+k with T1:j as the
prefix, while also recording the probability p̂ for
each token. In the verification stage, speculative
sampling calls the original LLM to check the draft
T̂j+1:j+k and record its probability p. Then, specu-
lative sampling determines the acceptance of draft
tokens sequentially from front to back. For to-
ken t̂j+i, the probability of it being accepted is
min(1, pj+i(t̂j+i)/p̂j+i(t̂j+i)). If the token is ac-
cepted, it proceeds to check the next one. Oth-
erwise, it samples a token from the distribution
norm(max(0, pj+i− p̂j+i)) to replace t̂j+i and dis-
cards the remaining tokens in the draft. Appendix
A.1 of (Leviathan et al., 2023) proves that specula-
tive sampling is consistent with the distribution of
vanilla autoregressive decoding. Both EAGLE and
EAGLE-2 apply this framework.

2.2 EAGLE

EAGLE (Li et al., 2024b) is an improvement over
speculative sampling. At the submission of this
work, EAGLE ranks first in the Spec-Bench (Xia
et al., 2024), a comprehensive benchmark designed
for assessing speculative decoding methods across
diverse scenarios.

Drafting Stage. Unlike standard speculative
sampling, which autoregressively predicts token
sequences, EAGLE performs autoregression at the
more structured feature (before LM head) level and
then uses the LM Head of original LLM to obtain
the draft tokens. The sampling process introduces
uncertainty in the feature sequence. To address this,
EAGLE also inputs a token sequence advanced by
one time step into the draft model, as shown in

10+2

= +

10+2=

1

2

EAGLE EAGLE-2

10+2=

1 3

10+2

= +

Figure 4: Differences between EAGLE and EAGLE-
2. EAGLE always uses a fixed draft shape. When
the query is “10+2=”, the next token is very likely to
be correctly predicted as “1”. However, with a static
draft tree, EAGLE would still add two candidates, even
though the probability of the other candidate “3” being
correct is very low. EAGLE-2, on the other hand, adjusts
the shape of draft tree based on the context. When the
query is “10+2”, the next token is difficult to predict, so
EAGLE-2 adds two candidates. For the simpler query
“10+2=”, EAGLE-2 adds only one candidate “1”.

Figure 3a.
Verification Stage. In standard speculative sam-

pling, the draft is chain-structured, requiring the
discarding of all subsequent tokens if a draft token
is rejected. EAGLE uses a tree-structured draft,
allowing alternative branches to be attempted if a
draft token is rejected. Figure 3b illustrates the
differences between the two.

Differences between EAGLE and EAGLE-2.
The shape of EAGLE’s draft tree is fixed, with the
drafting phase filling in the corresponding positions.
EAGLE-2 aims to improve this by introducing a dy-
namically adjustable draft tree. Figure 4 illustrates
the difference between EAGLE and EAGLE-2 with
a simple example.

3 Observations

3.1 Context-Dependent Acceptance Rates

First, we evaluate the necessity of using a dynamic
draft tree. This depends on whether the acceptance
rates of draft tokens are solely related to their posi-
tions. We tested the acceptance rates of tokens at
different positions in the draft tree on the Alpaca
dataset and Vicuna 7B. The results are shown in

7423

Query

P1 P2

P3 P4 P5 P6

(a) Draft tree structure.

1 2 3 4 5 6
Position

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
 R

at
e

(b) Acceptance rates of to-
kens at different positions,
with each point representing
a query.

Figure 5: Acceptance rates of draft tokens at different
positions. In the left figure, P1-P6 indicate positions
in the token tree, corresponding to positions 1-6 on the
horizontal axis in the right figure. The right figure shows
the acceptance rates of draft tokens at positions P1-P6.

Figure 5. Overall, the acceptance rate of draft to-
kens is position-dependent, with the highest accep-
tance rate at position P1 and the lowest at position
P6. Draft tokens in the upper left side of the draft
tree (such as position P1) have higher acceptance
rates, while those in the lower right side (such as
position P6) have lower acceptance rates. This
supports the rationale for having more nodes in the
upper left and fewer in the lower right in static draft
trees used by methods like EAGLE and Medusa.
However, we also observed significant variance in
acceptance rates at the same position, indicating
that the probability of a draft token being accepted
depends not only on its position but also on the con-
text. This suggests that a context-aware dynamic
draft tree has greater potential than a static draft
tree.

3.2 Well-Calibrated Draft Model
To apply a dynamic draft tree, we need a low-cost
method to estimate the acceptance rates of draft
tokens without invoking the original LLM. We con-
ducted experiments on the Alpaca dataset to ex-
plore the relationship between the draft model’s
confidence score (the output probability of LLM
w.r.t. each token) and the acceptance rate. As
shown in Figure 6, there is a strong positive corre-
lation between the draft model’s confidence score
and the acceptance rate of the token. Draft to-
kens with confidence score below 0.05 have an
acceptance rate of approximately 0.04, while those
with confidence score above 0.95 have an accep-
tance rate of about 0.98. Therefore, we can use the
draft model’s confidence score to estimate accep-
tance rates without additional overhead, enabling
dynamic adjustments to the draft tree. Similar phe-
nomena are observed with draft models in other

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
 R

at
e

Figure 6: Average acceptance rates for different confi-
dence score intervals of the draft model. The red dashed
line connects (0,0) and (1,1) to aid in visual assessment.
The original LLM is Vicuna 7B.

methods, such as GLIDE and CAPE (Du et al.,
2024).

4 Context-Aware Dynamic Draft Tree

Building on the aforementioned observations, we
introduce EAGLE-2, an acceleration algorithm for
LLM inference that dynamically adjusts the draft
tree. EAGLE-2 does not alter the training and in-
ference of the draft model, nor does it affect the
verification stage. Its improvements focus on two
aspects: how to expand the draft tree (Section 4.1)
and how to rerank draft tokens (Section 4.2). Dur-
ing the expansion phase, we input the most promis-
ing nodes from the latest layer of the draft tree into
the draft model to form the next layer. During the
reranking phase, we select the tokens with higher
acceptance probabilities to form the input for the
original LLM during the verification phase.

In the draft tree, a node represents a token. In
the following text, we use “node” and “token” in-
terchangeably.

4.1 Expansion Phase

Thanks to tree attention, the draft model can simul-
taneously input all tokens from the current layer
and compute the probabilities for the next tokens in
a single forward pass, thereby expanding all tokens
in the current layer. However, inputting too many
tokens at once can slow down the draft model’s for-
ward pass, and the number of tokens in each layer
of the draft tree grows exponentially. Therefore,
we need to selectively expand the draft tree.

We choose the top-k tokens with the highest
global acceptance probabilities from the current
layer for expansion. In speculative sampling, reject-
ing a draft token leads to discarding all subsequent
tokens; a token is ultimately accepted only if all its

7424

prefixes are accepted. The global acceptance rate
of a token ti is the product of the acceptance rates
of all tokens on the path from the root node to ti.
We define it as the value Vi:

Vi =
∏

tj∈Path(root,ti)

pj ≈
∏

tj∈Path(root,ti)

cj ,

where Path (root, ti) represents the path from the
root node to the node ti in the draft tree, pj rep-
resents the acceptance rate of the node tj , and cj
represents the confidence score of tj from the draft
model. Experiments in Section 3.2 show that confi-
dence score is strongly positively correlated with
acceptance rate. We leverage this relationship to
approximate the value.

Branches starting from tokens with higher values
are more likely to be accepted. Therefore, we select
the top-k nodes with the highest values in the last
layer as the input to the draft model and expand the
draft tree based on the output. The top of Figure 7
illustrates the expansion phase.

4.2 Reranking Phase

The purpose of the expansion phase is to deepen
the draft tree. Since acceptance rates range be-
tween 0 and 1, the value of a deeper token is lower.
Some shallow nodes that were not expanded may
have higher values than the deeper expanded nodes.
Therefore, we do not use the tokens selected during
the expansion phase as the draft directly. Instead,
we rerank all draft tokens and select the top m to-
kens with the highest values. The value of a node
is always less than or equal to that of its parent
node. For nodes with the same value, we prioritize
selecting shallower nodes. This ensures that the
top m tokens selected after reranking still form a
connected tree.

Afterwards, we flatten the selected tokens into
a one-dimensional sequence to serve as the input
for the verification phase. To ensure consistency
with vanilla autoregressive decoding, we also need
to adjust the attention mask. In vanilla autoregres-
sive decoding, each token can see all preceding
tokens, resulting in a lower triangular attention ma-
trix. When using a draft tree, tokens from different
branches should not be visible to each other. There-
fore, the attention mask must be adjusted according
to the tree structure to ensure that each token can
only see its ancestor nodes. The bottom of Figure
7 illustrates the reranking Phase.

5 Experiments

It (1.0)
0.6 0.2

is (0.6)

0.8

a (0.48)

0.1

0.10.7

Expand (Top-2)

the (0.06)

good (0.34) nice (0.05)

has (0.2)

0.7

to (0.14)

0.1

0.20.6

a (0.02)

be (0.08) do (0.03)

It (1.0)
0.6 0.2

is (0.6)

0.8

a (0.48)

0.1

0.10.7

Rerank (Top-8)

the (0.06)

good (0.34) nice (0.05)

has (0.2)

0.7

to (0.14)

0.1

0.20.6

a (0.02)

be (0.08) do (0.03)

Flatten to 1D It is has a the to good be

Attention mask

✓

✓ ✓

✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

It

is

has

a

the

to

good

be

It is has a the to good be

Figure 7: Illustration of EAGLE-2. The numbers beside
the edges represent the confidence scores of the draft
model, and the numbers in brackets within the blocks
represent the value of the nodes. During the expan-
sion phase, we select the top 2 nodes with the highest
value from the current layer (orange blocks) as inputs
to the draft model and connect the generated tokens
(green blocks) to the draft tree. In the rerank phase, we
select the top 8 nodes with the highest value from all
nodes (blue blocks), flatten them into a 1-dimensional
sequence to form the final draft. We then construct the
attention mask according to the tree structure, ensuring
each token can only see its ancestor nodes.

7425

Models. We conduct experiments on Vicuna 7B,
13B (Chiang et al., 2023), LLaMA2-Chat 7B, 13B,
70B (Touvron et al., 2023), and LLaMA3-Instruct
8B, 70B models (Meta, 2024).

Tasks. We conduct comprehensive evaluations
on six generation tasks. For multi-turn conversa-
tion, code generation, mathematical reasoning, in-
struction following, summarization, and question
answering tasks, we chose the MT-bench (Zheng
et al., 2023), HumanEval (Chen et al., 2021),
GSM8K (Cobbe et al., 2021), Alpaca (Taori et al.,
2023), CNN/Daily Mail (Nallapati et al., 2016),
and Natural Questions (Kwiatkowski et al., 2019)
datasets, respectively.

Metrics. EAGLE-2 neither fine-tunes the origi-
nal LLM nor relaxes acceptance conditions, mak-
ing it a lossless acceleration method. Therefore, we
do not evaluate the generation quality and instead
use the following metrics to assess acceleration
performance:

• Speedup Ratio: The actual test speedup ratio
relative to vanilla autoregressive decoding.

• Average Acceptance Length τ : The aver-
age number of tokens generated per drafting-
verification cycle, which corresponds to the
number of tokens accepted from the draft. The
advantage of average acceptance length is that
it is independent of hardware and runtime
environment, while its disadvantage is that
it does not reflect the overhead of the draft
model.

Why is acceptance rate not included? The
acceptance rate only reflects the performance of
the draft model. Since EAGLE-2 does not modify
the structure of the draft model, the acceptance rate
remains the same as that of EAGLE.

Comparison. We use vanilla autoregressive de-
coding as the baseline, which serves as the bench-
mark for speedup ratios (1.00x). We compare
EAGLE-2 with recent lossless speculative sam-
pling methods, including standard speculative sam-
pling (Leviathan et al., 2023; Chen et al., 2023a;
Joao Gante, 2023), PLD (Saxena, 2023), Medusa
(Cai et al., 2024), Lookahead (Fu et al., 2023), Hy-
dra (Ankner et al., 2024), and EAGLE (Li et al.,
2024b). The speedup ratio is hardware-dependent,
so we tested different methods on the same devices
to ensure fairness. Our comparative experiments
utilized Spec-Bench (Xia et al., 2024). The imple-
mentation details of these methods and EAGLE

can be found in Appendix A.

5.1 Effectiveness
Figures 1 and 2, along with Tables 1 and 2, present
the speedup ratios of different methods. Across all
datasets and LLMs we tested, EAGLE-2 achieved
the highest speedup ratios. Most speculative sam-
pling methods exhibit the highest speedup on the
code generation task (HumanEval), benefiting from
the extensive use of fixed templates in code. EA-
GLE achieved a speedup of up to 5x on code gener-
ation tasks. PLD achieved the highest speedup ra-
tio on summarization tasks (CNN/DM) when using
Vicuna as the original LLM, due to PLD’s retrieval-
based draft generation and the high overlap in con-
text when Vicuna performs summarization. Stan-
dard speculative sampling, using Vicuna-68M as
the draft model, also achieved significant speedups
but had much higher training overhead compared
to other methods. PLD and Lookahead do not re-
quire training, while Medusa, Hydra, EAGLE, and
EAGLE-2 use SFT datasets for training their draft
models. Vicuna-68M used both pre-training and
SFT datasets, with the pre-training dataset being
much larger than the SFT dataset.

Tables 1 and 2 show the average acceptance
lengths for different methods, which is a hardware-
independent metric. Across all datasets and LLMs
we tested, EAGLE-2 achieved the longest average
acceptance length. Each drafting-verification cycle
of EAGLE-2 generates approximately 4-5.5 tokens,
significantly higher than other methods, roughly
twice that of standard speculative sampling and
Medusa. PLD and Lookahead have shorter aver-
age acceptance lengths, but since they either lack
a draft model or their draft model is not a neural
network, the overhead during the drafting phase is
very low, resulting in a speedup ratio very close to
their average acceptance length.

Medusa, Hydra, EAGLE, and EAGLE-2 have
lower average acceptance lengths on QA (Natural
Questions) and summarization (CNN/DM) tasks
compared to other tasks, whereas standard specu-
lative sampling does not show this reduction. The
same pattern is observed for the speedup ratios.
This discrepancy may be attributed to differences
in the training data for the draft models. The
draft model for standard speculative sampling uses
both pretraining and SFT datasets, while Medusa,
Hydra, EAGLE, and EAGLE-2 only use the SFT
dataset. Natural Questions involves questions about
world knowledge, such as “Where was the 2015

7426

Table 1: Speedup ratios and average acceptance lengths τ of different methods. V represents Vicuna, L2 represents
LLaMA2-Chat. SpS denotes standard speculative sampling, with its draft model being Vicuna-68M. Methods
like Medusa relax acceptance conditions under non-greedy settings, which do not guarantee lossless acceleration.
Therefore, we do not compare EAGLE-2 with these methods.

MT-bench HumanEval GSM8K Alpaca CNN/DM Natural Ques. Mean

Model Method Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Temperature=0

V 13B

SpS 1.93x 2.27 2.23x 2.57 1.77x 2.01 1.76x 2.03 1.93x 2.33 1.66x 1.88 1.88x 2.18
PLD 1.58x 1.63 1.85x 1.93 1.68x 1.73 1.16x 1.19 2.42x 2.50 1.14x 1.17 1.64x 1.69

Medusa 2.07x 2.59 2.50x 2.78 2.23x 2.64 2.08x 2.45 1.71x 2.09 1.81x 2.10 2.07x 2.44
Lookahead 1.65x 1.69 1.71x 1.75 1.81x 1.90 1.46x 1.51 1.46x 1.50 1.36x 1.39 1.58x 1.62

Hydra 2.88x 3.65 3.28x 3.87 2.93x 3.66 2.86x 3.53 2.05x 2.81 2.11x 2.88 2.69x 3.40
EAGLE 3.07x 3.98 3.58x 4.39 3.08x 3.97 3.03x 3.95 2.49x 3.52 2.42x 3.11 2.95x 3.82

EAGLE-2 4.26x 4.83 4.96x 5.41 4.22x 4.79 4.25x 4.89 3.40x 4.21 3.13x 3.74 4.04x 4.65

L2 13B

PLD 1.42x 1.46 1.63x 1.70 1.41x 1.44 1.16x 1.20 1.42x 1.45 1.12x 1.15 1.36x 1.40
Lookahead 1.58x 1.64 1.80x 1.85 1.65x 1.69 1.47x 1.50 1.46x 1.53 1.42x 1.45 1.56x 1.61

EAGLE 3.03x 3.90 3.76x 4.52 3.20x 4.03 3.01x 3.83 2.70x 3.59 2.83x 3.47 3.09x 3.89
EAGLE-2 4.21x 4.75 5.00x 5.52 4.31x 4.90 4.13x 4.61 3.45x 4.24 3.51x 4.04 4.10x 4.68

V 7B

SpS 1.82x 2.36 1.99x 2.61 1.71x 2.26 1.65x 2.21 1.81x 2.44 1.60x 2.16 1.76x 2.34
PLD 1.61x 1.68 1.82x 1.87 1.82x 1.99 1.21x 1.31 2.53x 2.72 1.23x 1.44 1.70x 1.84

Medusa 1.91x 2.52 2.02x 2.67 1.89x 2.59 1.79x 2.48 1.42x 2.02 1.51x 2.09 1.76x 2.40
Lookahead 1.63x 1.69 1.72x 1.77 1.84x 1.99 1.38x 1.57 1.44x 1.53 1.45x 1.60 1.58x 1.69

Hydra 2.69x 3.60 2.98x 3.79 2.73x 3.66 2.66x 3.58 2.01x 2.70 2.25x 2.86 2.55x 3.37
EAGLE 2.90x 3.94 3.33x 4.29 3.01x 4.00 2.79x 3.89 2.33x 3.42 2.31x 3.21 2.78x 3.79

EAGLE-2 3.62x 4.98 3.95x 5.33 3.63x 4.97 3.46x 4.86 2.94x 4.12 2.76x 3.82 3.39x 4.68

L2 7B

PLD 1.38x 1.43 1.52x 1.59 1.32x 1.37 1.15x 1.19 1.48x 1.52 1.15x 1.20 1.33x 1.38
Lookahead 1.61x 1.66 1.72x 1.77 1.58x 1.65 1.49x 1.52 1.49x 1.54 1.48x 1.53 1.56x 1.61

EAGLE 2.78x 3.62 3.17x 4.24 2.91x 3.82 2.78x 3.71 2.43x 3.41 2.61x 3.44 2.78x 3.71
EAGLE-2 3.43x 4.70 4.03x 5.39 3.52x 4.77 3.45x 4.66 3.01x 4.12 3.15x 4.19 3.43x 4.64

Temperature=1

V 13B

SpS 1.62x 1.84 1.72x 1.97 1.46x 1.73 1.52x 1.78 1.66x 1.89 1.43x 1.70 1.55x 1.82
EAGLE 2.32x 3.20 2.65x 3.63 2.57x 3.60 2.45x 3.57 2.23x 3.26 2.14x 3.06 2.39x 3.39

EAGLE-2 3.80x 4.40 4.22x 4.89 3.77x 4.41 3.78x 4.37 3.25x 3.97 3.07x 3.54 3.65x 4.26

L2 13B
EAGLE 2.68x 3.45 2.89x 3.78 2.82x 3.67 2.66x 3.55 2.41x 3.39 2.37x 3.31 2.64x 3.53

EAGLE-2 3.92x 4.51 4.58x 5.29 4.21x 4.80 3.85x 4.48 3.31x 4.08 3.43x 3.89 3.88x 4.51

V 7B

SpS 1.50x 1.87 1.55x 1.95 1.53x 1.82 1.56x 1.85 1.63x 1.91 1.33x 1.72 1.52x 1.85
EAGLE 2.13x 3.17 2.39x 3.43 2.34x 3.29 2.21x 3.30 2.08x 3.12 1.95x 2.86 2.18x 3.20

EAGLE-2 3.05x 4.28 3.33x 4.65 3.07x 4.49 3.08x 4.43 2.63x 3.76 2.48x 3.56 2.94x 4.20

L2 7B
EAGLE 2.22x 3.30 2.61x 3.79 2.40x 3.52 2.29x 3.33 2.19x 3.15 2.22x 3.12 2.32x 3.37

EAGLE-2 3.19x 4.41 3.67x 5.06 3.35x 4.62 3.20x 4.48 2.73x 3.85 2.81x 4.01 3.15x 4.41

rugby union world cup held?”, and world knowl-
edge is primarily acquired through pretraining
rather than SFT. Summarization tasks are also less
represented in the SFT dataset. This suggests the
potential benefits of expanding the draft model’s
training data. Despite this, EAGLE-2 still outper-
forms standard speculative sampling on these two
datasets.

5.2 Ablation Study

In this section, we conduct the ablation study.

5.2.1 Value and Confidence Score

EAGLE’s draft model provides a good approxima-
tion of acceptance rates, but it is local and cannot
reflect the actual probability of a draft token being
accepted. Therefore, when selecting nodes for ex-
pansion, we use the value, which is the product of

a draft token’s confidence score and its ancestor
nodes’ confidence scores, as the basis for rank-
ing. In this section, we compare the performance
impact of expanding based on value versus con-
fidence score. The experimental results in Table
3 show that the speedup ratio and average accep-
tance length are both higher when expanding based
on value, demonstrating the rationale behind the
EAGLE-2 approach.

5.2.2 Reranking

The purpose of EAGLE-2’s expansion phase is to
deepen the draft tree, but the tokens selected may
be globally less optimal than shallow nodes that
were not selected. Therefore, during the reranking
phase, we rerank all the draft tokens. We conducted
an ablation study on this operation using the MT-
bench and GSM8K dataset. As shown in Table 3,

7427

Table 2: Speedup ratios and average acceptance lengths
τ with LLaMA2-Chat 70B, LLaMA3-Instruct 70B, and
LLaMA3-Instruct 8B as the original LLMs, with the
temperature set to 0, on the MT-bench dataset.

Model Method Speedup τ

LLaMA2-Chat 70B

PLD 1.31x 1.39
Lookahead 1.52x 1.64

EAGLE 3.01x 3.81
EAGLE-2 3.51x 4.48

LLaMA3-Instruct 70B
EAGLE 2.83x 3.62

EAGLE-2 3.29x 4.16

LLaMA3-Instruct 8B
EAGLE 2.72x 3.65

EAGLE-2 3.46x 4.53

reranking improved both the average acceptance
length and the speedup ratio.

Table 3: Ablation experiment results with temperature
set to 0 on Vicuna 7B. “w/o value” indicates not using
value and directly using confidence, “w/o reranking”
indicates not performing reranking, and “w/o both” in-
dicates neither value nor reranking is used.

MT-bench GSM8K

Method Speedup τ Speedup τ

w/o both 2.81x 3.92 2.85x 3.93
w/o value 3.21x 4.39 2.93x 3.96

w/o reranking 3.48x 4.86 3.50x 4.85
EAGLE-2 3.62x 4.98 3.63x 4.97

6 Related Work

With widespread applications of LLMs, there has
been significant work (Liu et al., 2023b) focused on
accelerating LLM inference, such as low-bit quanti-
zation (Hubara et al., 2018; Shen et al., 2020; Kim
et al., 2021; Zadeh et al., 2020; Zafrir et al., 2019),
pruning (Gale et al., 2019; Sanh et al., 2020), and
knowledge distillation (Hinton et al., 2015). These
methods reduce generation latency by decreasing
the computational cost of each forward pass of the
LLM. However, these approaches often degrade
LLM performance to some extent, resulting in a
trade-off between generation quality and computa-
tional overhead.

Speculative sampling methods achieve lossless
acceleration by using the original LLM for verifi-
cation. Early speculative decoding methods (Stern
et al., 2018; Sun et al., 2021) accelerated generation
in greedy settings, while Leviathan et al. (2023);
Chen et al. (2023a) proposed speculative sampling

to extend the draft-verification framework to non-
greedy generation. Subsequent work has largely
focused on reducing draft overhead and enhanc-
ing consistency between the draft and the origi-
nal LLM. SpecInfer (Miao et al., 2023) integrates
multiple small models as the draft model, aggre-
gating their drafts into a tree and using tree atten-
tion for parallel verification. Medusa (Cai et al.,
2024) trains a set of MLPs to parallelly predict
multiple tokens using the original LLM’s features,
significantly reducing the latency during the draft-
ing phase. EAGLE (Li et al., 2024b) autoregres-
sively predicts feature sequences instead of token
sequences and inputs the sampling results into the
draft model to address uncertainty at the feature
level, substantially improving the draft model’s ac-
curacy. This principle of eliminating uncertainty is
also used in Hydra (Ankner et al., 2024) and Recur-
rent Drafter (Zhang et al., 2024). Parallel Decoding
(Santilli et al., 2023), Lookahead (Fu et al., 2023),
Ouroboros (Zhao et al., 2024), and CLLMs (Kou
et al., 2024) generate drafts using Jacobi iterations.
Methods (Hooper et al., 2023; Yang et al., 2023b;
Monea et al., 2023; Li et al., 2024a; Yi et al., 2024;
Liu et al., 2024; Sun et al., 2024a; Elhoushi et al.,
2024; Svirschevski et al., 2024) like Draft & Ver-
ify (Zhang et al., 2023) utilize techniques such as
layer skipping or early exit, using parts of the orig-
inal LLM’s parameters as the draft model. REST
(Fu et al., 2024) and LLMA (Yang et al., 2023a)
generate drafts through retrieval. Online Specula-
tive Decoding (Liu et al., 2023a) and DistillSpec
(Zhou et al., 2024) further align the draft model
with the original LLM through additional training.
Cascade Speculative Drafting (Chen et al., 2023b)
and Staged Speculative Decoding (Spector and Re,
2023) cascade draft models of different sizes.

Speculative sampling methods can achieve loss-
less acceleration, but they can also trade off qual-
ity for higher speedup ratios. For example, BiLD
(Kim et al., 2024) relaxes the acceptance condi-
tions, while Medusa-2 (Cai et al., 2024), CLLMs
(Kou et al., 2024), and SPACE (Yi et al., 2024)
fine-tune the original LLMs.

Sorted Llama (Kavehzadeh et al., 2024) and
LITE (Varshney et al., 2023) use confidence as
an indicator of token quality. Some works have
already employed partially dynamic draft trees by
leveraging confidence. BiLD (Kim et al., 2024)
and Kangaroo (Liu et al., 2024) use early stopping
based on the draft model’s confidence to control the
tree’s depth. GLIDE and CAPE (Du et al., 2024)

7428

adds additional candidates when the top-1 token
confidence is low, controlling the tree’s depth, but
the additional candidates are not further expanded,
resulting in a structurally limited tree. In contrast,
EAGLE-2 has no such limitations and can dynami-
cally adjust the draft tree structure flexibly, leading
to better performance.

7 Conclusion

In this paper, we introduce EAGLE-2, an efficient
and lossless speculative sampling method. We
found that EAGLE’s draft model confidence is
a good approximation of the acceptance rate for
draft tokens. Based on this, EAGLE-2 employs a
context-dependent draft tree structure, significantly
increasing the number of accepted draft tokens and
resulting in better speedup ratios. EAGLE-2 en-
sures that the generated results are consistent with
the original LLMs and does not require additional
training. We conducted extensive evaluations using
various LLMs across multiple datasets and com-
pared EAGLE-2 with several state-of-the-art spec-
ulative sampling methods. In all our experiments,
EAGLE-2 achieved the highest speedup ratios.

Limitations

The limitations of EAGLE-2 are similar to those of
EAGLE, as it requires training draft models. For
training the draft model, we used the SFT dataset
ShareGPT. Training the draft model also requires
certain computational resources; training a draft
model for a 70B original LLM requires 4 A100
(40G) GPUs for one to two days. However, in
large-scale deployment and application, such train-
ing costs are negligible. Additionally, EAGLE-2
uses the confidence scores from the draft model to
approximate acceptance rates, which requires the
draft model to be well-calibrated.

Acknowledgements

Yuhui Li and Chao Zhang are supported by the
National Nature Science Foundation of China un-
der Grant 62071013 and National Key R&D Pro-
gram of China under Grant 2018AAA0100300.
Hongyang Zhang is supported by the NSERC Dis-
covery Grant RGPIN-2022-03215, DGECR-2022-
00357 and the Compute Canada.

References
Zachary Ankner, Rishab Parthasarathy, Aniruddha

Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024. Hydra:
Sequentially-dependent draft heads for medusa de-
coding. arXiv preprint arXiv:2402.05109.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv: 2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun,
Jie Huang, and Kevin Chen-Chuan Chang. 2023b.
Cascade speculative drafting for even faster llm infer-
ence. arXiv preprint arXiv:2312.11462.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu,
Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu, Liqiang
Nie, Zhaopeng Tu, et al. 2024. Glide with a cape: A
low-hassle method to accelerate speculative decoding.
arXiv preprint arXiv:2402.02082.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, et al. 2024. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv
preprint arXiv:2404.16710.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2023. Breaking the sequential dependency of llm
inference using lookahead decoding.

7429

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of llm in-
ference using lookahead decoding. arXiv preprint
arXiv:2402.02057.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks.(2019).
arXiv preprint cs.LG/1902.09574.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Hasan Genc, Kurt Keutzer, Amir Gholami, and
Sophia Shao. 2023. Speed: Speculative pipelined
execution for efficient decoding. arXiv preprint
arXiv:2310.12072.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. 2018. Quantized neu-
ral networks: Training neural networks with low pre-
cision weights and activations. journal of machine
learning research, 18(187):1–30.

Joao Gante. 2023. Assisted generation: a new direction
toward low-latency text generation.

Parsa Kavehzadeh, Mojtaba Valipour, Marzieh Tahaei,
Ali Ghodsi, Boxing Chen, and Mehdi Reza-
gholizadeh. 2024. Sorted llama: Unlocking the po-
tential of intermediate layers of large language mod-
els for dynamic inference. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2024,
pages 2129–2145.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer-
only bert quantization. In International conference
on machine learning, pages 5506–5518. PMLR.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-
tendra Malik, Michael W Mahoney, Amir Gholami,
and Kurt Keutzer. 2024. Speculative decoding with
big little decoder. Advances in Neural Information
Processing Systems, 36.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and
Hao Zhang. 2024. Cllms: Consistency large lan-
guage models. arXiv preprint arXiv:2403.00835.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen,
Jimmy Lin, Wen-tau Yih, and Xi Victoria Lin.
2024a. Nearest neighbor speculative decoding
for llm generation and attribution. arXiv preprint
arXiv:2405.19325.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. Eagle: Speculative sampling requires
rethinking feature uncertainty. In International Con-
ference on Machine Learning.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng
Ni, Kai Han, and Yunhe Wang. 2024. Kangaroo:
Lossless self-speculative decoding via double early
exiting. arXiv preprint arXiv:2404.18911.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
2023a. Online speculative decoding. arXiv preprint
arXiv:2310.07177.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023b. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137–22176. PMLR.

Meta. 2024. LLaMA3. https://github.com/
pytorch-labs/gpt-fast/.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuoming
Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhi-
hao Jia. 2023. SpecInfer: Accelerating generative
LLM serving with speculative inference and token
tree verification. arXiv preprint arXiv:2305.09781.

Giovanni Monea, Armand Joulin, and Edouard Grave.
2023. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing
Xiang, et al. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv
preprint arXiv:1602.06023.

R OpenAI. 2023. Gpt-4 technical report. arxiv
2303.08774. View in Article, 2(5).

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems,
33:20378–20389.

Andrea Santilli, Silvio Severino, Emilian Postolache,
Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodolà. 2023. Accelerating
transformer inference for translation via parallel de-
coding. arXiv preprint arXiv:2305.10427.

Apoorv Saxena. 2023. Prompt lookup decoding.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low

7430

https://doi.org/10.57967/hf/0638
https://doi.org/10.57967/hf/0638
https://github.com/pytorch-labs/gpt-fast/
https://github.com/pytorch-labs/gpt-fast/
https://github.com/apoorvumang/prompt-lookup-decoding/

precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Benjamin Spector and Chris Re. 2023. Accelerating llm
inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong
Tian, and Beidi Chen. 2024a. Triforce: Lossless
acceleration of long sequence generation with hi-
erarchical speculative decoding. arXiv preprint
arXiv:2404.11912.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang.
2021. Instantaneous grammatical error correction
with shallow aggressive decoding. arXiv preprint
arXiv:2106.04970.

Ziteng Sun, Jae Hun Ro, Ahmad Beirami, and
Ananda Theertha Suresh. 2024b. Optimal block-
level draft verification for accelerating speculative
decoding. arXiv preprint arXiv:2403.10444.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah-
mad Beirami, Himanshu Jain, and Felix Yu. 2024c.
Spectr: Fast speculative decoding via optimal trans-
port. Advances in Neural Information Processing
Systems, 36.

Ruslan Svirschevski, Avner May, Zhuoming Chen,
Beidi Chen, Zhihao Jia, and Max Ryabinin. 2024.
Specexec: Massively parallel speculative decoding
for interactive llm inference on consumer devices.
arXiv preprint arXiv:2406.02532.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient
foundation language models (2023). arXiv preprint
arXiv:2302.13971.

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and
Chitta Baral. 2023. Accelerating llm inference by
enabling intermediate layer decoding. arXiv preprint
arXiv:2310.18581.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. Preprint, arXiv:2401.07851.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023a. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dim-
itris Papailiopoulos, and Kangwook Lee. 2023b.
Predictive pipelined decoding: A compute-latency
trade-off for exact llm decoding. arXiv preprint
arXiv:2307.05908.

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xi-
aotian Yu, and Rong Xiao. 2024. Generation meets
verification: Accelerating large language model infer-
ence with smart parallel auto-correct decoding. arXiv
preprint arXiv:2402.11809.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad,
and Andreas Moshovos. 2020. Gobo: Quantiz-
ing attention-based nlp models for low latency and
energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 811–824. IEEE.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pages 36–39. IEEE.

Aonan Zhang, Chong Wang, Yi Wang, Xuanyu Zhang,
and Yunfei Cheng. 2024. Recurrent drafter for fast
speculative decoding in large language models. arXiv
preprint arXiv:2403.09919.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023. Draft
& verify: Lossless large language model accelera-
tion via self-speculative decoding. arXiv preprint
arXiv:2309.08168.

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao,
Zhiyuan Liu, and Maosong Sun. 2024. Ouroboros:
Speculative decoding with large model enhanced
drafting. arXiv preprint arXiv:2402.13720.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv
Kumar, Jean-François Kagy, and Rishabh Agarwal.
2024. Distillspec: Improving speculative decoding
via knowledge distillation. In The Twelfth Interna-
tional Conference on Learning Representations.

7431

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2401.07851
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF

A Implementation Details

Vanilla: We use models from the Hugging-
face.transformers library with the PyTorch backend
and pre-allocated KV cache. Other methods also
use these models as their base.

(Standard) Speculative Sampling: We use the
assisted generation feature from the HuggingFace
Transformers library.

PLD, Lookahead, Medusa, and Hydra: We
use the default settings and the officially released
weights.

EAGLE: Vicuna and LLaMA2-Chat draft mod-
els use the officially released weights, while
LLaMA3-Instruct is trained using the ShareGPT
dataset (consistent with Medusa and Hydra).

EAGLE-2: For the 7B (8B), 13B, and 70B orig-
inal LLMs, we set the total number of draft tokens
to 60, 50, and 48, respectively, with a draft tree
depth of 6, and select 10 nodes during the expan-
sion phase.

7432

