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Abstract

Large Language Models (LLMs) have achieved
remarkable success in natural language tasks,
yet understanding their reasoning processes re-
mains a significant challenge. We address this
by introducing XplainLLM, a dataset accom-
panying an explanation framework designed
to enhance LLM transparency and reliability.
Our dataset comprises 24,204 instances where
each instance interprets the LLM’s reasoning
behavior using knowledge graphs (KGs) and
graph attention networks (GAT), and includes
explanations of LLMs such as the decoder-
only Llama-3 and the encoder-only RoBERTa.
XplainLLM also features a framework for gener-
ating grounded explanations and the debugger-
scores for multidimensional quality analysis.
Our explanations include why-choose and why-
not-choose components, reason-elements, and
debugger-scores that collectively illuminate the
LLM’s reasoning behavior. Our evaluations
demonstrate XplainLLM’s potential to reduce
hallucinations and improve grounded explana-
tion generation in LLMs. XplainLLM is a re-
source for researchers and practitioners to build
trust and verify the reliability of LLM outputs.
Our code and dataset are publicly available1.

1 Introduction

As the capabilities and applications of large lan-
guage models (LLMs) continue to expand (Liu
et al., 2023; Achiam et al., 2023; Touvron et al.,
2023; Jiang et al., 2024), the need for transparency
and interpretability in their reasoning behavior has
become increasingly urgent (Arrieta et al., 2020).
Traditional methods (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Casalicchio et al., 2019) allow us
to get insights into the reasoning behind language
model outputs, but they fall short of providing a
complete picture, leaving the logic behind complex
decision opaque (Huang et al., 2023). This gap
presents a significant barrier in applications where

1https://lmexplainer.github.io/xplainllm

model decision transparency is important, such as
healthcare (Ghosh et al., 2024), law (Cheong et al.,
2024), and public services (Musumeci et al., 2024).

Current methods for explaining LLM’s reason-
ing behavior primarily focus on the analysis of
parameter changes (Clark et al., 2019; Jacovi et al.,
2021; Bills et al., 2023) and chain-of-thought (CoT)
based self-explanation (Huang et al.; Li et al.,
2023). Analysis of parameter changes bases the
explanations on self-attention weights in models
like BERT (Kenton and Toutanova, 2019) and GPT-
2 (Radford et al., 2019), deducing correlations be-
tween input tokens and the model’s predictions.
However, the relationships highlighted in these gen-
erated explanations are difficult to understand for
humans. CoT-based self-explanation, on the other
hand, iteratively generates rationales step-by-step.
Due to the inherent constraints in LLMs, these ex-
planations often have hallucinations and can not
reflect the real reasoning process (Huang et al.,
2023).

We introduce XplainLLM, a dataset accompany-
ing an explanation framework designed to enhance
transparency, explainability, and understandabil-
ity in LLM reasoning behaviors. By integrating
knowledge graphs (KGs) and Graph Attention Net-
works (GAT) (Veličković et al., 2018), we construct
a structured and reliable dataset that anchors ex-
planations in reasoning-relevant knowledge. We
link the LLM reasoning process to the entities
and relations within KGs to help provide an intu-
itive and interpretable representation of the LLM’s
decision-making process. Our process also helps
facilitate model tuning, debugging, robustness eval-
uation and demonstration in in-context learning.
XplainLLM provides a structured explanation of
two distinct types of LLMs: Llama-3-8B (Touvron
et al., 2023) (decoder-only model) and RoBERTa-
large (Liu et al., 2019) (encoder-only model). A
total of 24,204 instances are included in the dataset.
The explanations are tied to two models’ reasoning
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Dataset Size Answer Format Expl. Format Source Model Match? Self-Explanatory? “Why Not” Included?

CoS-E 9,500 MC NL Human × × ×
ECQA 10,962 MC NL Human × ✓ ×
Neuron 307,200 Neuron NL + Score Model ✓ × ×

XplainLLM 24,204 MC NL Model ✓ ✓ ✓

Table 1: Comparison of prevalent explanation datasets with XplainLLM, detailing instance count (Size), answer
types (Answer Format: e.g., multiple-choice (MC)), explanation styles (Explanation Format: e.g., natural language
(NL)), origin (Source), alignment with model reasoning (Model Match?), necessity of human intervention to deduce
the reasoning (Self-Explanatory?), and inclusion of reasons for alternative answer rejection “Why Not” Included?).

processes, derived from their performance on the
CommonsenseQA (Talmor et al., 2019) challenge.

Additionally, we introduce an explanation frame-
work that utilizes a retrieval-based method to sup-
port generating grounded explanations for LLMs.
This framework operates without the need for ad-
ditional model training, utilizing XplainLLM as a
knowledge base to retrieve the most relevant data
points to the given query. The selected data points
serve as demonstration examples for in-context
learning (Dong et al., 2022), enabling the LLMs
to generate explanations that are more grounded in
the reasoning process.

We evaluate the quality of the explanations in
XplainLLM through human and automated evalua-
tions. The overall quality of explanations achieves
an average score of 0.87/1.00 by human evaluators,
and an average of 0.89/1.00 by automated evalu-
ators. We evaluate our framework by comparing
the performance of LLMs with and without our
framework, and the results show that LLMs under
our framework outperform the benchmark, with a
performance gap extending to 20%. We also evalu-
ate the quality of the explanations generated by our
framework, and the results underscore the quality
of our explanations on multiple metrics.

In summary, we make two key contributions to
the field of explainable AI for LLMs: (1) an expla-
nation dataset of model reasoning behavior, and (2)
a framework for improving the interpretability of
LLMs through structured, grounded explanations.
To the best of our knowledge, XplainLLM is the
first dataset to provide structured and grounded
explanations for LLM reasoning behavior.

2 Related Work

Interpretability in LLMs Explainable AI (XAI)
aims to address the issue of interpreting the out-
comes of language models (Li et al., 2023; Wiegr-
effe et al., 2021; Madsen et al., 2022). One of
its goals is to generate explanations that enable

humans to easily understand the decision-making
process. Zelikman et al. (2022); Zhang and Gao
(2023); Wang et al. (2023) utilize gradual strate-
gies that iteratively generates the rationales step-
by-step. Huang et al.; Chen et al. (2023a); Tanneru
et al. (2024); Chakraborty et al. (2023) utilize the
CoT to find the rationale and apply the reasoning
capabilities of LLMs to domain tasks. However,
these explanations are inherently constrained in
capturing prompt-specific reasoning, which often
generates hallucinations and can not reflect the real
reasoning of LLMs (Turpin et al., 2024).

Another goal of XAI is to explain the model in
a trustworthy way. Rajani et al. (2019a) introduce
an explainable factor to minimize the risk of unrea-
sonable explanation generation. Chen et al. (2021)
integrate the external knowledge to generate why
and why-not counterfactual explanations. Zelik-
man et al. (2022) apply self-checker mechanism
to ensure trusted rationals. However, these meth-
ods fail to accurately capture the core reasoning
of LLMs. In contrast, our work enhances LLM
trustworthiness and deepens human understanding
of its reasoning behavior, improving their potential
in end-user applications.

Explanation Datasets The explainable datasets
for language models can be categorized into three
types (Wiegreffe and Marasovic, 2021): (1) high-
lights: provide input elements such as words and
phrases, as explanations to a predicted output (Cam-
buru et al., 2018; DeYoung et al., 2020; Yin et al.,
2021; Bills et al., 2023); (2) free-text explanations:
provide readable textual explanations in words or
sentences (Rajani et al., 2019b; Sap et al., 2020;
Brahman et al., 2021); (3) structured explanations:
provide natural language explanation but are con-
strained by the explanation writing process (Aggar-
wal et al., 2021; Jhamtani and Clark, 2020; Inoue
et al., 2020). Different from these, our explana-
tion incorporates highlighted reason-elements and
guided instruction to generate a free-text explana-
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Figure 1: Overview of XplainLLM in LLM Reasoning
Interpretation and Explanation Generation. XplainLLM
integrates LLM with GAT to interpret the reasoning pro-
cess and generate explanations. It consists of two stages:
“why-choose” and “why-not-choose” explanations. The
explanations are evaluated by human feedback and de-
bugger scores.

tion. Our explanation is structured and grounded
in the reasoning process, enhancing the trustwor-
thiness and comprehensiveness of the content. We
present a comparison with prevalent explanation
datasets (Rajani et al., 2019b; Aggarwal et al.,
2021; Bills et al., 2023) in Table 1.

3 XplainLLM: Dataset, Explanation
Framework and Debugger-Score

XplainLLM serves three essential purposes in inter-
preting LLMs’ reasoning behavior. First, it utilizes
KG and GAT to interpret LLM through parameter
changes (Chen et al., 2023b), collecting these expla-
nations to build a dataset. The LLMs we used are
Llama-3-8B (Touvron et al., 2023) (decoder-only)
and RoBERTa-large (Liu et al., 2019) (encoder-
only). Second, we provide an explanation frame-
work for generating faithfully grounded explana-
tions without additional training. Third, we in-
troduce the debugger-score, which is designed for
multidimensional analysis to quantify the quality of
explanations, supporting our framework for com-
prehensively evaluating and improving LLM ex-
plainability.

3.1 Task Definition and Collection Method

The primary goal of XplainLLM is to enhance the
interpretability of LLMs through grounded expla-
nations. We define the task as generating expla-
nations that clarify the decision-making processes
behind model predictions. We use QA tasks to
generate instances for our dataset. The overview
of the collection process is shown in Figure 1. A

more detailed data collection description is shown
in Appendix G.

The LLM’s reasoning is grounded in a structured
KG, which is used to identify the most salient fea-
tures that influence the model’s predictions. We
employ GAT to analyze the KG’s structure and
identify the influence of specific nodes and edges
that are salient to the model’s decision-making pro-
cess. Each instance in XplainLLM is formulated as
follows:

Instance = ((Q,A),Explanation) (1)

where (Q,A) is the question-answer pair and
Explanation includes:

• A why-choose explanation, detailing the reason
behind the model’s answer choice.

• A why-not-choose explanation, detailing reasons
against alternative choices.

• Ranked reason-elements, identified through
GATs that analyze the KG’s structure to iden-
tify critical influencing elements.

• A debugger-score for each explanation, quantify-
ing its faithfulness, completeness, accuracy and
overall quality.

Graph-Based Reasoning Interpretation. To
produce the aforementioned explanation, we in-
troduce a graph-based interpreting method to learn
the features that influence the model’s decision-
making process. We first extract the key elements
from the KG g. The criteria for selecting KG are
based on its coverage, quality, and relevance to the
task. KG selection is based on comprehensiveness,
quality, and task relevance. The extraction process
involves identifying nodes and edges within the g
that are relevant to the input question and answer
pair. We incorporate node relevance scores into
this retrieval process, using the LLM’s knowledge
to guide the pruning of the g:

Ge = PruneKG(Q,A, g, si) (2)

where si represents the relevance score for each
node i in the retrieved graph, calculated using
LLM’s probability function that assesses the align-
ment of node embeddings with the input context
(Q,A). The function PruneKG evaluates the se-
mantic relationship between node embeddings and
the query. This extraction leverages the LLM’s
knowledge to focus on the most informative ele-
ments for the given QA context. The algorithm for
constructing the Ge is provided in Appendix A.
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Once the relevant subgraph Ge is obtained, we
use a GAT to determine the significance of each
node and edge in contributing to the model’s output.
Each node i at k-th layer is represented by a feature
vector hki. The attention αij for each node pair
(i, j) are computed using a softmax function over
a parameterized self-attention mechanism a that
captures the relationship dynamics:

αij =
exp(a(hki, hkj))∑

l∈N (i) exp(a(hki, hkl))
(3)

where N (i) denotes the neighbors of node i.
The updated node features hk+1,i are computed

by aggregating the features of neighboring nodes
weighted by their respective attention scores:

hk+1,i = σ


 ∑

j∈N (i)

αijWfm(hkj , ui, rij)


+hki

(4)
where fm is a multi-layer perceptron (MLP) that
processes features of neighboring nodes consider-
ing their types and interrelations. W is a weight ma-
trix, σ is a non-linear activation function. We pro-
vide the details of the GAT model in Appendix B.

We define the probability of selecting an answer
v from the set A by leveraging both the representa-
tion embeddings from the language model (HLM )
and the graph-based reasoning features (hK and
αK) extracted from our subgraph Ge:

P (a|q) ∝ exp(MLP(HLM , hK , αK)) (5)

where hK represents the output features from the
final layer of our K-layer graph reasoning network,
and αK represents the attention coefficients. To this
end, we map the LLM’s reasoning to the graph fea-
tures. The extracted attention features are mapped
to their corresponding nodes in the Ge, and we
select the top n nodes with the highest attention
scores for generating the explanations.

Controlled Explanation Generation. Upon ob-
taining the reasoning features, we transform them
into structured and human-understandable expla-
nations through a two-stage instructional process.
The top n nodes are selected as the key reason-
elements set R, which guides the explanation gen-
erator model F to construct the explanations. The
explanation generation process includes: (1) why-
choose explanation: the reasoning behavior behind
the model’s choice, and (2) why-not-choose expla-
nation: the rationale for dismissing other potential
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Figure 2: Explanation Framework for Grounded Ex-
planation Generation in LLMs. An embedding model
is used to compute query embeddings, and XplainLLM
retrieves the top m instances based on SimScoreFscore.
The explanation with the highest debugger-score from
each instance is selected to generate grounded explana-
tions.

answers. The instruction for the why-choose stage
is:

Basis : [TASK_TY PE],
Input : [Q,A],
Output : [y′, R],
Explanation(S_1) : [y′].

The output of stage 1 named Ewhy is used as the in-
put for stage 2. The instruction for why-not-choose
stage is:

Explanation(S_2) : [Ewhy, A \ {y′}].
The details of the instruction are provided in the
Appendix C.

3.2 Explanation Framework for Grounded
Explanations

To enhance the usability of XplainLLM and facili-
tate the generation of grounded explanations for dif-
ferent types of LLMs (especially for private LLMs,
e.g., GPT-4), we introduce an explanation frame-
work that leverages the collected dataset to generate
faithfully grounded explanations without additional
model training. The framework is illustrated in Fig-
ure 2. The process is divided into three steps:

Embedding Calculation. When receiving a new
query (Qnew, Anew), its embeddings eQAnew is cal-
culated using the an embedding models. To gener-
alize our framework, we use voyage-2-large model
from VOYAGE AI2, as our embedding model to
extract the embeddings, due to its state-of-the-art
performance in generalist text embedding3.

2https://docs.voyageai.com/docs/embeddings
3https://huggingface.co/spaces/mteb/

leaderboard
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Similarity Computation and Retrieval. We re-
trieve the most contextually relevant instances by
computing the cosine similarity between new query
embedding eQAnew and instance embedding eQA

in XplainLLM E :

Fscore(eQAnew , eQA) =
e⊤QAnew

eQA

∥eQAnew∥2∥eQA∥2

This function Fscore scores each instance
sim(eQAnew , eQA) for relevance. The eQA can
be pre-computed and stored in the dataset for
efficient retrieval. To accelerate the retrieval
process, we provide embeddings for each instance
in XplainLLM, using voyage-2-large.

Instance Selection and Explanation Generation.
The top m instances with the highest similarity
scores, sim(eQAnew , eQA), are selected. Each in-
stance may contain multiple explanations from dif-
ferent LLMs, denoted as Et, where t indexes the
instances. For each instance, we select the expla-
nation e∗ that maximizes the debugger-score set
D:

e∗ = argmax
e∈Et

∑

d∈D
wd ·D(e, d)

where and wd are the weights reflecting user pref-
erences for each dimension. This selection is in-
fluenced by user-specified preferences which dic-
tate the importance of various dimensions of ex-
planation quality, such as faithfulness or accuracy.
We will introduce the debugger-score in Section
3.3. These selected instances are used as in-context
learning examples for targeted LLM to generate
grounded explanations.

3.3 Debugger-Score for Explanation Analysis

To improve the understanding of generated ex-
planations, we introduce the debugger-score to
evaluate the quality of explanations. Inspired by
the method of transformer debugging (Bills et al.,
2023), our debugger-score simulates a “perfect”
LLM to benchmark against the actual LLM’s rea-
soning. It quantifies the quality of explanations by
assessing:

1. Faithfulness: How accurately the explanations
reflect the actual reasoning of the LLM.

2. Completeness: Whether the explanations cover
all essential aspects of the reasoning process.

3. Accuracy: The correctness of the explanation
in terms of factual and contextual relevance.

Why-choose Why-not-choose Whole Explanation

Overall 94.77 85.74 180.81
Training Set 94.41 85.22 179.63

Dev Set 93.00 84.54 178.44
Testing Set 96.89 87.46 184.35

Table 2: The average word counts of why-choose expla-
nation, why-not-choose explanation and whole explana-
tion in our XplainLLM dataset.

4. Overall: The overall quality of the explanation,
combining the above dimensions.

The debugger-score utilizes predefined instruc-
tions to guide the evaluation, focusing on identify-
ing discrepancies between the simulated “perfect”
LLM and the actual LLM. Our evaluation method
quantifies the quality of explanations, providing a
measure of where the LLM’s reasoning succeeds or
falls short. Our debugger-score is used to enhance
the reliability and transparency of the explanations.
Further details on the implementation, function-
ality, and faithfulness evaluation of the debugger-
score can be found in the Appendix E.

4 Dataset Overview and Preparation

4.1 Dataset Description

Schema. XplainLLM contains fields that corre-
spond to the QA pair, the model’s predicted answer,
the ground-truth label, and an explanation set.

Explanations Set. The explanation set includes
a set of 50 reason-elements, e.g., words or phrases,
sorted by attentions, a set of top-ranked reason-
elements, a why-choose explanation in free-text
form, a why-not-choose explanation also in free-
text form. Example instances are shown in Ap-
pendix D.

Statistics. XplainLLM includes 24,204 instances
of explanations, split according to the official Com-
monsenseQA’s partitioning into three sets: the
training, development (dev), and testing sets. The
average word count of Ewhy and Ewhy−not are
94.77 and 85.74 respectively, resulting in an ag-
gregate count of approximately 180.81 words per
whole explanation. A more detailed breakdown
of the average word count is provided in Table 2.
Additional statistics can be found in Appendix I.

4.2 Data Preparation

XplainLLM captures and analyzes the reasoning be-
havior of LLMs on CommonsenseQA dataset (Tal-
mor et al., 2019). CommonsenseQA serves as a
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foundational benchmark for assessing the common-
sense reasoning capabilities of these models.

We select Llama-3-8B and RoBERTa-large as
LLMs for our dataset as they exemplify decoder-
only and encoder-only LLMs respectively, provid-
ing a comprehensive view of different model ar-
chitectures in language understanding. The mod-
els are fine-tuned on CommonsenseQA’s official
training set, to understand and interpret the com-
plexities of commonsense reasoning. We utilize
ConceptNet (Speer et al., 2017) as our KG to obtain
ge, due to its extensive coverage of commonsense
knowledge. It contains over 13 million links be-
tween concepts and their interrelations, providing
a rich source of general knowledge. We use a
5-layer GAT model to extract the reasoning paths.
We use GPT-3.5-turbo (Ouyang et al., 2022) and
GPT-4-turbo (Achiam et al., 2023) as explanation
generator model F to generate a natural language
explanation in a sentence or a paragraph. To en-
sure the quality of our dataset, we conduct a post-
generation evaluation. All explanations undergo
human review. Human evaluators identify inaccu-
racies, and any discrepancies in explanations, and
return to F for refinement. This procedure miti-
gates potential issues from model-generated expla-
nations, guaranteeing clarity and relevance aligned
with human understanding. We also provide em-
beddings of the (Q,A) pair for each instance in the
dataset. The embeddings are generated using the
voyage-large-2. The debugger-score is calculated
using GPT-4-turbo. Further experiment specifics
and data collection procedures are provided in the
Appendix F and G.

5 Experiments and Evaluation

5.1 Evaluation Methodology
We evaluate XplainLLM and explanation frame-
work through two main perspectives:

1. Explanation Quality Evaluation: The quality
of the explanations generated by the LLMs is
assessed via a dual approach: (1) Human Eval-
uation - Experts and crowdsourcing review the
explanations, and (2) Automated Evaluation -
GPTs evaluate the explanations.

2. Framework Effectiveness: We measure the
impact of our proposed methods on the ground-
edness of newly generated explanations and the
performance of the LLMs. This includes: (1)
Grounded Explanation Assessment - Using

Expert <-> GPT-3.5 Expert <-> GPT-4 GPT-3.5 <-> GPT-4

ρ 0.70 0.60 0.66

Table 3: Correlation coefficient (ρ) between overall
quality scores evaluated by expert, GPT-3.5 and GPT-4.

the debugger-score to evaluate how well the
explanations are grounded in factual content,
and (2) Performance Analysis - We evaluate
changes in the accuracy of the LLM outputs by
comparing metrics before and after applying our
framework.

Specifically, the evaluation metrics for explanation
quality assessment are human-centered metrics, fol-
lowing the guidelines of Hoffman et al. (2018).
Each explanation is assessed using seven evaluative
questions that explore different aspects of the ex-
planation’s impact and quality. The metrics encom-
pass overall quality, understandability, trustworthi-
ness, satisfaction, detail sufficiency, completeness,
and accuracy. Evaluators allocate scores to these
questions using a three-point Likert scale: 1 (dis-
agree), 2 (neutral), and 3 (agree). Subsequently,
scores are normalized to the range [0, 1]. Higher
scores suggest better quality. Detailed definitions
are provided in the Appendix J.2.

5.2 Explanation Quality Evaluation
We conducted human and automated evaluations
to go beyond the technical evaluation of the expla-
nations. The human evaluation involved three ex-
perts with NLP backgrounds and 50 general users
via Prolific4. Our participant pool was gender-
balanced, and comprised of native English speakers
with at least a high school education. Experts and
users rate 20 randomly selected explanations based
on guidelines adapted from (Hoffman et al., 2018)
to ensure consistency and mitigate bias. Automated
evaluations are performed using GPT-3.5-turbo and
GPT-4 to parallel human judgment, quantifying
performance with standardized scores. Detailed
methodologies and participant instructions are pro-
vided in Appendix J.1.

Results of Expert and Automated Evaluation.
The feedback from human experts highlighted the
distinctiveness of our explanations compared to
existing methods. One expert remarked,

“In comparison to prior explanations,
these explanations provide a more intu-

4https://www.prolific.com
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Figure 3: Evaluation by human experts, automated eval-
uator GPT-3.5 and GPT-4.

itive understanding of the LLM’s reason-
ing behavior. The explanations are co-
gent, and even in instances of erroneous
predictions, the underlying reasoning re-
mains transparent and comprehensible.”

This feedback underscores the clarity and trans-
parency of our explanations.

The results are summarized in Table 4. Human
experts assign an average score of 0.93 across seven
evaluation metrics, with “understandability” and
“completeness” receiving the highest scores. The
automated evaluators, GPT-3.5 and GPT-4, assign
average scores of 0.91 and 0.92, respectively. The
performance of these automated evaluators aligns
closely with human expert evaluations across di-
mensions, as shown in Figure 3.

Further insights into the human-like understand-
ing of automated evaluators and their assessment
of explanations are detailed in Table 3. This data
shows a significant agreement between the auto-
mated evaluators and human experts. Such find-
ings further support the credibility and value of our
explanations.

Results of Crowdsourcing Evaluation. we
present the average scores from crowdsourcing on
eight metrics, as depicted in Figure 4. These scores
reflect evaluations of the overall explanations, as
well as separate assessments for explanations of
correct predictions (CP) and incorrect predictions
(IP). The details of our analysis are discussed be-
low.

Participants assigned a high average score of
0.87 to the overall quality of our explanations, in-
dicating a favourable perception and underscoring
their above-average clarity. The explanations re-
ceived an average understandability score of 0.89,
demonstrating their clarity. The low variance of
0.26 suggests consistent comprehension among par-
ticipants. However, a detailed analysis shows a dis-

Overall quality

Understandability

Trustworthiness

Satisfaction

Sufficiency of detail

Completeness

Accuracy
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0.4
0.6
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Loading [MathJax]/extensions/MathMenu.js

Figure 4: Human evaluation of explanations: Overall,
CP, and IP. Note that the CP scores align closely with
the overall scores.

parity based on the LLM’s prediction accuracy: ex-
planations for correct predictions (CP) were highly
rated at 0.91 with a variance of 0.26, while explana-
tions for incorrect predictions (IP) scored lower at
0.74 with a variance of 0.65, indicating less clarity
and greater variability in participant responses.

In terms of trustworthiness, our explanations
scored an average of 0.88 for CP. A Pearson corre-
lation coefficient of 0.71 between trustworthiness
and understandability confirms a strong positive
relationship, suggesting that clearer explanations
enhance participants’ trust in the LLM’s outputs.

Overall satisfaction with our explanations is
high, with 86% of participants stating that the expla-
nations meet or exceed their expectations. 97.36%
of the explanations are considered sufficiently de-
tailed. The completeness of our explanations also
received high marks, with an average score of 0.81
and a median score of 1.00, suggesting that over
half of the participants find the explanations to be
entirely comprehensive. However, the distribution
may reflect differences in the evaluators’ familiar-
ity with AI or occasional oversimplifications by the
model. The accuracy of the explanations are rated
at 0.84, with a noticeable disparity between CP at
0.87 and IP at 0.64, highlighting how the LLM’s
prediction accuracy significantly influences the per-
ceived accuracy of explanations. Furthermore, a
Pearson correlation of 0.68 between accuracy and
trustworthiness indicates that more accurate expla-
nations are considered more trustworthy.

The positive feedback from our crowdsourcing
evaluations robustly validates XplainLLM, demon-
strating its effectiveness in conveying the complex-
ities of the LLM’s decision-making in a clear, trust-
worthy, and satisfying manner to users.
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Overall quality Understandability Trustworthiness Satisfaction Sufficiency of detail Completeness Accuracy

GPT-3.5 0.98 0.98 0.98 0.98 0.98 0.98 0.98
GPT-4 0.90 0.93 0.87 0.87 0.88 0.87 0.88

Human Expert 0.91 0.97 0.95 0.89 0.98 0.97 0.93
Crowdsourcing 0.85 0.89 0.86 0.80 0.83 0.81 0.85

Table 4: Evaluation by automated evaluator GPT-3.5, GPT-4, human experts and crowdsourcing, on seven evaluation
metrics.

Model #P Version Faithfulness Completeness Accuracy Overall

gpt-3.5-turbo Unknown
Vanilla 0.70 0.59 0.73 0.67

XplainLLM 0.69 0.61 0.71 0.67

gpt-4-turbo Unknown
Vanilla 0.73 0.62 0.79 0.71

XplainLLM 0.81 0.73 0.82 0.79

llama3-8b 8.02B
Vanilla 0.70 0.53 0.72 0.65

XplainLLM 0.67 0.57 0.67 0.64

llama3-70b 70.6B
Vanilla 0.72 0.57 0.76 0.68

XplainLLM 0.79 0.62 0.81 0.74

mixtral-8x7b 46.7B
Vanilla 0.74 0.58 0.76 0.69

XplainLLM 0.75 0.61 0.76 0.71

Table 5: Comparison of Vanilla and XplainLLM Ver-
sions of Models with debugger-score.
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Figure 5: Accuracy comparison of vanilla version
and with XplainLLM version for different models.
XplainLLM consistently improves accuracy across all
models.

5.3 Framework Evaluation

In evaluating our proposed framework, we in-
clude five LLMs: GPT-3.5-turbo (Brown et al.,
2020), GPT-4-turbo (Achiam et al., 2023), Llama3-
8B (Touvron et al., 2023), Llama3-70B (Touvron
et al., 2023), and Mixtral-8x7B (Jiang et al., 2024).
These models are selected due to their diversity in
scale, architecture, and popularity in open-source
research. Our goal is to evaluate the generalizabil-
ity and scalability of our framework across differ-
ent LLMs without additional training. We com-
pare the vanilla versions of these models with the
versions enhanced by XplainLLM. The results are
summarized in Table 5. We specifically selected 20
questions from XplainLLM designed to challenge
models by exposing their tendency to produce hal-
lucinations. These questions are carefully chosen to
test the framework’s ability to generate grounded

explanations. We then evaluate five LLMs both
with and without the enhancements provided by
XplainLLM, allowing us to explore how our frame-
work performs across different scales and archi-
tectures. The benchmarks for this evaluation are
focused on four key metrics: faithfulness, complete-
ness, accuracy, and overall performance, as shown
in Table 5. All values are normalized to a scale of
1.0. We further quantified the impact of our frame-
work by comparing the accuracy rates of the vanilla
version to those enhanced with our modifications,
as detailed in Figure 5.

Our results show that performance variations
across different model architectures and config-
urations, as demonstrated in Table 5. Notably,
the GPT-4-turbo model, when enhanced with our
framework, demonstrates exceptional performance
across key metrics. It scores 0.81 in Faithfulness,
0.73 in Completeness, and 0.82 in Accuracy, cul-
minating in an Overall score of 0.79. These high
scores suggest that our framework not only im-
proves the overall output quality but also ensures
that the LLM’s reasoning is grounded in faithful
knowledge, thus enhancing both the clarity and re-
liability of the model’s behavior explanation. We
notice that models like GPT-3.5-turbo and Llama-
3-8B exhibit suboptimal results in certain cases,
likely due to limitations in their inherent ability
to generalize with in-context examples (Xu et al.,
2024). Further studies with different in-context
example sizes are detailed in Appendix F.2. The
study results show that some models can be sensi-
tive to the number of in-context examples, which
affects the quality of their generated explanations.
We suggest optimal in-context configurations to be
model-specific to fully leverage our framework’s
benefits.

We also observe a consistent improvement in
accuracy across different LLMs when our frame-
work is applied, as shown in Figure 5, which im-
plies a scalable utility of our framework. We find
the GPT-4-turbo model exhibits the most signifi-
cant improvement. This may suggest that our en-
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hancements are effective in assisting more com-
plex LLMs to ground their reasoning in faithful
knowledge, thereby reducing hallucinations and
improving interpretability.

By comparing the detailed reasoning explanation
of the models with and without our framework, we
observe that the explanations generated under the
vanilla models tend to generate outputs that are
not entirely supported by input data, leading to
hallucinations. We provide a comparison example
in Appendix H.

These results demonstrate our framework can
guide the LLMs toward a more grounded and data-
driven approach in generating outputs. This is help-
ful for applications where precision and reliability
are paramount, such as in legal, medical, or safety-
critical environments. Furthermore, the consistent
improvements across LLMs of varying capabili-
ties suggest that our framework is robust and scal-
able, capable of enhancing a wide range of AI sys-
tems. This broad applicability suggests potential
for widespread adoption in enhancing the trans-
parency and accountability of AI decision-making
processes.

6 Conclusion

We introduce XplainLLM: a knowledge-augmented
dataset paired with an explanation framework de-
signed to enhance the interpretability of LLMs.
Our dataset and framework provide a way for
LLMs to generate reliable and grounded expla-
nations without additional training. Through the
use of debugger-score, we provide a multidimen-
sional analysis of quantitatively evaluate the qual-
ity of explanations. Our evaluations demonstrate
that XplainLLM not only grounds explanations
in reasoning behavior, but also helps LLMs re-
duce hallucinations and improve their performance.
The dataset and code are available at https:
//lmexplainer.github.io/xplainllm. We re-
lease them under the MIT license to encourage
further research in explainable AI.

Limitation

Committed to transparency and rigorous analysis,
we acknowledge potential limitations in our dataset.
Since our reason-elements R is originally derived
from ge, any inherent limitations or inaccuracies
within used KG could influence the quality of our
explanations.

Ethical Considerations

While XplainLLM and its accompanying explana-
tion framework provides advancements in the trans-
parency and accountability of LLMs, several risks
might exist. First, the reliance on KGs and struc-
tured data may lead to biases embedded in these
sources, potentially skewing the explanations. Sec-
ondly, incorrect knowledge augmentation could
mislead users about the accuracy of the explana-
tions. Additionally, there is a risk that users might
over-rely on the debugger-score without critical as-
sessment, potentially overlooking context-specific
inaccuracies. It is essential for future work to con-
tinuously refine XplainLLM, address detected bi-
ases, and enhance the robustness of the framework
to mitigate these risks.
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Appendix

A Graph Construction Algorithm

Algorithm 1: Sub-graph Construction
(PruneKG)

Data: Graph g with nodes n, input content
QA, encoding function of LLM fenc,
MLP fnode

s , Number of top nodes to
select N

Result: Pruned graph ge
1 begin
2 Initialize an empty list node_scores ;
3 for each node n in g do
4 Obtain the embedding of n:

B ← fenc(n||QA) ;
5 Compute the relevance score of n:

si ← sigmoid(fnode
s (B)) ;

6 Append (n, si) to node_scores ;
7 end
8 Sort node_scores in descending order

based on si ;
9 Select the top N nodes from the

node_scores list ;
10 Create a new graph ge with the selected

L nodes, preserving their edges and
properties ;

11 return ge ;
12 end

B Details of Graph Attention Network

In Section 3.1, we detail the method for interpreting
the LLM’s reasoning behavior through graph-based
techniques. We provide supplementary calcula-
tions and algorithmic details in this section.

We describe the process for updating the node
features in a graph using a GAT in Equation (4).
Here, each node i updates its feature vector hk+1,i

based on the features of its neighboring nodes N(i).
fm is transformation function, modeled as a MLP,
that maps the input features hkj , ui , and rij into
a higher-dimensional space. specifically, ui is the
one-hot vector encoding the type of node i, and rij
is the relation embedding denoting the relationship
type between nodes i and j, calculated by:

rij = fθ(i, uij) = fθ(i, ui ∥ uj), (6)

where uij is an one-hot vector encoding the type
of connection between nodes i and j, and uij is the
concatenation of i and j.
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C Instruction for Explanation Generation

Due to the space constraints, we provide detailed
guidelines and instructions for generating explana-
tions in this section.

Basis: Given a LM augmented with a graph
attention network to extract key reasoning elements
for decision-making. The task is [TASK_TYPE] .

Input: The question is: [Q] . The Answer Op-

tions are: [A]

Output: The model predicted choice [y′] .

Based on the Ranked Reason-elements: [R]
Explanation (Stage 1): Explain the LM’s rea-

soning process for selecting [y′] over the other
options. Provide concise explanations for why
each reason-element supports [y′] as the predicted
choice. Focus on the LM’s behavior and the sig-
nificance of the Ranked Reason-elements. Your
response should be short and concise.

Explanation (Stage 2): Based on the [Ewhy] ,
explain why this LM makes the other options less
likely [A \ {y′}] . Your response should be short
and concise.

D Instance Example

We present explanation examples of correct
and incorrect predictions in Box.1 and Box.2.
XplainLLMprovides users with a comprehensive
understanding of model’s reasoning behavior. Ad-
ditionally, the debugger-scores are specifically de-
signed to evaluate the quality of explanations, pro-
viding a deeper understanding of the model’s be-
havior from a debugging perspective.

We provide the data schema of our dataset to il-
lustrate the structure of each instance. The schema
is outlined below:

Data Schema

question: typeof(string)
answers: typeof(list_of_strings)
label: typeof(string)
predicted_label: typeof(string)
label_matched: typeof(boolean)
concept: typeof(list_of_strings)
topk: typeof(list_of_strings)
explanation_why: typeof(string)
explanation_why_not: typeof(string)
debugger_score: typeof(string)
embedding: typeof(list_of_floats)

E Details of Debugger-Score

The debugger-score is a metric that quantifies the
quality of the explanations generated by the LLMs.
The score evaluates explanations based on multiple
dimensions such as faithfulness, accuracy, and com-
pleteness. By measuring how well the explanations
align with a “perfect” targeted LLM, the debugger
score provides a comprehensive evaluation of the
generated explanations. This metrics is useful for
ensuring that the explanations are not only plausi-
ble but also grounded in facts, enhancing trust of
explanations generated by LLMs. This instruction
assesses explanations based on three dimensions:
faithfulness, completeness, and accuracy.

E.1 Instructions for Debugger-score
Calculation

Prompt System: Evaluators, assuming the role
of LM debuggers with expertise in model parame-
ter changes, assess explanations from the perspec-
tive of how model parameters influence decision-
making. The assessment focuses on whether the
explanation accurately reflects the computational
and statistical mechanisms utilized by the LM.

Prompt Content: Evaluators are presented with
a task where the LM is augmented with key rea-
soning elements derived from its operation. This
includes the question, answer options, the LM’s
prediction, and the corresponding explanation.

Evaluation Criteria:

• Faithfulness: Does the explanation accu-
rately represent the underlying computational
processes and data-driven mechanisms used
by the LM to reach its conclusion?

• Completeness: Does the explanation encom-
pass all significant computational strategies
and data insights relied upon by the LM to
make the decision?

• Accuracy: How precisely does the explana-
tion reflect the true capabilities and decision-
making processes of the LM, considering its
design, training data, and functional algo-
rithms?

Scoring: Evaluators are instructed to score each
dimension on a scale from 1 to 5, where 1 indicates
the lowest level of adherence (poor) and 5 indicates
the highest (excellent). The scoring guide empha-
sizes balanced evaluation, advising against overly
strict judgments.
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Explanation example of correct prediction

Question: John cared for Lucy but had trouble expressing it. Lucy was disturbed by John’s
inability to express affection and felt that he was what?
Answers: A. Being mean, B. Negligence, C. Disinterest, D. Misunderstood, E. Unfeeling
Label: Unfeeling
Predicted Label Index: 4
Label Matched: true
Reason-elements: "enraged", "delay", "abiogenesis", "sneerer", "helpable", "begrudge", "mol-
lify"...
Top-ranked Reason-elements: "enraged", "delay", "abiogenesis", "sneerer", "helpable"
Explanation (Why-choose): The model selected “unfeeling” primarily due to how it processed the
emotional descriptors in the scenario and its understanding of the term definitions. Though the key
reason-elements like “enraged”, “delay”, “abiogenesis”, “sneerer”, and “helpable” seem unrelated
at first, they could connect to various aspects of emotional disconnect and misunderstanding.

• “Enraged” hints at strong emotional responses, albeit negative, which possibly led the model
to associate less expressed emotions to being “unfeeling”.

• The term “sneerer”, indicating derision, might be linked by the model to John’s perceived
dispassion.

• The word “helpable” suggests a situation needing improvement, reflecting on Lucy’s feelings
towards John’s emotional expression deficits.

Explanation (Why-not-choose):

• “being mean”: The context didn’t explicitly describe John’s behavior as intentionally harmful
or spiteful, which “being mean” would imply. The reason-elements don’t directly associate
with malicious intent.

• “negligence”: Although John’s behavior could be interpreted as neglectful, the elements like
“enraged” do not support an outright disregard, but rather an emotional complexity.

• “disinterest”: This choice could somewhat fit, but the model likely found stronger connec-
tions in emotional response terms suggesting not just a lack of interest but a lack of feeling.

• “misunderstood”: While the context and reason-elements like “sneerer” might suggest
misunderstandings, ’unfeeling’ directly refers to a perceived absence of emotion which
seemed more fitting to Lucy’s disturbance.

Debugger-score: Faithfulness: 4/5 | Completeness: 3/5 | Accuracy: 4/5

Box 2: Explanation example of correct prediction.

E.2 Faithfulness Evaluation

We explore the faithfulness of explanations split
by the correctness of the LLM’s predictions. The
results in Table 6 show that explanations for cor-
rect predictions tend to score higher in faithfulness,
completeness, and accuracy compared to those for
incorrect predictions, indicating that explanations
for incorrect answers often reflect less reasonable

reasoning.

Prediction Type Faithfulness Completeness Accuracy Overall

Correct Prediction 0.74 0.66 0.77 0.72
Incorrect Prediction 0.66 0.59 0.68 0.64

Table 6: Debugger-Scores Split by Prediction Correct-
ness. Explanations for correct predictions score higher,
while incorrect predictions reflect less reasonable rea-
soning.
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Explanation example of incorrect prediction

Question: What do parents tell a child to do on the weekend?
Answers: A. Study, B. Begin school, C. Go out to play, D. Row boat, E. Clean room
Label: Go out to play
Predicted Label Index: 4
Label Matched: false
Reason-elements: "place_baseball", "asleep", "subway", "ups", "mentors", "renuka", "mov-
able_estate"...
Top-ranked reason-elements: "place_baseball", "asleep", "subway", "ups", "mentors"
Explanation (Why-choose): The model’s prediction of “E. Clean room” as the task parents tell a
child to do on the weekend is influenced by the ranked reasoning elements, each contributing to
the rationale in abstract but supportive ways:

1. Place Baseball: Suggests activities requiring cleanup, reinforcing the idea of tidying up
spaces like a room.

2. Asleep: Implies end-of-day tasks, where cleaning up could be a preparatory action before
rest.

3. Subway: Though less direct, could symbolize daily routines, pointing to regular tasks like
room cleaning.

4. Ups: Might relate to picking up or organizing items, aligning with cleaning activities.

5. Mentors: Reflects the guiding role of parents in instilling responsibility, including maintain-
ing cleanliness.

Together, these elements hint at themes of responsibility, routine, and organization, leading to the
conclusion that cleaning a room is a fitting weekend task for a child from a parent’s perspective.
Explanation (Why-not-choose):

• A. Study and B. Begin school: They’re associated with cognitive tasks, diverging from the
model’s focus on physical organization and day-end routines.

• C. Go out to play: Suggests initiating a new activity, not related to the model’s emphasis on
tidiness and concluding the day with responsible actions.

• D. Row boat: Similar to “C,” it indicates starting an activity rather than organizing or cleaning,
moving away from the themes of responsibility towards personal spaces.

Debugger-score: Faithfulness: 1/5 | Completeness: 2/5 | Accuracy: 1/5

Box 3: Explanation example of incorrect prediction.

Examples of correct and incorrect predictions,
and their explanations, can be found in Ap-
pendix D.

F Experiments

In this section, we describe the details of our eval-
uation that are omitted in Section 5 due to space
constraints.

F.1 Model Parameters

To train our GNN, we use a dropout rate of 0.2, a
batch size of 64, and a learning rate of 1e-5, opti-
mized with RAdam. The model is fine-tuned on
a single NVIDIA A100 GPU for approximately
3 hours. Our KG containing 799,273 nodes and
2,487,810 edges. Our ge is pruned based on KG to
retain 200 high-ranking nodes with a hop size of 2.
The GNN, specifically, consists of 200 dimensions
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Model Shots Version Faithfulness Completeness Accuracy Overall

gpt-3.5-turbo
Five-shot

Vanilla 0.70 0.59 0.73 0.67
XplainLLM 0.69 0.61 0.71 0.67

Two-shot
Vanilla 0.70 0.59 0.73 0.67

XplainLLM 0.71 0.67 0.73 0.70

llama3-8b
Five-shot

Vanilla 0.70 0.53 0.72 0.65
XplainLLM 0.67 0.57 0.67 0.64

Two-shot
Vanilla 0.70 0.53 0.72 0.65

XplainLLM 0.71 0.71 0.79 0.74

Table 7: Results of Vanilla and XplainLLM Versions of
LLMs with Five-shot and Two-shot.

and 5 layers. The learning rate in our experiments
is 1e-3.

For Llama-3-8B and RoBERTa-large models, the
learning rate is set to 1e-5 and a batch size of 8,
optimizing with AdamW. We used early stopping
based on validation loss to prevent overfitting.

F.2 Sensitivity to In-Context Example Size
As discussed in our results, GPT-3.5-turbo and
Llama-3-8B display suboptimal performance in
generating explanations under certain conditions.
This can be attributed to the inherent limitations
of these models when it comes to generalizing in-
context examples. Their architectures may restrict
their ability to fully leverage the context provided
or effectively integrate external knowledge during
the inference phase.

In our primary experiments, we use a five-shot
setting to ensure fair comparisons across different
models. We present the results for GPT-3.5-turbo
and Llama-3-8B under two-shot and five-shot con-
ditions in Table 7.

The results from the two-shot experiment show
that both GPT-3.5-turbo and Llama-3-8B have im-
proved performance in the two-shot setting com-
pared to the five-shot configuration. In particular,
the results suggest that these models may struggle
to generalize from a larger number of in-context
examples (long-context), and perform better when
presented with fewer, more targeted examples.

G Detailed Data Collection

Figure 8 shows the process of data collection:

1. Given a question, we retrieve its relevant
knowledge using the KG. The retrieved graph
is then pruned based on scores influenced
by the LLM, resulting in what we term the
element-graph. The element-graph is pro-
cessed by a specialized GAT model (known
formally as Decision Interpretation). Lever-
aging attention mechanisms, we obtain the
essential representations for interpretation.

(1) Model Decision-making Process

 Input 

[ ] A person writes a check to a 
clerk, where does the clerk put 
them?                            
[ ] A. reading B. meditate C. fall 
asleep D. bunk E. think

Q

a

LLM + GAT Model

(2) Process Interpretation

AnswerRanked  
reason-elements

 Stage 1: why-choose Explanation   Stage 2: why-not-choose Explanation  

Question Answer Ranked REs Instruction why-chooseStage 1 Elements Instruction(Stage 1 Output)

Human 
evaluations

(3) Controlled Explanation Generation (4) Refinement

Figure 8: Data Collection Process.

2. The model’s decision-making is interpreted
through the ranked reason-elements and the
predicted answer.

3. A controllable dual-stage process generates
the explanations: Stage 1: The initial phase
focuses on generating the “why-choose” ex-
planations. Stage 2: Building upon the out-
puts and elements of Stage 1, we then generate
the “why-not-choose” explanations.

4. We conduct a human evaluation to identify
errors in the explanations. If discrepancies
arise, explanations are reverted to Step 3 for
refinement. This process not only helps pre-
vent potential issues arising from bad explana-
tions generated by the LLM but also maintains
human-aligned clarity and relevance.

H Impact of XplainLLM Framework on
Explanation Quality

H.1 Comparison of Explanations: Vanilla vs.
XplainLLM

We compare the explanations generated by the
vanilla model (GPT-4-turbo) and the model en-
hanced with the XplainLLM framework below.
This query involves choosing the correct venue
where tickets for games are typically sold, high-
lighting how XplainLLM grounds the reasoning in
real-world knowledge.

Question: Where do you buy tickets at a ticket
booth for games?

Answer Options: A. train station, B. cathedral,
C. metro station, D. fairgrounds, E. amusement
park

Ground Truth: D. fairgrounds
Vanilla Explanation (Prediction: E. amuse-

ment park - Incorrect):
Among the options provided, “amusement park”

is the most plausible location where you would find
ticket booths specifically for games, as amusement
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parks typically feature various games and attrac-
tions that require tickets. Other options like train
stations, metro stations, and cathedrals generally
do not involve game-related activities, and while
fairgrounds might also offer games, they are not as
directly associated with ticket purchases for games
as amusement parks.
XplainLLM Explanation (Prediction: D. fair-

grounds - Correct):
The model selects “fairgrounds” as the correct

answer. This decision is grounded in the model’s
understanding of key vocabulary and context, sup-
ported by the following reasoning elements:

• entertainment_venues: Fairgrounds are typi-
cal examples of venues where various games
and entertainment activities are held, often
requiring ticket booths for access.

• public_gathering_spots: Fairgrounds are as-
sociated with large public gatherings, partic-
ularly during events or fairs, making them
plausible locations for ticket booths.

• recreational_area: This term refers to areas
designed for leisure and amusement, aligning
well with the context of fairgrounds.

• ticket_purchases: This phrase is directly ap-
plicable to the context of buying tickets, fur-
ther reinforcing fairgrounds as the appropriate
choice.

• game_access: Fairgrounds often host multi-
ple games and attractions, where tickets are
required for entry, making it the most suitable
option.

These elements collectively guide the model to-
wards selecting “fairgrounds” as the most relevant
and contextually appropriate option, demonstrat-
ing how XplainLLM improves the faithfulness and
grounding of explanations compared to the vanilla
model.

H.2 Impact of KGs on Explanation Quality
The construction of the XplainLLM dataset utilizes
KGs to provide more grounded and accurate expla-
nations. The quality of the explanations is related
to the relevance and reliability of the KGs used. In
this study, we employ ConceptNet, which is well-
suited for commonsense reasoning tasks due to its
extensive coverage of general knowledge, includ-
ing more than 13 million links between concepts.

However, the effectiveness of XplainLLM may
vary for domain-specific tasks, such as those in
medical or legal fields. In such cases, domain-
specific KGs would be needed to ensure optimal
performance.

I Explanation Statistics

Figure 9: why-choose explanations.

Figure 10: why-not-choose explanations.

Figure 9 is a word cloud showing the most fre-
quently appearing words in the why-choose expla-
nations. From this figure, we have a clear indication
that why-choose explanations focus on explaining,
comprehension, and interpreting predictions made
by the target model.

Figure 10 presents a word cloud for why-not-
choose explanations. We note that these explana-
tions outline the reasons behind the non-selection
of specific options as predicted answers. Further-
more, why-not-choose explanations emphasize how
the target model determines the likelihood of differ-
ent answer choices. We also observe that the target
model handles a wide array of topics, which can
be crucial components in the “why not” reasoning
process.

J Evaluation Materials

J.1 Questions and Evaluation Instructions
For each instance, we include a set of question, an-
swer choices, model prediction, and explanation.
To evaluate the quality of the explanation, we pro-
vide seven questions for evaluators. Each question
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includes three score levels: 1 for disagree, 2 for
neutral, and 3 for agree. The questions and instruc-
tions in our evaluation are as follows:

Q0: This is a good explanation
1. Disagree: The explanation is illogical or in-

consistent with the question and/or does not ade-
quately cover the answer choices.

2. Neutral: The explanation is somewhat logical
and consistent with the question but might miss
some aspects of the answer choices.

3. Agree: The explanation is logical, consistent
with the question, and adequately covers the answer
choices.

Q1: I understand this explanation of how the
AI model works.

1. Disagree: The explanation is unclear or
contains overly complex terms or convoluted sen-
tences.

2. Neutral: The explanation is somewhat un-
derstandable but might contain complex terms or
convoluted sentences.

3. Agree: The explanation is clear, concise, and
easy to understand.

Q2: I trust this explanation of how the AI
model works.

1. Disagree: The explanation is unclear or
contains overly complex terms or convoluted sen-
tences.

2. Neutral: The explanation is somewhat credi-
ble but contains some elements that I find doubtful
or questionable.

3. Agree: The explanation is credible and aligns
with my understanding of how AI models work.

Q3: This explanation of how the AI model
works is satisfying.

1. Disagree: The explanation does not meet
my expectations and leaves many questions unan-
swered.

2. Neutral: The explanation somewhat meets
my expectations but leaves some questions unan-
swered.

3. Agree: The explanation meets my expecta-
tions and satisfies my query.

Q4: This explanation of how the AI model
works has sufficient detail.

1. Disagree: The explanation lacks detail and
does not adequately cover the AI model’s decision-
making.

2. Neutral: The explanation provides some
detail but lacks thoroughness in covering the AI
model’s decision-making.

3. Agree: The explanation is thorough and cov-
ers all aspects of the AI model’s decision-making.

Q5: This explanation of how the AI model
works seems complete.

1. Disagree: The explanation does not ade-
quately cover the answer choices and leaves many
aspects unexplained.

2. Neutral: The explanation covers most answer
choices but leaves some aspects unexplained.

3. Agree: The explanation covers all answer
choices and leaves no aspect unexplained.

Q6: This explanation of how the AI model
works is accurate.

1. Disagree: The explanation does not accu-
rately reflect the AI model’s decision-making.

2. Neutral: The explanation somewhat reflects
the AI model’s decision-making but contains some
inaccuracies.

3. Agree: The explanation accurately reflects
the AI model’s decision-making.

J.2 Human-centered Metrics for Explanation
Quality Evaluation

The meaning of metrics used in the human-centered
evaluation are as follows:

1. Overall quality reflects the overall effective-
ness of explainability. It reveals how effectively
explanations convey the decision-making pro-
cess of the AI models to the human users.

2. Understandability evaluates how well a human
can comprehend the model’s output and expla-
nations. It captures the clarity and coherence of
the generated text.

3. Trustworthiness measures the human evalu-
ator’s confidence in the model’s outputs and
explanations. It evaluates whether the expla-
nations appear reliable, credible, and based on
sound reasoning.

4. Satisfaction captures the overall contentment of
the evaluator with the explanations. It measures
whether the outputs meet the evaluator’s needs
and expectations in terms of quality, relevance,
and utility.

5. Sufficiency of detail evaluates whether the ex-
planations provide a sufficient level of detail. It
evaluates whether the responses are adequately
descriptive and provide all necessary informa-
tion to fully answer the question or task.
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6. Completeness measures whether the explana-
tions address the decision behaviors of the
model.

7. While we also measure accuracy objectively,
the human evaluation of accuracy assesses
whether the explanations align with the eval-
uator’s knowledge or expectations. It mea-
sures whether the explanations can reflect if the
model’s outputs are factually correct and con-
textually appropriate.

7596


