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Abstract

Large Language Models (LLMs) have exhib-
ited exceptional performance across diverse
domains. However, recent studies reveal that
LLMs are plagued by the "reversal curse".
Most existing methods rely on aggressive sam-
ple permutation and pay little attention to delv-
ing into the underlying reasons for this issue, re-
sulting in only partial mitigation. In this paper,
inspired by human knowledge reversal, we in-
vestigate and quantify the individual influence
of three potential reasons on the reversal curse:
1) knowledge clarity, 2) entity correlation mod-
eling, and 3) pairwise relationship reasoning
capability. Motivated by the analysis of these
reasons, we propose a novel Pairwise entity
Order- and Relationship-Enhanced (PORE)
data strategy, which facilitates bidirectional
entity correlation modeling and pairwise re-
lationship reasoning to overcome the reversal
curse. Specifically, PORE augments the sam-
ples with entity order-reversal and semantically
preserved question-answer pairs, enhancing the
encoding of entity correlations in both direc-
tions. PORE also employs entity-interleaved
pairwise relationship data, which elevates the
model’s capability for relationship reasoning.
Additionally, to improve the recall of reverse
relationships, we leverage knowledge clarity to
construct high-clarity data for PORE. Exten-
sive experimental results on available and two
newly assembled datasets demonstrate the ef-
fectiveness and generalization of our method in
both data-sufficient and -constrained situations.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in handling a broad
spectrum of tasks (Lu et al., 2023; Gao et al., 2023;
Kojima et al., 2022; Liu et al., 2022; Wei et al.,
2024), even surpassing human performance in cer-
tain scenarios (Touvron et al., 2023; Achiam et al.,
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2023; Fei et al., 2022). However, in the pursuit of
general artificial intelligence (AGI), LLMs are trou-
bled by an intriguing phenomenon known as the
"reversal curse" (Berglund et al., 2023; Allen-Zhu
and Li, 2023; Ma et al., 2023; Zhu et al., 2024).
This phenomenon occurs when a model is trained
on knowledge of the form "A is B" struggles to in-
fer the reverse relationship "B is A". For instance,
a model trained on "A’s parent is B" may not gen-
eralize to "B’s child is A". To develop LLMs into
comprehensive AGI, it is crucial to explore effec-
tive solutions to this issue.

Recently, some preliminary explorations have
been made to mitigate the reversal curse. Lv et al.
(2023) advocates for a shift from unidirectional
to fully bidirectional attention to capture richer
contextual information. Despite slight improve-
ment, this approach suffers from a discrepancy be-
tween pre-training and fine-tuning. Golovneva et al.
(2024) and Guo et al. (2024) suggest aggressive
sample permutation to improve antecedent predic-
tion. However, these methods face the problems of
semantic destruction or substantial computational
resources. Moreover, all of them pay little atten-
tion to delving into the underlying reasons for this
phenomenon, resulting in only partial mitigation.

Intrigued by this phenomenon, our work is ini-
tiated with probing into the underlying reasons
for the reversal curse. Drawing inspiration from
previous researchers (Li and Lewandowsky, 1995;
Bireta et al., 2010; Thomas et al., 2003) who
deemed that humans are profoundly influenced by
knowledge storage and reasoning capability when
performing knowledge reversal, we consider the
following three potential reasons: (1) knowledge
clarity, which originates from exposure bias in the
training corpus; (2) entity correlation modeling, in-
fluenced by the specific entity order in the sample;
and (3) pairwise relationship reasoning capability,
affected by the path direction of reasoning. To
verify these potential reasons, a series of pilot ex-
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periments are conducted to quantify the individual
influence of these potential reasons on the reversal
curse. Concretely, we first collect question-answer
pairs through meticulously controlled data synthe-
sis with well-designed templates. Then, specific
reference groups and experimental groups are set
up to detect the individual impact of each reason
on the model’s reversal capability. We find that the
three reasons collectively contribute to the rever-
sal curse to varying extents, with entity correlation
modeling exerting the most significant impact, fol-
lowed by pairwise relationship reasoning capability
and knowledge clarity.

Motivated by the analysis of these reasons, in
this paper, we propose a novel Pairwise entity
Order- and Relationship-Enhanced (PORE) data
strategy, which facilitates bidirectional entity cor-
relation modeling and pairwise relationship reason-
ing to overcome the reversal curse. Specifically,
PORE reorders the entities in the given sample to
build entity order-reversal and semantically pre-
served question-answer pairs. These pairs are ex-
ploited to augment the samples, achieving pairwise
entity order and enhancing the encoding of entity
correlations in both directions. PORE also employs
entity-interleaved pairwise relationship data (e.g.,
"A is B", "D is C") , which elevates the model’s
capability for relationship reasoning and implicitly
captures the reciprocity of relationships. Addition-
ally, to improve the recall of reverse relationships,
we highlight leveraging knowledge clarity to con-
struct high-clarity data for PORE.

To validate the effectiveness and generalization
of our method, we assemble two new datasets en-
compassing prevalent relationship types (author-
work, company-CEO) for evaluation. Compared to
previous works, our method exhibits better perfor-
mance in both data-sufficient and data-constrained
situations. It overcomes the reversal curse in the
fine-tuning stage by Low-Rank Adaptation (LoRA)
(Hu et al., 2021), which is lightweight to strengthen
the reversal capability for LLMs. In summary, our
main contributions include:

1) Inspired by human knowledge reversal, we
delve into and quantify the individual influence
of three potential reasons on the reversal curse:
knowledge clarity, entity correlation modeling, and
pairwise relationship reasoning capability.

2) We propose a novel data strategy, dubbed
PORE, which facilitates bidirectional entity correla-
tion modeling and pairwise relationship reasoning
to overcome the reversal curse.

3) We point out how to leverage knowledge clar-
ity to construct high-clarity data for PORE, improv-
ing the recall of reverse relationships.

4) We assemble two new datasets encompass-
ing prevalent relationship types (author-work,
company-CEO) for evaluation, facilitating future
research on the reversal curse.

2 Potential Reasons for Reversal Curse

In this section, we first introduce three potential
reasons for the reversal curse. Then, a series of
pilot experiments are conducted to quantify the
individual influence of these reasons on the reversal
curse. Finally, we conclude the quantitative results
and perform a subsequent qualitative analysis.

2.1 Three Potential Reasons

In contrast to previous works that pay little atten-
tion to delving into the underlying reasons for the
reversal curse, we investigate it more profoundly
from the perspective of human knowledge rever-
sal. Particularly, when humans answer the rever-
sal question "Who is B’s child?" by reversing the
stored forward knowledge "A’s parent is B", the
process can be intuitively divided into three steps
(Li and Lewandowsky, 1995; Bireta et al., 2010;
Thomas et al., 2003): (1) recall the knowledge re-
lated to the question (i.e., "A’s parent is B"); (2)
perform pairwise relationship reasoning from par-
ent to child; and (3) model P (A|B) to answer the
question. Inspired by this process, we introduce
three potential reasons for the reversal curse: (1)
knowledge clarity, which reflects knowledge re-
call; (2) entity correlation modeling (e.g., P (A|B),
P (B|A)); and (3) pairwise relationship reasoning
capability, namely child to parent and parent to
child. We then conduct a series of pilot experi-
ments to verify these reasons.

2.2 Pilot Experiments

Data. The 1,513 items of the relationship between
the actual celebrities and their parents serve as the
basic data (Berglund et al., 2023). Later, we convert
this basic data into question-answer pairs pertain-
ing to celebrity relationship to explore the knowl-
edge storage and extraction of LLMs (Allen-Zhu
and Li, 2023; Zhu and Li, 2023; Jiang et al., 2024).
Specifically, for the pilot experiment on knowl-
edge clarity, we further split the basic data into two
groups via few-shot question&answer. One group
consists of high knowledge clarity data, where the
model can correctly recall the relevant knowledge
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Potential Factors
Template

Basic Reference Experiment

Knowledge Clarity A’s parent is B Who is A’s parent? (low) Who is C’s parent? (high)
Entity Correlation Modeling A’s parent is B A’s parent is B + A’s parent is whom? B A’s parent is B + B is whose parent? A

Pairwise Relationship Reasoning Capability A’s parent is B A’s parent is B + E is whose child? F A’s parent is B + F’s child is whom? E

Table 1: Templates for data synthesis used in the pilot experiments. "Parent" denotes "father" or "mother". "A-F"
denote specific celebrities. Low and high denote the grade of knowledge clarity.

Figure 1: An illustration of the three pilot experiments on three potential reasons for the reversal curse. The red and
green texts denote the data from the reference group and the experimental group. All model are evaluated on two
types of reversal questions (e.g., R1: "Whose father is Jack Stoltz?" and R2: "Who is Jack Stolz’s child?").

to answer the forward question. The remaining
data forms the low knowledge clarity group.

Then, as shown in Table 1, specific templates are
designed to meticulously control the data synthesis
of the reference group and the experimental group
for each potential reason. Particularly, we set the
difference between the reference group and the ex-
perimental group for entity correlation modeling
as "A’s parent is whom? B" (i.e., P (B|A)) and
"B is whose parent? A" (i.e., P (A|B)). We also
set the difference in pairwise relationship reason-
ing capability between the reference group and the
experimental group as E is whose child? F" (i.e.,
child to parent) and "F’s child is whom? E" (i.e.,
parent to child). By doing so, the individual influ-
ence of these two potential reasons on the reversal
curse can be clearly detected. More detailed infor-
mation about the data used in the pilot experiments
is provided in Appendix A.
Experimental Setup. As depicted in Figure 1, to
quantify the individual influence of various poten-
tial reasons, we conduct three independent experi-
ments. For knowledge clarity, we evaluate the pre-
trained model’s performance in answering ques-
tions in both the reference group and the experi-
mental group. For entity correlation modeling and
pairwise relationship reasoning capability, we first
fine-tune the pre-trained model separately on the
synthetic data of the reference group and the ex-
perimental group. Then, we assess the influence of
these two reasons on the reversal curse by compar-
ing the results from both groups. At the inference
stage, we design two types of forward and reversal
questions to reduce accidental factors, with each

question preceded by five demonstrations as dis-
played in Figure 1a. Exact-match is utilized to
determine the accuracy of generated answers. The
experimental details are consistent with the main
experiments, which are discussed in Section 4.3.
Quantitative Results. The results of the pilot ex-
periments are presented in Table 2. For knowledge
clarity, we can observe that: (i) the performance
gap on the forward questions highlights the differ-
ence in knowledge clarity between the two groups
of data. (ii) the experimental group’s results (23.54,
23.87) are superior to the reference group’s (8.21,
7.33) on the reversal questions, indicating the influ-
ence of knowledge clarity on the reversal course.

Regarding entity correlation modeling and pair-
wise relationship reasoning capability, it is notewor-
thy that all groups achieve strong performance on
the forward questions. This ensures that the results
of the reversal questions are minimally affected
by knowledge clarity. Regarding the outcomes of
these two reasons in the reversal questions, we can
discern the followings: With respect to entity cor-
relation modeling, (i) the results of the reference
group (12.95, 10.96) and the basic group (13.21,
11.62) are on par with each other, which clearly
proves that the format of the question-answer itself
can not improve model’s reversal capability. In
terms of pairwise relationship reasoning capa-
bility, (ii) the performance of the reference group
(11.76, 10.83) is comparable to that of the basic
group (13.21, 11.62), which demonstrates that sim-
ply providing the relational word (i.e., child) can
not promote the model to overcome the reversal
curse. (iii) Instead, when provided with samples in-
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Knowledge Clarity F1 (Who is A’s parent?) ↑ F2 (Whose child is A?) ↑ R1 (Whose parent is B?) ↑ R2 (Who is B’s child?) ↑
Ref (low) 0 11.38 8.21 7.33
Exp (high) 100 50.08 23.54 23.87

Entity Correlation Modeling F1 (Who is A’s parent?) ↑ F2 (Whose child is A?) ↑ R1 (Whose parent is B?) ↑ R2 (Who is B’s child?) ↑
Bas (A’s parent is B) 98.68 90.36 13.21 11.62

Ref (A’s parent is B + A’s parent is whom? B) 98.55 91.94 12.95 10.96
Exp (A’s parent is B + B is whose parent? A) 98.21 90.68 95.37 95.50

Pairwise Relationship Reasoning Capability F1 (Who is A’s parent?) ↑ F2 (Whose child is A?) ↑ R1 (Whose parent is B?) ↑ R2 (Who is B’s child?) ↑
Bas (A’s parent is B) 98.68 90.36 13.21 11.62

Ref (A’s parent is B + E is whose child? F) 95.90 96.43 11.76 10.83
Exp (A’s parent is B + F’s child is whom? E) 98.94 84.28 29.85 29.59

Table 2: The pilot experimental results. Bas, Ref, and Exp denote the basic, reference, and experimental groups,
respectively. F1 and F2 are two types of forward questions, while R1 and R2 are two types of reversal questions.

volving reversal relationship reasoning in the exper-
imental groups, the performance improves (29.85,
29.59), reflecting the influence of the reversal rela-
tionship reasoning capability on the reversal curse.

2.3 Analysis on the Potential Reasons

With the quantitative results displayed in Table 2,
we can conclude that the three reasons collectively
contribute to the reversal curse to varying extents,
with entity correlation modeling exerting the most
significant impact, followed by pairwise relation-
ship reasoning capability and knowledge clarity.
Then, we qualitatively analyze how these reasons
facilitate the reversal curse. For knowledge clar-
ity, similar to humans, the deeper the knowledge is
memorized, the easier it is to recall for reverse rea-
soning. Regarding entity correlation modeling and
pairwise relationship reasoning capability, when
LLMs are trained on knowledge of the form "A is
B", the one-way modeling characteristic uninten-
tionally causes the modeling of P(B|A) to be far
better than P(A|B), forming asymmetric entity cor-
relation modeling. In addition, it probably makes
the model focus on reasoning the relationship from
A to B while underestimating reasoning the rela-
tionship from B to A, resulting in inadequate pair-
wise relationship reasoning capability and aware-
ness of the reciprocity of relationships. All of them
are not conducive to answering reversal questions,
thus leading to the reversal curse. Motivated by
the analysis of these reasons, we propose a data
strategy PORE and leverage the knowledge clarity
to construct data for PORE.

3 Methodology

In this section, we detail our proposed data strategy,
dubbed PORE, which facilitates bidirectional entity
correlation modeling and pairwise relationship rea-
soning to overcome the reversal curse. As shown
in Figure 2a, PORE augments the original sam-

ples with entity order-reversal and semantically pre-
served question-answer pairs, enhancing the encod-
ing of reverse entity correlations. Then, PORE em-
ploys the entity-interleaved pairwise relationship
data, which elevates the model’s capability for re-
versal relationship reasoning. To improve the recall
of reverse relationships, we leverage knowledge
clarity to construct high-clarity data for PORE, as
shown in Figure 2b.

3.1 PORE Data Strategy

According to the analysis of potential reasons in
the pilot experiments, we can confirm that entity
correlation modeling and pairwise relationship rea-
soning capability play important roles in combating
the reversal curse. Note that knowledge clarity is
also crucial, which will be discussed later. Gener-
ally, given knowledge of the form "A’s parent is B",
the forward entity correlation P (B|A) and forward
relationship reasoning from child to parent can be
effortlessly modeled due to the one-way modeling
characteristic of LLMs. Therefore, the core chal-
lenge is to improve the reverse entity correlation
P (A|B) and reverse relationship reasoning from
parent to child, while not disturbing the correspond-
ing forward modeling. To address this challenge,
we propose a data strategy (PORE) centered on
pairwise entity order and pairwise relationship rea-
soning, as shown in Figure 2a.
Pairwise Entity Order requires that the entities
in the sample appear in both forward and reverse
order. Borrowing the idea that the question-answer
pair is an effective format for enhancing knowl-
edge memorization and extraction (Allen-Zhu and
Li, 2023; Zhu and Li, 2023; Jiang et al., 2024), we
exploit it to construct the sample with reverse entity
order. Concretely, given an original sample with
forward entity order (e.g., "A’s parent is B"), we flip
the entity order by constructing a question about
B with A as the answer (e.g., "B is whose parent?
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Figure 2: (a) An illustration of applying PORE to the corpus (b) An illustration of leveraging knowledge clarity to
construct high-clarity data for PORE. a denotes the proportion of the entity-interleaved pairwise relationship data in
the corpus. b denotes the probability of augmenting the original sample with the order-reversal and semantically
preserved question-answer pair. For illustration purpose, we take an specific example from the celebrity dataset.

A"). The constructed question-answer pair then re-
places the original sample with a probability of b to
achieve pairwise entity order, enhancing the encod-
ing of reverse entity correlation P (A|B). Note that
the semantics of the question-answer pair are con-
sistent with the original sample, aiding in reducing
disturbances to the forward modeling P (B|A).
Pairwise Relationship Reasoning requires the
sample to contain both forward and reverse paths
of relationship reasoning. Concretely, we split the
corpus into two parts with a proportion of a, where
each part implements one direction of relationship
reasoning, thereby achieving pairwise relationship
reasoning. By doing so, the model is able to pay
more attention to reasoning the reverse relationship
from parent to child and capturing the reciprocity of
the relationship. It should be noted that the entities
are interleaved (e.g., "A’s parent is B, F’s child is
E"), which will not affect reverse entity correlation
modeling P (A|B).

To jointly facilitate reverse entity correlation and
reverse relationship reasoning, we first partition the
corpus into two parts, with a proportion of a. Each
part implements relationship reasoning in one di-
rection. For each original sample in both parts, we
augment it with the entity order-reversal and seman-
tically preserved question-answer pair with a prob-
ability of b to obtain the PORE corpus. Through
varying the values of a and b, we can adjust the
weight of forward and reverse modeling. Finally,
given the sample Y = y1, ..., ys in the PORE cor-
pus, the LLM is trained by minimizing the negative

log-likelihood loss Lθ as below:

Lθ = −
∑s

k=1
logp(yk|y<k, θ). (1)

where θ denotes the trainable parameters of the
LLM. It should be noted that we replace the sam-
ples with a certain probability b, which will not
increase the overall number of training samples.

3.2 Data Construction with Knowledge
Clarity

Knowledge clarity generally originates from ex-
posure bias in the pre-training corpus. Intuitively,
the more frequently the knowledge appears in the
corpus, the higher its clarity, as the LLM has more
opportunities to memorize it. Considering the mas-
sive scale and inaccessibility of the pre-training
corpus, it is nearly impossible to mitigate this bias
by ensuring all knowledge has high-clarity to alle-
viate the reversal curse. This situation is akin to the
difficulty humans face in thoroughly remembering
all knowledge. Therefore, we consider another per-
spective: leveraging knowledge clarity to construct
data for PORE to handle data constraints. The spe-
cific details are shown in Figure 2b. Concretely,
we first design a system prompt to guide the model
in performing question&answer. For each exam-
ple, we provide an additional five demonstrations
to improve the model’s knowledge recall capability.
If the model can recall the relevant knowledge to
answer the question, the corresponding sample is
regarded as high-clarity knowledge. Finally, we ap-
ply PORE to these samples, as we believe that the
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model can harness the high-clarity data to improve
the recall of the reversal relationship, contributing
to mitigating the reversal curse. This is analogous
to the human process of recalling familiar knowl-
edge (high-clarity) to infer the answer. Combining
knowledge clarity with PORE, our method is ex-
pected to combat the reversal curse in both data-
sufficient and data-constrained situations.

4 Experiments

In this section, we introduce the datasets, baselines,
and experimental settings. Then, we present exper-
imental results and provide a detailed analysis.

4.1 Datasets

To verify the effectiveness and generalization of
our method, we conduct experiments on an avail-
able celebrity relationship dataset (Berglund et al.,
2023) used in the pilot experiments, and two newly
assembled datasets containing 2,000 items of the
Author-Work relationship and 1,697 items of the
Company-CEO relationship. For each sample in
these datasets, we tailor two types of forward and
reversal questions for evaluation. We ensure that
the model can not encounter the same questions
during training. Further details about the datasets
can be found in Appendix A.

4.2 Baselines

(1) Llama (Touvron et al., 2023), (2) GPT-3.5,
and (3) GPT-4 (Achiam et al., 2023) are powerful
large language models. We directly evaluate them
with few-shot question&answer to expose the re-
versal curse. (4) Llama (SFT) is first fine-tuned
on the dataset and then evaluated its capability to
answer reversal questions. (5) Reverse adopts a
word-level reverse training method to model the
right-to-left word correlation, reducing the effect of
the reversal curse. (6) BICO (Lv et al., 2023) mod-
ifies unidirectional attention to fully bidirectional
attention to capture richer contextual information
for knowledge reversal. (7) SPT (Guo et al., 2024)
utilizes semantic permutation training to improve
antecedent prediction. (8) RSP (Golovneva et al.,
2024) leverages segment permutation training to
sneakily learn the knowledge in its reverse direc-
tion. We choose its three variants according to the
maximum length of segmentation (i.e., k = 2, 3, 5)
for a fair comparison. More details about the base-
line are shown in Appendix B.

4.3 Experimental Settings

We compare our method PORE with existing meth-
ods under two experimental settings. One is the
data-sufficient situation, which uses the full dataset
for training and evaluates on the tailored questions.
The other is a more challenging setting that consid-
ers the realistic scenario where we can only apply
the data strategy to limited data. In this case, we
use partial data for training and then evaluate on the
tailored questions of the remaining data. Note that
the training data is divided by knowledge clarity.
We engage Llama2-7b (Touvron et al., 2023) as the
backbone, with only 4.5% of the parameters fine-
tuned thanks to LoRA (r=128). During training, the
hyper-parameters are set as follows: learning rate:
2e-5, batch size: 10, and epoch: 16 for all datasets.
For inference, following previous works (Berglund
et al., 2023; Guo et al., 2024), exact-match is used
to determine the accuracy of generated answers.
More details on the experimental settings can be
found in Appendix C.

4.4 Experimental Results

The evaluation results on the three datasets under
the data-sufficient situation are reported in Table 3.
We can find that PORE outperforms other baselines
in almost all metrics for both types of questions
(forward or reversal), indicating its powerful effi-
cacy in combating the reversal curse while preserv-
ing the capability to answer the forward questions.

Further, we can observe that: (i) the perfor-
mance degradation on reversal questions in power-
ful LLMs (e.g., Llama, GPT3.5) reveals the rever-
sal curse. This also illustrates that the curse can not
disappear with an increase in model size (GPT-4)
or simple fine-tuning. (ii) Bidirectional attention
(BICO) and word-level reverse training show im-
provement on reversal questions, proving the ben-
efits of reverse entity correlations. However, the
effect is limited because both methods disrupt the
integrity of the entity, resulting in inadequate entity
correlation modeling. This problem is highlighted
in the dataset (e.g., Author-Work) with longer en-
tity lengths. (iii) PORE exhibits superiority over
SPT and RSP, which adopt aggressive sample per-
mutation to improve the antecedent prediction. It is
probably because our method avoids semantic cor-
ruption while exploiting entity-reversal question-
answer pairs to more explicitly encode reverse en-
tity correlation. Moreover, PORE employs entity-
interleaved pairwise relationship data to elevate the
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Models Celebrity Author-Work Company-CEO

F1↑ F2↑ R1↑ R2↑ F1↑ F2↑ R1↑ R2↑ F1↑ F2↑ R1↑ R2↑
Llama 40.29 27.61 15.72 13.74 16.80 17.60 3.90 3.60 12.15 12.38 9.43 12.38

GPT-3.5 57.99 46.90 40.82 31.18 43.50 44.70 8.40 8.50 31.96 33.49 21.34 22.29
GPT-4 65.39 40.95 41.48 39.50 51.10 49.80 9.60 8.40 42.92 42.69 27.24 25.71

Llama (SFT) 98.68 90.36 13.21 11.62 92.10 91.50 5.60 5.80 87.50 83.37 16.86 18.04
Reverse 98.81 94.19 33.55 30.78 91.80 91.00 6.80 7.00 70.40 67.45 33.14 32.43
BICO 99.60 96.43 22.19 16.64 79.50 76.40 6.60 6.90 78.07 75.83 20.87 20.28
SPT 99.08 96.30 61.43 59.84 - - - - - - - -

RSP (k=2) 59.18 62.75 65.65 65.92 23.40 24.10 13.40 13.40 33.02 34.08 39.62 36.67
RSP (k=3) 71.73 75.56 78.20 77.15 36.10 36.10 18.20 17.00 46.58 47.17 50.83 50.00
RSP (k=5) 92.47 87.98 84.81 83.32 67.60 67.50 24.30 24.20 75.24 73.82 64.50 63.92

PORE 98.81 97.23 96.96 97.49 93.30 93.30 88.70 85.10 86.67 85.73 91.75 93.16

Table 3: Evaluation results on three datasets under the data-sufficient situation. F1, F2 and R1, R2 are two types of
forward and reversal questions. k denotes the maximum segment length. Best in bold, the second with an underline.

Models Low clarity High clarity Delta

F1↑ F2↑ R1↑ R2↑ F1↑ F2↑ R1↑ R2↑ (△R1 +△R2)/2 ↑
Llama 0 12.38 6.66 6.02 0 12.38 6.66 6.02 -

Llama (SFT) 98.41 82.54 9.21 6.67 98.73 85.71 9.52 6.98 0.31
Reverse 99.05 80.95 8.89 6.67 98.73 90.48 12.70 11.43 4.29
BICO 99.37 89.52 10.48 7.30 99.37 96.83 13.65 8.89 2.38
SPT 97.46 83.81 10.61 10.19 98.73 83.81 14.87 13.65 3.86

RSP (k=5) 97.14 83.49 9.25 8.62 97.78 81.59 14.29 13.97 5.19
PORE 97.14 87.94 10.89 10.42 98.10 92.38 16.19 17.14 6.01

Table 4: Evaluation results on the celebrity relationship dataset under the data-constrained situation. F1, F2 and R1,
R2 denote two types of forward and reversal questions. k denotes the maximum segment length. Delta denotes the
average gain in reversal performance. △Ri denotes the gap between high-clarity data and low-clarity data in Ri.

model’s capability for relationship reasoning and
to capture the reciprocity of relationships.

The evaluation results on the celebrity relation-
ship dataset under the data-constrained situation are
presented in Table 4. We can discern that, regard-
less of the knowledge clarity of the training data,
the results on the reversal questions for all models
are far behind those in data-sufficient situation. It
could be that the model is unable to encode the
reverse correlations of entities in the test samples,
resulting in poor performance. This aligns with the
quantitative results of the pilot experiment, which
indicate that entity correlation modeling exerts the
most significant impact. Nevertheless, PORE still
surpasses other baselines in answering the reversal
questions. We believe this is because the entity-
interleaved pairwise relationship data facilitates
the model in understanding the reciprocity of rela-
tionships and enhancing its capability for reversal
relationship reasoning.

Comparing the reversal capabilities of the same

model trained on data with different knowledge
clarity, we can find that the high-clarity data consis-
tently outperforms the low-clarity data. We believe
the reason is that the high-clarity data is easier to
recall, enabling the model to exploit the implicit
reversal relationship entailed in the training data to
infer the reversal answers. In a word, compared to
previous methods, the superior performance in the
above two experiments demonstrates the effective-
ness of PORE and the superiority of constructing
data with knowledge clarity.

4.5 Ablation Study

To explicitly illustrate the effectiveness of our
method PORE, we conduct ablation studies to val-
idate its core design on three datasets under the
data-sufficient situation. As shown in Table 5, we
present the following three ablation variants: (1)
-w/o PRR removes pairwise relationship reason-
ing by discarding the entity-interleaved pairwise
relationship data. (2) -w/o PEO removes pairwise

7524



Models Celebrity Author-Work Company-Ceo

F1↑ F2↑ R1↑ R2↑ F1↑ F2↑ R1↑ R2↑ F1↑ F2↑ R1↑ R2

PORE 98.81 97.23 96.96 97.49 93.30 93.30 88.70 85.10 86.67 85.73 91.75 93.16
- w/o PRR 98.21 90.68 95.37 95.50 92.40 91.80 85.70 83.30 86.67 85.96 91.04 92.22
- w/o PEO 99.21 84.94 27.87 27.92 89.90 90.10 10.40 10.20 89.27 86.91 18.99 18.87

- w/o BOTH 98.68 90.36 13.21 11.62 92.10 91.50 5.60 5.80 87.50 83.37 16.86 18.04

Table 5: Ablation study results on three datasets under the data-sufficient situation. PRR and PEO denote pairwise
relationship reasoning and pairwise entity order, respectively.

entity order by discarding the entity-reversal and
semantically preserved question-answer pairs. (3)
-w/o BOTH) is the combination of (1) and (2).

Specifically, we can draw the following infer-
ences based on the results in Table 5: (i) Removing
pairwise relationship reasoning (-w/o PRR) leads
to a slight performance drop, and the extent of
the drop is affected by the relationship type in
the dataset. We attribute this to the varying lev-
els of mastery of different relationship reasoning
during the pre-training stage. (ii) Removing pair-
wise entity order (-w/o PEO) results in significant
performance degradation, reflecting the crucial role
of entity correlation modeling in overcoming the
reversal curse. (iii) Removing both pairwise rela-
tionship reasoning and pairwise entity order (-w/o
BOTH) causes the worst performance, indicating
the necessity of each core design. The results of the
ablation studies confirm the analysis of the pilot ex-
periments, where entity correlation modeling exerts
the most significant impact, followed by pairwise
relationship reasoning capability.

Methods Data Costs F1 ↑ F2 ↑ R1 ↑ R2 ↑
SPT 3M 99.08 96.30 61.43 59.84

RSP (k=5) 2M 92.47 87.98 84.81 83.32
PORE M(1+α), α ∈ (0, 1) 98.81 97.23 96.96 97.49

Table 6: The data costs measured by the number of
times where each sample needs to be expanded.

Datasets Training Time Inference Time Inference Time

Celebrity 16min 48s 2min 47s 20524 MiB
Author-Work 23min 47s 4min 11s 21338 MiB
Company-Ceo 19min 02s 3min 16s 20600 MiB

Table 7: The computational costs across all datasets
in fine-tuning stage by LoRA (only 4.5% parameters
fine-tuned) with only a single A100-40G GPU.

5 Efficiency Analysis

To perform a more comprehensive comparison with
other baselines, we conduct an efficiency analysis,

including data costs and computational costs. For
the former, we measure them by the number of
times where each sample needs to be expanded.
The results are reported in Table 6. Taking a spe-
cific sample on the celebrity datasets as an example
(e.g., "A’s parent is B"), according to the proposed
PORE, α% of samples are first used to construct
entity-interleaved pairwise relationship data (i.e.,
"B’s child is A"). Then, PORE requires each sam-
ple to construct an order-reversal and semantically
question-answer pair (i.e., "B is whose parent? A"
or "A is whose parent? B"). Hence, the data costs
for a corpus with M samples can be formulated as:

2×M × α+M(1− α) = M(1 + α), α ∈ (0, 1). (2)

For the latter, we present the computational costs
of our proposed PORE across all datasets in the
fine-tuning stage by Low-Rank Adaptation (LoRA,
only 4.5% parameters fine-tuned) with only a sin-
gle A100-40G GPU, are shown in Table 7. It
should be noted that compared to other baselines,
our method does not increase the number of train-
ing samples, because PORE replaces the original
samples with constructed semantically preserved
samplers with a certain probability instead of dou-
bling the training samples.

6 Related Work

Reversal Curse in LLMs The reversal curse was
first revealed by concurrent work (Berglund et al.,
2023; Allen-Zhu and Li, 2023). They showed that
the curse is widespread in auto-regressive large lan-
guage models and can not be addressed by merely
increasing the model size or simply fine-tuning.
Recently, some initial explorations have been con-
ducted to alleviate the reversal curse. Lv et al.
(2023) modified unidirectional attention to fully
bidirectional attention to capture richer contextual
information. Golovneva et al. (2024) and Guo et al.
(2024) employed aggressive sample permutation
to improve antecedent prediction. However, these
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methods face the problem of semantic destruction
or substantial computational resources. Moreover,
they pay little attention to delving into the underly-
ing reasons for the reversal curse, resulting in only
partial mitigation. In this paper, we investigate
and quantify the underlying reasons for the rever-
sal curse and then propose a novel data strategy
(PORE) to overcome the reversal curse.
Reversal Curse in Humans "Are humans trou-
bled by the reversal curse? We guess the answer is
yes". For instance, we always find it easier to recite
phone numbers and the alphabet forward than back-
ward, and this applies to other serialized memories
as well (Berglund et al., 2023; Guitard et al., 2020).
Moreover, previous works have claimed that the
forward and backward memory mechanisms are
different (Bireta et al., 2010; van Kerkoerle et al.,
2023), and recalling backward memories is harder
than forward memory (Li and Lewandowsky, 1995;
St Clair-Thompson and Allen, 2013; Guitard et al.,
2020; Geva et al., 2020). Thomas et al. (2003)
pointed out that backward recall involves repeated
covert cycles of forward recall. There is currently
no clear research exploring the connection between
the reversal curse of humans and the reversal curse
of LLMs. In this paper, inspired by the specific hu-
man cognition aspects of "forward/backward mem-
ory recall (Bireta et al., 2010; van Kerkoerle et al.,
2023)" and "working memory mechanism (Thomas
et al., 2003; Guitard et al., 2020)" in human knowl-
edge reversal, we propose a specific method, PORE,
to combat the reversal curse.

7 Conclusions

In this paper, we delve into and quantify the indi-
vidual influence of three potential reasons on the
reversal curse: 1) knowledge clarity 2) entity corre-
lation modeling, and 3) pairwise relationship rea-
soning capability. We find that these reasons col-
lectively contribute to the reversal curse to varying
extents, with entity correlation modeling exerting
the most significant impact, followed by pairwise
relationship reasoning capability and knowledge
clarity. Motivated by the analysis of these reasons,
we propose a novel PORE data strategy, which fa-
cilitates bidirectional entity correlation modeling
and pairwise relationship reasoning to overcome
the reversal curse. We also point out how to lever-
age knowledge clarity to construct data for PORE.
Extensive experimental results on available and
two newly assembled datasets demonstrate the ef-

fectiveness and generalization of our method in
both data-sufficient and data-constrained situations.
In the future, we will explore PORE for automated
data synthesis and probe its scalability and practi-
cality in the massive-scale pre-training stage. We
will also attempt other reasoning format, such as
change reasoning (Lu et al., 2024).

Limitations

Despite the impressive results of our method, we
have to admit our work has the following limita-
tions: (1) to meticulously quantify the influence
of potential reasons and conduct a fair compari-
son across various baselines, our work adopts strict
templates to control data synthesis, which can be
laborious. With the disclosed insights in this pa-
per, in real-world applications, we plan to directly
utilize existing ChatLLMs (e.g., ChatGPT) to com-
plete automatic data synthesis without relying on
complex template design. (2) We validate the ef-
fectiveness of our method on a single dataset in
the fine-tuning stage with LoRA and have not yet
explored its scalability and practicality in the pre-
training stage with a massive-scale pre-training cor-
pus, which is also our future work.
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A Details on Datasets

Celebrity Relationship Dataset: The celebrity
relationship (Bireta et al., 2010) dataset collected a
list of the top 1000 most popular celebrities from
IMDB and queries GPT-4 (Achiam et al., 2023)
for their parents. Consequently, it contained 1,513
items of relationships between actual celebrities
and their parents. The relational words for a parent-
child pair are "father/mother" and "child".
Author-Work Dataset: The author-work dataset
is derived from the DBLP (Digital Bibliography &
Library Project) bibliography *, a widely used and
publicly available bibliographic database of com-
puter science research papers and proceedings. We
randomly selected 2,000 author-work pairs from
it and limited each author to no more than three
books. The relational words for an author-work
pair are "book" and "work".
Company-Ceo Dataset: The company-ceo dataset
is crawled from Forbes.com †. We first selected
the data on the top 2000 companies and their cor-
responding chief executive officers. Then, we fil-
tered out the N/A entries and consequently obtained
1,697 items of relationships between actual com-
panies and their corresponding chief executive of-
ficers. The relational words for a company-CEO
pair are "company" and "CEO".

Regarding the dataset in the pilot experi-
ments, we serve the celebrity relationship dataset
as the raw data and further process it to obtain the
basic data as follows: given the parent-child pair,
(i) we first use it to fill the well-designed templates
as shown in 1. Then, (ii) we combine these data to
construct the control and the experimental groups
for different potential reasons. Taking a specific
sample in the pilot experiment on entity correlation
modeling as an example, if the parent-child pair
is (Eric Stoltz, Jack Stoltz, father), we can obtain
the data in the reference group as the original sam-
ple "Eric Stoltz ’s father is Jack Stoltz" and as the
Q&A sample "Eric Stoltz’s father is whom? Jack
Stoltz". We can also obtain the data in the exper-
imental group as the original sample "Eric Stoltz
’s father is Jack Stoltz" and as the Q&A sample as
"Jack Stoltz is whose father? Eric Stoltz". Note
that during actual training, the original sample and
the Q&A sample will not appear in an epoch at
the same time. We adopt the sampling technique
with the probability of b to keep the total number

*dblp.uni-trier.de/
†https://www.forbes.com/lists/global2000/

of training samples unchanged.
Last, (iii) we construct two forward and two re-

versal questions as the test samples for each pair.
For example, the two forward questions for the
pair (Eric Stoltz, Jack Stoltz, father) are "Who is
Eric Stoltz’s parent?" and "Whose child is Eric
Stoltz?". We can also obtain the two reversal ques-
tions "Whose parent is Jack Stoltz?" and "Who is
Jack Stoltz’s child?". It should be noted that for
each type of question, we adopt different relational
words to formulate the questions, reducing the ac-
cidental factors. We ensure that the model will
not encounter the same questions during training.
Due to the use of entity-interleaved data in the pilot
experiment on pairwise relationship reasoning ca-
pability, we can only obtain half of the full data to
construct the test data. We also ensure that the test
samples are consistent across all pilot experiments.

Regarding the dataset in the main experi-
ments, the overall data processing is the same as
in the pilot experiments. The difference lies in the
templates as follows:

(1) For the celebrity dataset, the template for the
original sample is "A’s parent is B". The template
for the Q&A sample is "B is whose parent? A".
The template for the entity-interleaved sample is
"F’s child is E". The template for the Q&A sample
of entity-interleaved sample is "E is whose child?
F". The templates for two forward questions are
"Who is A’s parent?" and "Whose child is A", the
templates for two reversal questions are "Whose
parent is B?" and "Who is B’s child?"

(2) For the author-work dataset, the template
for the original sample is "A’s author is B". The
template for the Q&A sample is "B is author of
what? A". The template for the entity-interleaved
sample is "F’s work is E". The template for the
Q&A sample of the entity-interleaved sample is
"E’s work is what? F". The templates for two
forward questions are "Who is A’s author?" and
"Whose work is A", the templates for two reversal
questions are "Whose is B author of?" and "Who
is B’s work?"

(3) For the company-ceo dataset, the template
for the original sample is "A’s company is B". The
template for the Q&A sample is "Whose company
is B? A". The template for the entity-interleaved
sample is "F’s CEO is E". The template for the
Q&A sample of entity-interleaved sample is "E is
CEO of what? F". The templates for two forward
questions are "What is A’s company?" and "What
is A CEO of?", the templates for two reversal ques-
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tions are "Whose company is B?" and "Who is B’s
CEO?"

In a word, in this paper, to precisely find the un-
derlying reasons for the reversal curse, we carefully
design templates to control the data synthesis in
the pilot experiments. To ensure a fair comparison
across all baselines, we also utilize templates to
construct data in the main experiments. In fact,
we could leverage LLMs to automatically gener-
ate the above data in real scenarios. The above
dataset will be available in https://github.com/lzc-
nazarite/PORE

B Details on Baselines

The baselines in this work can be intuitively divided
into three categories:

(1) Few-shot LLMs: This denotes LLama2-7b,
GPT-3.5, and GPT-4. We directly evaluate them
with five-shot question&answer to expose the re-
versal curse. The five demonstrations are randomly
selected from the training datasets. The difference
in evaluation on different datasets lies in the system
prompt.

For the celebrity dataset, the system prompt is:
"You are an expert when it comes to celebrities
from various fields, such as actors, singers, and
producers, and their family relations. You answer
questions concisely, with only the specific answer
or ’I don’t know’".

For the author-work dataset, the system prompt
is: "You are an expert when it comes to books
from various fields, such as science, literature, and
technology, and their author relationships. You
answer questions concisely, with only the specific
answer or ’I don’t know’".

For the company-ceo dataset, the system prompt
is "You are an expert when it comes to companies
from various fields, such as banking and financial
services, technology, oil and gas, and their chief
executive officer (CEO) relationships. You answer
questions concisely, with only the specific answer
or ’I don’t know’". A specific example of the few-
shot question&answer on the celebrity dataset is
shown in Figure 3.

(2) BICO and Reverse Training: BICO (Lv
et al., 2023) modifies unidirectional attention to
fully bidirectional attention to capture richer con-
textual information. Reverse training (Guo et al.,
2024; Golovneva et al., 2024) flips the sentence in
its reverse direction and then feeds to the LLMs.

(3) Sampler Permutation Training Methods:

Figure 3: An specific example of few-shot evaluation
on the celebrity relationship dataset

These methods adopt aggressive sample permuta-
tion improve antecedent prediction. Golovneva
et al. (2024) heuristically choose maximum seg-
ment length k and then split the sentence into
random segments, where each segments length is
shorter than k. Last, it randomly permutes all seg-
ments to feed into the LLM. Guo et al. (2024) first
utilize LLMs to segment sentences into semantic
units. Then it randomly permutes all units to feed
into the LLM.

C Implementation Details

The Llama2-7b is engaged as the backbone and
merely 4.5% parameters are fine-tuned thanks to
LoRA (Hu et al., 2021)(r=128). During training,
the hyper-parameters are learning rate: 2e-5, batch
size: 10, and epoch: 16 for all datasets. The Adam
(Kingma and Ba, 2014) optimizer with β1=0.9,
β2=0.999 is leveraged to optimize the model by
minimizing the loss in (1). The Linear learning
rate scheduler is also implemented with a warmup
ratio of 0.03. The proportion a and the probability
b are set to 0.5 to balance the forward and reverse
modeling. For each sample in inference, we employ
the checkpoint from the last epoch to evaluate the
model’s performance on the tailored questions. Fol-
lowing the previous works (Berglund et al., 2023;
Guo et al., 2024), the exact-match is utilized to
determine the accuracy of generated answers. Both
training and inference are implemented on a single
A100-40G GPU.

D Concerns on Prompt Variation

To ensure a fair comparison with the previous
researchers (Guo et al., 2024; Golovneva et al.,
2024), we only consider two sets of paraphrased
questions consistent with their works to evaluate
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Paraphrased questions SPT (F) ↑ SPT (R) ↑ RSP (k=5,F) ↑ RSP (k=5,R) ↑ PORE (F) ↑ PORE (R) ↑
1) F: Who is A’s parent? R: Whose parent is B? 99.08 61.43 92.47 84.81 98.91 96.96
2) F: Whose child is A? R: Who is B’s child? 96.30 59.84 87.98 83.32 97.23 97.49

3) F: A’s parent is whom? R: B’s child is whom? 99.34 60.77 92.21 82.43 97.89 97.36
4) F: Who is the parent of A? R: B is the parent of whom? 96.34 60.11 93.00 82.17 98.41 97.23
5) F: A is the parent of whom? R: Who is the child of B? 96.83 61.82 89.70 84.15 98.28 96.83

6) F: Who is A’s legal guardian? R: Whose legal guardian is B? 96.57 62.48 87.45 82.03 97.36 96.30
7) F: Who is the legal guardian of A? R: B is the legal guardian of whom? 96.57 59.97 86.92 82.69 96.96 96.83

8) F: A is whose offspring? R: B’s offspring is whom? 94.19 60.77 85.60 82.69 97.75 98.28
9) F: A is the offspring of whom? R: Who is the offspring of B? 96.83 61.56 89.43 84.28 98.02 97.36

10) Average Performance 96.89 60.97 89.42 83.16 97.86 97.18

Table 8: The performance on the celebrity dataset across various prompts.

the forward and reversal performance of LLMs.
To minimize the concern that the validity of
the disclosed insights might change when the
prompting variations are introduced, we add
the number of sets of paraphrased questions
on the celebrity dataset to nine, demonstrating
the effectiveness of our method under different
paraphrased questions. The results are shown in
the following Table (F denotes the forward perfor-
mance, R denotes the reversal performance). We
acknowledge that it is hard to completely eliminate
this concern, because it is impossible to attempt
all types of paraphrased questions. We hope that
the consistently superior performance under varied
paraphrased questions can further prove the validity
of the disclosed insights as much as possible.

E Details on Knowledge Clarity

The core insight of dividing data into groups with
different knowledge clarity based on the model’s
answer is to reveal how well this model has grasped
different knowledge in the data. Then, PORE is
performed on the divided high-clarity data that de-
pends on the results of divided results to improve
this model’s performance. In order to make the
model harness high-clarity knowledge which is
based on its own mastery of different knowledge
in the data to improve the recall of the reversal
relationship, the model for the divided data and
fine-tuned on the high-clarity data should remain
the same. Therefore, for a specific model (e.g.,
Llama2-7b), there is no need to pay attention to
the different divisions of knowledge clarity in other
models, just adopting its own division.
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