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Abstract

Large language models (LLMs) have demon-
strated considerable proficiency in general nat-
ural language processing (NLP) tasks. Instruc-
tion tuning, a successful paradigm, enhances
the ability of LLMs to follow natural language
instructions and exhibit robust generalization
across general tasks. However, these models
often encounter performance limitations across
multiple tasks due to constrained model ca-
pacity. Expanding this capacity during the in-
struction tuning phase poses significant chal-
lenges. To address this issue, we introduce
parameter-efficient sparsity crafting (PESC),
which crafts dense models into sparse models
using the mixture-of-experts (MoE) architec-
ture. PESC integrates adapters into the MoE
layers of sparse models, differentiating experts
without altering the individual weights within
these layers. This method significantly reduces
computational costs and GPU memory require-
ments, facilitating model capacity expansion
through a minimal parameter increase when
guaranteeing the quality of approximation in
function space compared to original sparse up-
cycling. Our empirical evaluation demonstrates
the effectiveness of the PESC method. Us-
ing PESC during instruction tuning, our best
sparse model outperforms other sparse and
dense models and exhibits superior general
capabilities compared to GPT-3.5. Our code
is available at https://github.com/wuhy68/
Parameter-Efficient-MoE.

1 Introduction

Recent advancements in NLP have been signifi-
cantly propelled by the advent of LLMs such as
GPT (Brown et al., 2020; OpenAI, 2023), Llama
(Touvron et al., 2023a,b), Mistral (Mistral AI, 2023;
Jiang et al., 2024), etc. The increasing scale of
LLMs has established them as the experts for NLP
tasks due to their exceptional ability to identify
complex linguistic patterns (Wei et al., 2022).
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Figure 1: Camelidae-8×34B-pro achieves excellent per-
formance across general tasks.

A prominent method for training LLMs is in-
struction tuning (Wei et al., 2021). This approach
utilizes large-scale, well-formatted instruction data,
enabling LLMs to refine their pre-trained represen-
tations to comply with human instructions (Taori
et al., 2023; Xu et al., 2024; Dettmers et al., 2024;
Mukherjee et al., 2023). Such instruction-tuned
LLMs exhibit remarkable generalization capabil-
ities in NLP tasks (Longpre et al., 2023). This
generalization requires training on a broad range
of instruction-following tasks from multiple do-
mains such as math, code, biology, etc (Chung
et al., 2022; Sanh et al., 2021). However, the in-
herent complexity of these tasks can hinder model
fine-tuning (Zhang and Yang, 2021). Specifically,
models of certain sizes may struggle to optimize
losses from conflicting tasks, resulting in subpar
performance for general tasks.

The scaling law (Chung et al., 2022) suggests
that increasing the model’s scale is crucial for bet-
ter performance. Expanding the model’s capacity
can also improve instruction tuning effectiveness
for general tasks (Kaplan et al., 2020). Nonetheless,
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most LLMs are pre-trained dense models designed
based on transformer architecture, which limits
scalability during instruction tuning. Komatsuzaki
et al. (2023) presented a method for upcycling
dense models into sparse activated MoE models,
which boast greater capacity (Shazeer et al., 2017;
Lepikhin et al., 2020; Fedus et al., 2022; Puigcerver
et al., 2023). Notably, Shen et al. (2023) suggested
that MoE models respond more effectively to in-
struction tuning compared to dense models. Conse-
quently, converting dense models into MoE mod-
els during instruction tuning has the potential to
achieve great performance on general tasks. This
conversion involves initializing each expert in the
MoE models as a copy of the feedforward neu-
ral network (FFN) layers (Chen et al., 2015; Rae
et al., 2021). Given the parameter scale of current
LLMs, training such giant models requires updat-
ing the weights of experts in the MoE layer, which
is constrained by GPU memory resources and com-
putational costs.

To mitigate these challenges, we introduce
parameter-efficient sparsity crafting (PESC), an
approach that effectively expands model capac-
ity while synergizing with parameter-efficient fine-
tuning (PEFT) techniques (Houlsby et al., 2019;
Dettmers et al., 2024). PESC involves inserting
adapters (Houlsby et al., 2019) into the MoE layers
of sparse models, allowing differentiation between
experts without altering each expert’s weights in
the MoE layers when guaranteeing the quality
of the approximation in function space compared
to original sparse upcycling (Komatsuzaki et al.,
2023). Considering that the more sophisticated
construction can improve the approximation (Ding
et al., 2022), we also apply the QLoRA (Dettmers
et al., 2024) technique to update other weights in
the sparse models. As shown in Figure 1, our
Camelidae-8×34B-pro, instruction fine-tuned uti-
lizing PESC, achieved the best performance among
various open-source sparse models and dense mod-
els. Our contributions are described as follows:

• We propose an approach, parameter-efficient
sparsity crafting (PESC), for the extension of
the model capacity efficiently.

• We implement the PESC method for instruc-
tion tuning across general tasks, achieving
significant performance improvements on var-
ious benchmarks.

• We develop Camelidae models, sparse models
trained with the PESC method, achieving the
best performance across open-source sparse
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Figure 2: Overview of the parameter-efficient sparsity
crafting with parameter-efficient experts.

models and demonstrating superior general
capabilities compared to GPT-3.5.

2 Methodology

2.1 Preliminaries

Adapters. Houlsby et al. (2019) proposed the inte-
gration of adapters into pre-trained transformer-
based models to enhance parameter efficiency.
This approach involves tuning only the parameters
added by the adapters. An adapter consists of two
matrices, W down ∈ Rd1×d2 and W up ∈ Rd2×d1 ,
coupled with a non-linear function σ(·). Here, d1
and d2 denote the feature dimensions in the pre-
trained models and the adapter’s hidden dimension,
respectively, with d2 < d1 typically. Given a fea-
ture U ∈ RN×d1 in the pre-trained model, the
output of the Adapter module is expressed as:

U ′ = σ(UW down)W up +U . (1)

Mixture-of-Experts. As depicted in Figure 2, an
MoE layer comprises n experts, {Ei}ni=1, and a
router R. The output y for an input x in the MoE
layer is computed as:

y =
n∑

i=1

R(x)iEi(x), (2)

where R(x)i represents the output of the gating
network for the i-th expert, and Ei(x) is the output
of the i-th expert.
Sparsity Crafting. Building on the concept of
sparsity upcycling (Komatsuzaki et al., 2023), spar-
sity crafting leverages the weights of dense mod-
els. As depicted in Figure 2, sparsity crafting in-
volves a transformative process: substituting the
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Figure 3: Detailed design of the MoE layer for PESC
utilizing parameter-efficient experts. All the FFN layers
share the same weights.

FFN layer F within each block of the dense trans-
former model with an MoE layer. This replacement
gives rise to an innovatively sparse transformer
block. During the initialization phase of sparsity
crafting, each expert Ei within the MoE layer is ini-
tialized with the FFN layer F . To ensure structural
coherence, other components, such as the normal-
ization and attention layers, are replicated directly
from the dense transformer block.

For clarity, let us define Fi(θi) as the objective
function for the i-th expert in the MoE layer, where
θi represents the parameters for Ei. θi is initialized
from θo, which are the parameters of the FFN layer
F from the original dense model. The essence of
the sparsity crafting training regimen lies in the
optimization of Fi(θi). The goal is to derive θ+i ,
the optimized parameters for each expert. This is
formally expressed as:

θ+i = argmin
θi

Fi(θi). (3)

After the instruction tuning process utilizing the
sparsity crafting technique, the optimized parame-
ter sets {θ+i }ni=1 are obtained for experts {Ei}ni=1

in the MoE layer.

2.2 Parameter-Efficient Sparsity Crafting
As shown in Equation (3), traditional sparsity craft-
ing necessitates optimizing the parameters {θi}ni=1

for each expert Ei in the MoE layer, leading to
significant resource consumption, including train-
ing time and memory costs due to the extensive
parameters of FFN layers in LLMs. Consequently,
as illustrated in Figure 2, we introduce PESC,
an approach that addresses the high training time
and memory costs associated with sparsity craft-
ing in LLMs. Specifically, PESC, leveraging the
parameter-efficient fine-tuning (PEFT) paradigm,
focuses on tuning a smaller subset of parameters to
achieve efficiency.

The core of PESC lies in its objective function,
F̃i(θi, ωi), where ωi represents the select parame-
ters for tuning. Notably, the parameters of ωi is sig-
nificantly less than θi, as indicated by |ωi| ≪ |θi|,
where | · | indicates the number of parameters in-
volved. Each expert Ei begins the process with
the initial state (θo, ωo), where ωo is initialized
to zero to facilitate identity mapping, resulting in
F̃i(θo, ωo) = Fi(θo). The training procedure for
PESC is thus the optimization of F̃i(θo, ωi), lead-
ing to a solution ω+

i defined as:

ω+
i = argmin

ωi

F̃i(θo, ωi). (4)

Considering that |ωi| ≪ |θi|, we have

n∑

i=1

|ω+
i |+ |θo| = n× |ωo|+ |θo|

≪ n× |θo| =
n∑

i=1

|θ+i |. (5)

Consequently, this solution set {ω+
i }ni=1 is more ef-

ficient than the original sparsity crafting parameters
{θ+i }ni=1 for the set {Ei}ni=1.

To ensure the effectiveness of PESC compared
to traditional sparsity crafting, it is vital to maintain
a small approximation error, as defined by:

|F̃i(θ
+
i , ωo)− F̃i(θo, ω

+
i )| < ξ, (6)

where ξ is the approximation error. This can
be achieved by designing an approximate func-
tion F̃i(θo, ω

+
i ) that closely matches F̃i(θ

+
i , ωo)

(Houlsby et al., 2019; Ding et al., 2022). Consid-
ering that the trajectory of θi optimization approxi-
mately follows a manifold, which can be projected
into a lower-dimensional space such as adapter
in Equation (1). The approximation error is con-
tingent on the representational capacity of the in-
serted adapters. Given the universal approximation
property of MLP layers with general activation
functions, the Adapter module is a universal ap-
proximator (Funahashi, 1989; Leshno et al., 1993;
Kidger and Lyons, 2020). As a result, utilizing the
adapters as ωi can effectively ensure the quality of
the approximation of F̃i(θ

+
i , ωo).

2.3 Model Design
Parameter-Efficient Experts. According to the
analysis in Section 2.2, adapters can guarantee a
good lower bound ξ in Equation (6). Consequently,
we can introduce parameter-efficient MoE layers

739



by integrating adapters, thereby achieving sparsity
in a more parameter-efficient manner.

In the training of sparse transformer blocks, gra-
dients are back-propagated to each expert, necessi-
tating parameter updates. For a collection of n ex-
perts, original sparsity crafting demands a compu-
tational cost n times that of a single FFN layer. As
depicted in Figure 3, our PESC utilizes adapters to
circumvent redundant updates of the expert weights
θi. Specifically, we update the ωi of n inserted
adapters to differentiate between experts without
altering each expert’s original weights θo replicated
from the original FFN layer. Thus, for a given input
x, Equation (2) can be reformulated as:

y =
n∑

i=0

R(x)iAi(E(x)), (7)

where Ai(x) construct the parameter-efficient ex-
pert as follows:

Ai(x) = σ(xW idown)W iup + x. (8)

Considering that the more sophisticated construc-
tion can improve the approximation, we can also
update the shared weights θo of {Ei}ni=1. As il-
lustrated in Equation (7), this approach allows for
efficient scaling of the model capacity by intro-
ducing a minimal number of parameters across n
inserted adapters.
Top-K Gate Router. Within the sparse transformer
block, the MoE layer encompasses a specified num-
ber of experts. A router, employing a softmax acti-
vation function, models a probability distribution
over these experts, reflecting each expert’s capa-
bility to process incoming tokens. The router’s
weights, denoted as W r, which are integrated into
the sparse transformer block, are initially randomly
initialized. As depicted in Figure 3, we utilize
the top-k gate router within the sparse transformer
block (Lepikhin et al., 2020; Du et al., 2022). This
router activates the most suitable two experts out
of n experts {Ei}ni=1 for each token x in an input
sequence. After receiving the input token x, the
router produces router logits R(x) = W r · x. Be-
fore being normalized via a softmax distribution
over the available n experts, we perform the Keep-
TopK function. The KeepTopK function is applied
to retain only the top-k values of the router logits,
assigning −∞ to the rest, effectively zeroing them
post-softmax normalization. Thus, given a token
x, the router’s output logit is represented as:

R(x) = Softmax(KeepTopK(W r · x)). (9)

The gate value of each expert Ei for the input to-
ken x is R(x)i. Despite an increase in parameters,
the experts of the MoE layer are activated sparsely,
implying that only a limited subset of experts is
used per input token. This approach enhances the
capacity of the model while maintaining compu-
tational efficiency. The top-k gate router selects
the best two experts for each token during infer-
ence. In an MoE layer with n experts, this enables
up to

(
n
k

)
different combinations of experts, as op-

posed to a single combination in the traditional
transformer architecture, providing enhanced com-
putational adaptability.
Experts Loading Balance. The top-k gate router,
through its gating mechanism, tends to dispropor-
tionately favor a few experts, leading to an im-
balance where these experts are more frequently
trained and consequently chosen by the router. To
counter this imbalance and promote uniform expert
utilization, an auxiliary loss as suggested by Fedus
et al. (2022) is integrated during training for each
sparse transformer block. With n experts and a
batch B containing T tokens, this auxiliary loss
L for experts loading balance is calculated as the
scaled dot-product of vectors f and p,

L = α · n ·
n∑

i=1

f i · pi, (10)

where fi denotes the fraction of tokens dispatched
to expert i and pi represents the fraction of router
probability allocated to expert i. α is a multiplica-
tive coefficient for the auxiliary losses. We utilize
an α = 10−2 which was sufficiently large to en-
sure load balancing while small enough to not over-
whelm the primary cross-entropy objective. As the
ideal scenario entails uniform routing across the n
experts, both vectors should ideally have values of
1
n . The auxiliary loss of Equation (10) fosters this
uniform distribution, achieving its minimum under
such conditions.

3 Experiments

3.1 Settings
Training Data. To demonstrate the learning ability
of the sparse model with MoE layers, we simulta-
neously trained the model on a diverse set of skills,
encompassing coding, mathematical, and other gen-
eral abilities from various subjects. This training
involved integrating three distinct datasets from
varied domains during the instruction tuning phase:
SlimOrca (Lian et al., 2023; Mukherjee et al., 2023;
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Longpre et al., 2023), Magicoder (Wei et al., 2023),
and MetaMathQA (Yu et al., 2023) datasets. After
filtration and sampling, we can get two instruction
datasets including IDAE-500K and IDAE-720K fi-
nally. We provide more details of IDAE datasets in
Appendix A.
Evaluation Benchmarks. Our evaluation com-
pares the performance of dense and sparse mod-
els on academic benchmarks. The dense models
include Llama2 (Touvron et al., 2023b), Vicuna
(Zheng et al., 2023), Yi (01 AI, 2023), SUSChat
(SUSTech IDEA, 2023), Qwen (Bai et al., 2023),
GPT3.5 (Brown et al., 2020), and our Camel mod-
els, while the sparse models encompass Mixtral
(Jiang et al., 2024), DeepSeekMoE (Dai et al.,
2024), and our Camelidae models. Evaluations
are conducted using OpenCompass (OpenCompass,
2023), LM-Eval-Harness (Gao et al., 2023), and
our internal evaluation libraries, summarizing per-
formances across well-known benchmarks. These
benchmarks are illustrated as follows:

• Code: Evaluation includes pass@1 scores for
HumanEval (Chen et al., 2021) and MBPP
(Austin et al., 2021).

• Math: Accuracy scores for GSM8K (Cobbe
et al., 2021) (5-shot) and MATH (Hendrycks
et al., 2021) (4-shot) benchmarks.

• Commonsense Reasoning (CR): Accuracy
scores for PIQA (Bisk et al., 2020), Hel-
laSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2021), ARC-easy, and ARC-
challenge (Clark et al., 2018).

• Word Knowledge (WK): Assessment of
0-shot performance on NaturalQuestions
(Kwiatkowski et al., 2019) and TriviaQA
(Joshi et al., 2017) utilizing the exact match
(EM) metric.

• Aggregated Benchmarks: Overall results for
MMLU (Hendrycks et al., 2020) (5-shot) uti-
lizing accuracy scores metrics.

Notably, for more detailed experiment results,
please refer to Appendix C.
Camel and Camelidae Models. We fine-tuned
Camel and Camelidae models using identical
datasets, IDAE-500K, to ensure fair comparisons
between dense and sparse models. Specifically,
Camel models are dense models while Camelidae
models are sparse models with MoE architecture.
Notably, to further enhance the capabilities of the
sparse models, we also utilize IDAE-720K for the
instruction-tuning of the Camelidae-pro model. All
Camelidae models utilize the top-2 gate router.

Implementation Details. We employed QLoRA
(Dettmers et al., 2024) techniques for effective fine-
tuning of both the Camel and Camelidae models
derived from Llama2-7B (Touvron et al., 2023b),
Llama2-13B (Touvron et al., 2023b), and Yi-34B
(01 AI, 2023). As for the QLoRA configuration,
we used a 4-bit quantization scheme for our experi-
ments, which significantly reduces memory usage
while preserving model performance. This pro-
cess entailed using a constant learning rate sched-
ule with a warm-up ratio of 0.03, and the paged
AdamW (Dettmers et al., 2024; Loshchilov and
Hutter, 2017) optimizer with a learning rate of
2 × 10−4, no weight decay, a batch size of 128,
and a sequence length of 2048 tokens. The mod-
els underwent instruction tuning for one epoch on
16 A100 GPUs, each equipped with 80G memory.
Please refer to Appendix B for more details.

3.2 Comparison with Chat LLMs
We present the performance of various chat LLMs
on a set of standardized benchmarks. The chat mod-
els evaluated are Camelidae-8×34B-pro, Mixtral-
8×7B-Instruct (Jiang et al., 2024), DeepSeekMoE-
16B-Chat (Dai et al., 2024), Yi-34B-Chat (01 AI,
2023), Llama2-70B-Chat (Touvron et al., 2023b),
Qwen-72B-Chat (Bai et al., 2023), and GPT-3.5
(Brown et al., 2020). The benchmarks cover a
range of domains, including multiple-choice ques-
tions across 57 subjects (MMLU), grade-school
math (GSM8K), math problems across various
difficulty levels (MATH), Python coding tasks
(HumanEval), Python code generation (MBPP),
commonsense reasoning (HellaSwag), and world
knowledge question answering (NaturalQuestions).

As shown in Section 3.1, Camelidae-8×34B-
pro demonstrates its strengths in its wide range of
knowledge, mathematical, coding, and common-
sense reasoning capabilities across various sparse
and dense models.
Knowledge and Reasoning Abilities. Camelidae-
8×34B-pro demonstrates impressive performance
on MMLU with a high success rate of 75.7%, indi-
cating its wide-ranging professional and academic
knowledge. Meanwhile, Camelidae-8×34B-pro
scores 31.2% on NaturalQuestions, demonstrating
a comprehensive world knowledge base. Although
Camelidae-8×34B-pro is weaker than some mod-
els in the HellaSwag benchmark, its 85.2% accu-
racy is still decent for commonsense reasoning.
Mathematical Proficiency. Camelidae-8×34B-
pro excels on the GSM8K benchmark with 79.4%
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Sparse Chat Models Dense Chat Models

Camelidae
8×34B-pro

Mixtral
8×7B Inst.

DeepSeekMoE
16B Chat

Yi
34B Chat

Llama2
70B Chat

Qwen
72B Chat GPT-3.5

MMLU (Acc.)
(Hendrycks et al., 2020)

75.7%
(5-shot)

68.7%
(5-shot)

47.2%
(5-shot)

74.8%
(5-shot)

63.8%
(5-shot)

75.0%
(5-shot)

70.0%
(5-shot)

GSM8K (Acc.)
(Cobbe et al., 2021)

79.4%
(5-shot)

71.7%
(5-shot)

62.2%
(5-shot)

67.6%
(5-shot)

59.3%
(5-shot)

67.4%
(5-shot)

57.1%
(5-shot)

MATH (Acc.)
(Hendrycks et al., 2021)

24.0%
(4-shot)

22.1%
(4-shot)

15.2%
(4-shot)

17.3%
(4-shot)

10.4%
(4-shot)

26.8%
(4-shot)

34.1%
(4-shot)

HumanEval (Pass@1)
(Chen et al., 2021)

48.8%
(0-shot)

25.6%
(0-shot)

42.7%
(0-shot)

20.1%
(0-shot)

32.3%
(0-shot)

47.0%
(0-shot)

48.1%
(0-shot)

MBPP (Pass@1)
((Austin et al., 2021)

43.2%
(4-shot)

40.6%
(4-shot)

42.2%
(4-shot)

41.0%
(4-shot)

35.6%
(4-shot)

41.8%
(4-shot) -

HellaSwag (Acc.)
(Zellers et al., 2019)

85.2%
(10-shot)

86.5%
(10-shot)

72.2%
(10-shot)

83.9%
(10-shot)

84.8%
(10-shot)

85.9%
(10-shot)

85.5%
(10-shot)

NaturalQuestions (EM)
(Kwiatkowski et al., 2019)

31.2%
(0-shot)

22.5%
(0-shot)

30.7%
(0-shot)

23.7%
(0-shot)

30.6%
(0-shot)

29.3%
(0-shot) -

Table 1: Performance of Camelidae-8×34B-pro on academic benchmarks. We present a detailed comparison of the
Camelidae-8×34B-pro model with the various open-source sparse chat models and dense chat models. We bold the
highest scores among all models.

Camel-7B Camelidae
8×7B Camel-13B Camelidae

8×13B Camel-34B Camelidae
8×34B

Camelidae
8×34B-pro

# Total Params 7B 8B 13B 15B 34B 38B 38B
# Activated Params 7B 7B 13B 14B 34B 35B 35B
# Training Instructions 500K 500K 500K 500K 500K 500K 720K

MMLU (Acc.) 47.7 48.3 54.4 54.4 75.3 75.6 75.7

HumanEval (Pass@1) 17.7 18.3 28.7 30.6 42.1 43.9 48.8
MBPP (Pass@1) 21.0 23.4 30.3 30.4 40.6 41.4 43.2

GSM8K (Acc.) 40.7 44.0 50.2 52.6 76.1 78.3 79.4
MATH (Acc.) 4.8 5.8 8.4 9.8 18.2 22.6 24.0

PIQA (Acc.) 79.7 79.9 80.9 80.9 82.3 82.7 83.6
HellaSwag (Acc.) 76.8 76.8 79.8 80.1 82.6 83.2 82.5
Winogrande (Acc.) 71.3 72.1 74.6 74.7 80.0 80.9 80.1
ARC-easy (Acc.) 75.0 75.0 77.7 78.8 86.1 86.2 86.6
ARC-challenge (Acc.) 47.9 49.6 54.3 54.2 63.6 65.2 63.3

NaturalQuestions (EM) 17.6 17.8 24.7 26.8 31.6 32.2 31.2
TriviaQA (EM) 51.0 51.0 57.5 59.4 63.3 63.4 62.5

Table 2: Overall performance on all the evaluation benchmarks of dense models (Camel) and sparse (Camelidae)
models across different model sizes. We bold the highest scores separately for different model sizes.

accuracy, the highest among models. However, its
24.0% score on the MATH benchmark lags behind
GPT-3.5, indicating a relative weakness in solving
more complex mathematical problems.
Coding Skills. Camelidae-8×34B-pro demon-
strates strong coding abilities with 48.8% accu-
racy on the HumanEval benchmark, comparable
to GPT-3.5, and a 43.2% pass rate on the MBPP
Python code generation benchmark, showcasing its
prowess in understanding and generating code.

3.3 Ablation Studies

Dense models vs. Sparse Models. We evaluate the
efficacy of our novel training methodology through
a comparative analysis of Camelidae models, en-
compassing both dense and sparse configurations

across various parameter sizes, as delineated in Ta-
ble 2 and Table 3. Camelidae models demonstrate
a significant advantage over counterparts across
different model sizes. This superiority is particu-
larly evident in tasks requiring a deeper understand-
ing, including code and mathematical benchmarks,
highlighting the efficacy of our training approach in
augmenting model capabilities. To ensure equitable
comparisons, Camel and Camelidae models were
fine-tuned using the same dataset, IDAE-500K. As
indicated in Table 2, the Camelidae models, as
sparse models, consistently display superior perfor-
mance over the dense Camel models of comparable
sizes. Moreover, Camelidae-8x34B-pro, which is
trained utilizing the IDAE-720K dataset, outper-
forms Camelidae-8x34B which indicates that the
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Figure 4: Proportion of tokens assigned to each expert on different dataset subsets.

Model # Params Avg. Code Math CR WK MMLU

Llama2-7B-Chat 7B 35.4 14.9 15.1 66.7 33.0 47.3
Vicuna-7B 7B 34.0 9.6 13.5 67.6 29.2 50.1

Camelidae-8×7B 8B 39.9 20.9 24.9 70.7 34.4 48.3

Llama2-13B-Chat 13B 41.8 23.1 21.2 70.9 40.0 53.8
Vicuna-13B 13B 39.9 10.7 21.0 70.8 41.1 55.8

Camelidae-8×13B 15B 46.5 30.5 30.7 73.8 43.1 54.4

Yi-34B-Chat 34B 51.8 30.4 42.5 73.3 38.0 74.8
SUSChat-34B 34B 53.3 25.9 47.2 78.8 38.3 76.4

Camelidae-8×34B 38B 59.3 42.7 50.5 79.7 47.8 75.6
Camelidae-8×34B-pro 38B 59.9 46.0 51.7 79.2 46.9 75.7

Table 3: Overall performance on grouped benchmarks
of various dense models (Llama2-Chat (Touvron et al.,
2023b), Vicuna (Zheng et al., 2023), Yi-Chat (01 AI,
2023), SUSChat (SUSTech IDEA, 2023)) across differ-
ent model sizes. We bold the highest scores separately
for different model sizes.

effectiveness of our method is sustained even with
the increment of the training data volume.
Numbers of Experts. The results from the study,
as shown in Table 4, clearly demonstrate that in-
creasing the number of experts in the MoE layers
significantly enhances the model’s performance.
This trend is evident in the progressive improve-
ment in scores across various academic bench-
marks as the number of experts increases from
4 to 16 in the Camelidae models. Notably, the
Camelidae-16×7B model exhibits exceptional per-
formance on all the benchmarks. This positive
correlation between the number of experts and the
model’s performance indicates the untapped poten-
tial of our approach. Specifically, a further increase
in the number of experts might yield even more
substantial advancements in model performance.

3.4 Routing Analysis

Our study rigorously examined the expert selec-
tion process by the router, with a keen focus on
ascertaining whether specific experts demonstrate
specialization in distinct domains such as coding
and mathematics.

This inquiry involved a thorough analysis of the

Model # Experts Avg. Code Math CR WK MMLU

Camelidae-4×7B 4 39.6 20.7 24.3 70.2 33.3 49.3
Camelidae-8×7B 8 39.9 20.9 24.9 70.7 34.4 48.3
Camelidae-16×7B 16 40.5 21.6 25.8 70.7 35.0 49.4

Table 4: Evaluation on different numbers of experts in
the MoE layers. We bold the highest scores for each
grouped benchmark.

distribution patterns of selected experts across var-
ious dataset subsets. These included SlimOrca
(Lian et al., 2023; Mukherjee et al., 2023; Longpre
et al., 2023), Magicoder (Wei et al., 2023), and
MetaMathQA (Yu et al., 2023). The outcomes of
this analysis are depicted in Figure 4, with particu-
lar emphasis on the 15th layers of the Camelidae-
8×7B model.

Our findings highlight discernible variations in
the distribution of experts among the three datasets.
For instance, Expert 1 exhibits a notably higher
activation within the Magicoder dataset, while Ex-
pert 6 demonstrates a significant activation rate in
the MetaMathQA dataset relative to other experts.
These observations suggest that the router operates
with a structured syntactic approach. Importantly,
despite the variation in expert selection across dif-
ferent datasets, certain experts (specifically Experts
1, 2, 5, and 6) consistently exhibit elevated activa-
tion rates.

4 Related Work

4.1 Dense and Sparse Models

Traditional dense models activate all parameters
during training and inference, leading to high com-
putational and memory requirements as model
sizes increase. In contrast, sparse models, employ-
ing the MoE architecture (Shazeer et al., 2017),
activate only a subset of the total available parame-
ters for each input token. In sparse models, the FFN
layer is replaced by an MoE layer, directing each
input token to a select group of expert networks
for processing. The final token representation is
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an amalgamation of outputs from these chosen ex-
perts. Despite an increase in parameters, the sparse
activation of experts ensures computational effi-
ciency while enhancing model capabilities. The
sparse models with MoE architecture have been
extensively explored in the field of NLP (Lepikhin
et al., 2020; Du et al., 2022; Fedus et al., 2022),
particularly with its integration into the transformer
block. Our approach adopts the routing strategy
from (Lepikhin et al., 2020; Du et al., 2022), with
selective parameter activation to achieve computa-
tional efficiency.

4.2 Reuse of Trained Weights

Recent studies have focused on improving train-
ing efficiency by leveraging pre-existing model
weights for a warm start, thus minimizing train-
ing expenses (Chen et al., 2015; Rae et al., 2021;
Yang et al., 2021; Lin et al., 2021; Lan et al., 2019).
Sparse Upcycling (Komatsuzaki et al., 2023) intro-
duces a methodology to initialize sparse MoE mod-
els using weights from a pre-trained dense model.
This approach significantly reduces the computa-
tional resources needed compared to the training
of the original dense model. Sparse Upcycling in-
volves the direct transfer of layer normalization, at-
tention, and embedding parameters from the dense
model to the new sparse model. Moreover, it re-
places some Multilayer Perceptron (MLP) layers
with MoE layers, initializing the experts in these
layers with weights from the dense model’s MLP.
This process effectively transfers valuable learned
representations from the dense model’s pre-training
phase into the sparse model. In our research, we
adopt this method, reusing weights from a pre-
trained dense model for our PESC method.

4.3 Parameter-Efficient Fine-Tuning

Traditionally, full fine-tuning has been the norm
for adapting pre-trained models, including LLMs.
However, due to the immense size of LLMs, this
approach demands substantial computational re-
sources. To mitigate this, numerous PEFT meth-
ods have emerged (Houlsby et al., 2019; Hu et al.,
2021; Li and Liang, 2021; Liu et al., 2022; Wu
et al., 2024a). PEFT focuses on training a lim-
ited subset of parameters, either from the exist-
ing model or newly added ones. Adapter-based
methods (Houlsby et al., 2019; Hu et al., 2021;
Liu et al., 2022; Wu et al., 2024a) integrate small,
learnable modules called adapters into pre-trained
models, fine-tuning only these newly inserted pa-

rameters. Among these, QLoRA (Dettmers et al.,
2024) has gained popularity for its efficiency in
fine-tuning LLMs, yielding results comparable to
full fine-tuning. Another emerging trend in PEFT
is prefix-/prompt-tuning (Lester et al., 2021; Li and
Liang, 2021), involving the addition of learnable
token vectors to either the keys and values in atten-
tion modules or directly to the input sequence. In
this study, we insert adapters after the copied FFN
layers to construct MoE layers and employ QLoRA
to update the other weight metrics of LLMs.

4.4 Mixture of LoRA Experts

Other works also explore the combination of MoE
with PEFT techniques (Diao et al., 2023; Gou
et al., 2023; Wu et al., 2024b; Liu et al., 2023; Luo
et al., 2024; Dou et al., 2024). For instance, Lo-
RAMoE (Dou et al., 2024) focuses on the retention
of world knowledge, and MoELoRA (Luo et al.,
2024) focuses on the Math and CommonSense Rea-
soning ability utilizing PEFT frameworks which
unify MOE and LoRA. However, the mixture of
LoRA framework incurs additional computational
costs including higher memory usage and slower
speed without parallelism during the training and
inference process. Our PESC method, in contrast,
does not face these challenges. PESC builds on
the adapter-based model framework, fine-tuning
multiple adapters inserted after the copied FFN
layers instead of all the copied FFN layers in cor-
responding experts. In our MoE design of PESC,
each expert utilizes a single adapter module, sig-
nificantly reducing the overall memory footprint
compared to LoRA module, which would require
multiple modules per expert due to its placement
in FFN and attention layers. This distinction is par-
ticularly crucial when dealing with a large number
of experts, as memory constraints become increas-
ingly challenging. Moreover, our adapter-based
experts enable parallel computation across experts
due to their independence from each other’s out-
puts, unlike LoRA, where dependencies between
layers could limit parallelism. This design acceler-
ates training time, especially in scenarios where the
number of experts grows large, ensuring scalability
and efficiency. It’s also worth noting that LoRA
might require merging weights into the main model
for inference, leading to increased memory usage
and potential latency issues, especially since mul-
tiple tokens activate different experts. On the con-
trary, the adapter-based parameter-efficient MoE
does not impose such overhead during inference,
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maintaining a low computational burden similar to
the original dense model.

5 Conclusion

In this paper, we introduce Parameter-Efficient
Sparsity Crafting (PESC) which upcycles dense
models into sparse models utilizing the MoE ar-
chitecture. PESC incorporates adapters (Houlsby
et al., 2019) within the MoE layers of sparse mod-
els, enabling the differentiation of experts without
modifying the individual weights of each expert,
and guarantees the quality of the approximation
compared to traditional sparsity upcycling (Komat-
suzaki et al., 2023) in function space (Section 2.2).
This technique significantly reduces computational
costs and GPU memory requirements compared
to sparse upcycling. It facilitates the expansion
of model capacity with a minimal parameter in-
crease due to the integration of adapters. We apply
the PESC method to instruction tuning across vari-
ous general tasks, resulting in notable performance
enhancements on various benchmarks (Section 3).
Additionally, we develop sparse models, Cameli-
dae, using the PESC approach and achieve supe-
rior performance across various open-source sparse
models and demonstrate superior general capabili-
ties compared to GPT-3.5.

Limitation

The PESC method introduces slightly more param-
eters compared to some PEFT techniques (LoRA,
etc.). The instruction tuning process of the sparse
models utilizing the PESC method would require
more GPU memory and computation time com-
pared to dense models. Although PESC enhances
the performance of instruction tuning for general
tasks, it may still not match the performance of
sparse upcycling with full fine-tuning, as PESC is
a mathematical approximation of sparse upcycling
as illustrated in Equation (6).

Acknowledgement

This work is partially supported by The Re-
search Grants Council of Hong Kong SAR
(No. CUHK14210723 and No. CUHK14211824),
and the MIND project (MINDXZ202404).

References
01 AI. 2023. Yi. https://github.com/01-ai/Yi.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. PiQA: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in neural information process-
ing systems.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens.
2015. Net2Net: Accelerating learning via knowl-
edge transfer. arXiv preprint arXiv:1511.05641.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. 2024. DeepSeek-
Moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. QLoRA: Efficient finetun-
ing of quantized LLMs. In Advances in Neural Infor-
mation Processing Systems.

745

https://github.com/01-ai/Yi


Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and
Tong Zhang. 2023. Mixture-of-Domain-Adapters:
Decoupling and Injecting Domain Knowledge to Pre-
trained Language Models’ Memories. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics, pages 5113–5129.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta Tun-
ing: A comprehensive study of parameter efficient
methods for pre-trained language models. arXiv
preprint arXiv:2203.06904.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei
Shen, Limao Xiong, Yuhao Zhou, Xiao Wang, Zhi-
heng Xi, Xiaoran Fan, et al. 2024. LoRAMoE: Alle-
viating World Knowledge Forgetting in Large Lan-
guage Models via MoE-Style Plugin. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics, pages 1932–1945.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
GLaM: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch Transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Jour-
nal of Machine Learning Research.

Ken-Ichi Funahashi. 1989. On the approximate real-
ization of continuous mappings by neural networks.
Neural networks, 2(3):183–192.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang
Xu, Aoxue Li, Dit-Yan Yeung, James T Kwok, and
Yu Zhang. 2023. Mixture of Cluster-conditional
LoRA Experts for Vision-language Instruction Tun-
ing. arXiv preprint arXiv:2312.12379.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
International Conference on Machine Learning.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on
Learning Representations.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, et al.
2024. Mixtral of Experts. arXiv preprint
arXiv:2401.04088.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Patrick Kidger and Terry Lyons. 2020. Universal ap-
proximation with deep narrow networks. In Confer-
ence on learning theory, pages 2306–2327. PMLR.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2023.
Sparse Upcycling: Training mixture-of-experts from
dense checkpoints. In International Conference on
Learning Representations.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural Questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. AlBert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
GShard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and
Shimon Schocken. 1993. Multilayer feedforward
networks with a nonpolynomial activation function
can approximate any function. Neural networks,
6(6):861–867.

746

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836


Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The Power of Scale for Parameter-Efficient Prompt
Tuning. In Conference on Empirical Methods in
Natural Language Processing.

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:
Optimizing Continuous Prompts for Generation. In
The Association for Computational Linguistics.

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pent-
land, Austin Cook, Chanvichet Vong, and "Teknium".
2023. Slimorca: An open dataset of gpt-4 augmented
flan reasoning traces, with verification.

Junyang Lin, An Yang, Jinze Bai, Chang Zhou, Le Jiang,
Xianyan Jia, Ang Wang, Jie Zhang, Yong Li, Wei
Lin, et al. 2021. M6-10T: A sharing-delinking
paradigm for efficient multi-trillion parameter pre-
training. arXiv preprint arXiv:2110.03888.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. In
Advances in Neural Information Processing Systems.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. 2023.
MoELoRA: An MoE-based parameter efficient fine-
tuning method for multi-task medical applications.
arXiv preprint arXiv:2310.18339.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu
He, Jun Zhao, and Kang Liu. 2024. MoELoRA:
Contrastive learning guided mixture of experts on
parameter-efficient fine-tuning for large language
models. arXiv preprint arXiv:2402.12851.

Mistral AI. 2023. Mistral. https://mistral.ai/
news/announcing-mistral-7b//.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of GPT-4. arXiv preprint
arXiv:2306.02707.

OpenAI. 2023. GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774.

OpenCompass. 2023. OpenCompass: A Universal
Evaluation Platform for Foundation Models. https:
//github.com/open-compass/opencompass.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and
Neil Houlsby. 2023. From sparse to soft mixtures of
experts. arXiv preprint arXiv:2308.00951.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne
Longpre, Jason Wei, Hyung Won Chung, Barret
Zoph, William Fedus, Xinyun Chen, et al. 2023.
Mixture-of-experts meets instruction tuning: A win-
ning combination for large language models. arXiv
preprint arXiv:2305.14705.

SUSTech IDEA. 2023. SUSChat. https://github.
com/SUSTech-IDEA/SUS-Chat.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca:
An Instruction-following LLaMA model. https:
//github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy

747

https://huggingface.co/datasets/Open-Orca/SlimOrca
https://huggingface.co/datasets/Open-Orca/SlimOrca
https://mistral.ai/news/announcing-mistral-7b//
https://mistral.ai/news/announcing-mistral-7b//
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/SUSTech-IDEA/SUS-Chat
https://github.com/SUSTech-IDEA/SUS-Chat
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent Abilities of Large Language Models. Journal of
Machine Learning Research.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Haoyuan Wu, Xinyun Zhang, Peng Xu, Peiyu Liao,
Xufeng Yao, and Bei Yu. 2024a. p-Laplacian Adap-
tation for Generative Pre-trained Vision-Language
Models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 6003–6011.

Xu Wu, Shaohan Huang, and Furu Wei. 2024b. MoLE:
Mixture of loRA experts. In International Confer-
ence on Learning Representations.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2024. WizardLM: Empowering large language
models to follow complex instructions. In Interna-
tional Conference on Learning Representations.

Shuo Yang, Le Hou, Xiaodan Song, Qiang Liu, and
Denny Zhou. 2021. Speeding up deep model train-
ing by sharing weights and then unsharing. arXiv
preprint arXiv:2110.03848.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
MetaMath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Yu Zhang and Qiang Yang. 2021. A survey on multi-
task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586–5609.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-judge with MT-Bench and Chatbot Arena.

748



A Details of IDAE Datasets

We show the proportion of SlimORCA (Lian et al.,
2023; Mukherjee et al., 2023; Longpre et al., 2023),
Magicoder (Wei et al., 2023), and MetaMathQA
(Yu et al., 2023) datasets in IDAE-500K and IDAE-
720K datasets in Table 5.

SlimOrca Magicoder MetaMathQA

IDAE-500K 300K 100K 100K
IDAE-720K 360K 180K 180K

Table 5: The proportion of SlimORCA, Magicoder, and
MetaMathQA datasets in IDAE datasets.

B Implementation Details

We show the hyperparameters that we use for in-
struction tuning in Table 6.

lr epoch LoRA r LoRA α Quant Type Adapter Dim

2× 10−4 1 64 16 nf4 512

Table 6: Hyperparameters of instruction tuning.

C Detailed Evaluation Results on
Grouped Benchmarks.

We show the detailed evaluation results of each
grouped academic benchmark as follows:

• In Table 7, we report the evaluation details of
the MMLU benchmark.

• In Table 8, we report the results on GSM8K
and MATH benchmarks.

• In Table 9, we compare the results on Hu-
manEval and MBPP benchmarks.

• In Table 10, we show the results on several
commonsense reasoning benchmarks.

• In Table 11, We evaluate the performance on
NaturalQuestions and TriviaQA benchmarks.

Humanities STEM Social Sciences Other Average

LLaMA2-7B 43.2 36.9 51.7 52.6 45.7
LLaMA2-7B-Chat 43.4 38.7 54.7 54.6 47.3
Vicuna-7B 46.0 40.4 58.2 58.1 50.1
Camel-7B 43.9 38.5 55.9 54.6 47.7
Camelidae-8×7B 44.7 38.1 56.9 55.9 48.3

LLaMA2-13B 52.3 44.1 63.7 62.0 55.1
LLaMA2-13B-Chat 50.3 43.9 62.6 60.3 53.8
Vicuna-13B 52.1 44.6 65.3 63.5 55.8
Camel-13B 52.0 42.2 63.0 61.7 54.4
Camelidae-8×13B 52.1 43.3 62.6 61.1 54.4

Yi-34B 71.3 67.3 85.4 80.2 75.5
Yi-34B-Chat 70.5 66.3 84.7 79.9 74.8
SUSChat-34B 72.2 69.6 85.5 80.5 76.4
Camel-34B 72.5 67.3 84.0 79.3 75.3
Camelidae-8×34B 72.8 66.7 83.8 80.4 75.6
Camelidae-8×34B-pro 73.8 66.0 83.8 80.3 75.7

Table 7: Comparison on the performance of MMLU.

GSM8K MATH Average

LLaMA2-7B 16.7 3.3 10.0
LLaMA2-7B-Chat 16.7 3.3 10.0
Vicuna-7B 16.7 3.3 10.0
Camel-7B 40.7 4.8 22.8
Camelidae-8×7B 44.0 5.8 24.9

LLaMA2-13B 29.6 5.0 17.3
LLaMA2-13B-Chat 16.7 3.3 10.0
Vicuna-13B 16.7 3.3 10.0
Camel-13B 50.2 8.4 29.3
Camelidae-8×13B 52.6 9.8 30.7

Yi-34B 67.9 15.9 41.9
Yi-34B-Chat 16.7 3.3 10.0
SUSChat-34B 16.7 3.3 10.0
Camel-34B 76.1 18.2 47.2
Camelidae-8×34B 78.3 22.6 50.5

Table 8: Comparison on mathematical reasoning tasks.

HumanEval MBPP Average

LLaMA2-7B 12.8 14.8 13.8
LLaMA2-7B-Chat 16.7 3.3 10.0
Vicuna-7B 16.7 3.3 10.0
Camel-7B 17.7 21.0 19.4
Camelidae-8×7B 18.3 23.4 20.9

LLaMA2-13B 18.9 26.8 22.9
LLaMA2-13B-Chat 16.7 3.3 10.0
Vicuna-13B 16.7 3.3 10.0
Camel-13B 28.7 30.3 29.5
Camelidae-8×13B 30.6 30.4 30.5

Yi-34B 26.2 38.2 32.2
Yi-34B-Chat 16.7 3.3 10.0
SUSChat-34B 16.7 3.3 10.0
Camel-34B 42.1 40.6 41.4
Camelidae-8×34B 43.9 41.4 42.7

Table 9: Comparison on code generation tasks.

PIQA HellaSwag WinoGrande ARC-e ARC-c Average

LLaMA2-7B 78.9 75.9 69.5 74.7 46.2 69.0
LLaMA2-7B-Chat 77.0 75.5 66.4 69.7 44.7 66.7
Vicuna-7B 78.0 73.7 69.3 71.3 45.8 67.6
Camel-7B 79.7 76.8 71.3 75.0 47.9 70.1
Camelidae-8×7B 79.9 76.8 72.1 75.0 49.6 70.7

LLaMA2-13B 80.7 80.8 71.9 77.4 48.9 71.6
LLaMA2-13B-Chat 79.1 79.7 71.3 73.8 50.3 70.9
Vicuna-13B 78.9 77.4 71.9 74.8 50.9 70.8
Camel-13B 80.9 79.8 74.6 77.7 54.3 73.5
Camelidae-8×13B 80.9 80.1 74.7 78.8 54.2 73.8

Yi-34B 82.9 83.7 78.9 84.1 61.6 78.2
Yi-34B-Chat 79.9 80.7 77.1 74.3 54.6 73.3
SUSChat-34B 82.0 83.0 81.0 84.8 63.0 78.8
Camel-34B 82.3 82.6 80.0 86.1 63.6 78.9
Camelidae-8×34B 82.7 83.2 80.9 86.2 65.2 79.7
Camelidae-8×34B-pro 83.6 82.5 80.1 86.6 63.3 79.2

Table 10: Comparison on the performance of various
commonsense reasoning tasks.

NaturalQuestions TriviaQA Average

LLaMA2-7B 19.1 52.8 36.0
LLaMA2-7B-Chat 19.6 46.4 33.0
Vicuna-7B 15.6 42.8 29.2
Camel-7B 17.6 51.0 34.3
Camelidae-8×7B 17.8 51.0 34.4

LLaMA2-13B 24.8 59.4 42.1
LLaMA2-13B-Chat 25.0 55.0 40.0
Vicuna-13B 25.8 56.3 41.1
Camel-13B 24.7 57.5 41.1
Camelidae-8×13B 26.8 59.4 43.1

Yi-34B 33.5 62.1 47.8
Yi-34B-Chat 23.7 52.3 38.0
SUSChat-34B 20.4 56.1 38.3
Camel-34B 31.6 63.3 47.5
Camelidae-8×34B 32.2 63.4 47.8
Camelidae-8×34B-pro 31.2 62.5 46.9

Table 11: Comparison on the exact match performance
of world knowledge tasks.
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