@inproceedings{katsimpras-paliouras-2024-genra,
title = "{GENRA}: Enhancing Zero-shot Retrieval with Rank Aggregation",
author = "Katsimpras, Georgios and
Paliouras, Georgios",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.431/",
doi = "10.18653/v1/2024.emnlp-main.431",
pages = "7566--7577",
abstract = "Large Language Models (LLMs) have been shown to effectively perform zero-shot document retrieval, a process that typically consists of two steps: i) retrieving relevant documents, and ii) re-ranking them based on their relevance to the query. This paper presents GENRA, a new approach to zero-shot document retrieval that incorporates rank aggregation to improve retrieval effectiveness. Given a query, GENRA first utilizes LLMs to generate informative passages that capture the query`s intent. These passages are then employed to guide the retrieval process, selecting similar documents from the corpus. Next, we use LLMs again for a second refinement step. This step can be configured for either direct relevance assessment of each retrieved document or for re-ranking the retrieved documents. Ultimately, both approaches ensure that only the most relevant documents are kept. Upon this filtered set of documents, we perform multi-document retrieval, generating individual rankings for each document. As a final step, GENRA leverages rank aggregation, combining the individual rankings to produce a single refined ranking. Extensive experiments on benchmark datasets demonstrate that GENRA improves existing approaches, highlighting the effectiveness of the proposed methodology in zero-shot retrieval."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="katsimpras-paliouras-2024-genra">
<titleInfo>
<title>GENRA: Enhancing Zero-shot Retrieval with Rank Aggregation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Katsimpras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Paliouras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large Language Models (LLMs) have been shown to effectively perform zero-shot document retrieval, a process that typically consists of two steps: i) retrieving relevant documents, and ii) re-ranking them based on their relevance to the query. This paper presents GENRA, a new approach to zero-shot document retrieval that incorporates rank aggregation to improve retrieval effectiveness. Given a query, GENRA first utilizes LLMs to generate informative passages that capture the query‘s intent. These passages are then employed to guide the retrieval process, selecting similar documents from the corpus. Next, we use LLMs again for a second refinement step. This step can be configured for either direct relevance assessment of each retrieved document or for re-ranking the retrieved documents. Ultimately, both approaches ensure that only the most relevant documents are kept. Upon this filtered set of documents, we perform multi-document retrieval, generating individual rankings for each document. As a final step, GENRA leverages rank aggregation, combining the individual rankings to produce a single refined ranking. Extensive experiments on benchmark datasets demonstrate that GENRA improves existing approaches, highlighting the effectiveness of the proposed methodology in zero-shot retrieval.</abstract>
<identifier type="citekey">katsimpras-paliouras-2024-genra</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.431</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.431/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>7566</start>
<end>7577</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GENRA: Enhancing Zero-shot Retrieval with Rank Aggregation
%A Katsimpras, Georgios
%A Paliouras, Georgios
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F katsimpras-paliouras-2024-genra
%X Large Language Models (LLMs) have been shown to effectively perform zero-shot document retrieval, a process that typically consists of two steps: i) retrieving relevant documents, and ii) re-ranking them based on their relevance to the query. This paper presents GENRA, a new approach to zero-shot document retrieval that incorporates rank aggregation to improve retrieval effectiveness. Given a query, GENRA first utilizes LLMs to generate informative passages that capture the query‘s intent. These passages are then employed to guide the retrieval process, selecting similar documents from the corpus. Next, we use LLMs again for a second refinement step. This step can be configured for either direct relevance assessment of each retrieved document or for re-ranking the retrieved documents. Ultimately, both approaches ensure that only the most relevant documents are kept. Upon this filtered set of documents, we perform multi-document retrieval, generating individual rankings for each document. As a final step, GENRA leverages rank aggregation, combining the individual rankings to produce a single refined ranking. Extensive experiments on benchmark datasets demonstrate that GENRA improves existing approaches, highlighting the effectiveness of the proposed methodology in zero-shot retrieval.
%R 10.18653/v1/2024.emnlp-main.431
%U https://aclanthology.org/2024.emnlp-main.431/
%U https://doi.org/10.18653/v1/2024.emnlp-main.431
%P 7566-7577
Markdown (Informal)
[GENRA: Enhancing Zero-shot Retrieval with Rank Aggregation](https://aclanthology.org/2024.emnlp-main.431/) (Katsimpras & Paliouras, EMNLP 2024)
ACL