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Abstract

The automation of radiology report genera-
tion (RRG) holds immense potential to alle-
viate radiologists’ workloads and improve diag-
nostic accuracy. Despite advancements in im-
age captioning and vision-language pretraining,
RRG remains challenging due to the lengthy
and complex nature of radiology reports. In
this work, we proposes the Divide and Con-
quer Radiology Report Generation (DCRRG)
model, which breaks down full-text radiology
reports into concise observation descriptions.
This approach enables the model to capture
fine-grained representations from each observa-
tion through a two-stage process: an encoding
stage focusing on observation prediction tasks
to learn fine-grained representations, and a de-
coding stage for integrating these descriptions
into cohesive and comprehensive radiology re-
ports. Experimental results on two benchmark
datasets demonstrate that DCRRG achieves
significant improvements across all evaluation
metrics, underscoring its capability to generate
semantically coherent and clinically accurate
radiology reports.

1 Introduction

Radiology images are commonly used to diagnose,
monitor, and treat medical conditions in clinical
practice (FDA, 2022). Recently, automatic radiol-
ogy report generation (RRG) has garnered increas-
ing attention from both the machine learning and
medical fields. This technology aims to generate
semantically coherent and informative reports to
describe the corresponding examination images.
Such techniques hold significant clinical potential
by alleviating the workload of junior radiologists
and reducing diagnostic errors through improved
interpretation (Jing et al., 2018; Çallı et al., 2021).

Notable advancements in artificial intelligence
have led researchers to propose various data-
driven neural networks for automatic RRG, yield-
ing promising results (Lu et al., 2017; Anderson

et al., 2018; Chen et al., 2020; Liu et al., 2021;
Nooralahzadeh et al., 2021; Wu et al., 2022; Wang
et al., 2022a; Li et al., 2023). Similar to the task of
image captioning (Xu et al., 2015), which aims to
describe the visual content of images, RRG models
typically use an encoder-decoder architecture. In
the encoding stage, visual representations of the
images are extracted by a vision encoder, usually
pretrained on image-label datasets. In the decoding
stage, the medical report is generated by a decoder,
employing either a Transformer (Chen et al., 2020;
Liu et al., 2021) or LSTM (Jing et al., 2018) archi-
tecture with image-text datasets.

Recently, large-scale vision-language pretrain-
ing (VLP), such as CLIP (Radford et al., 2021), has
achieved significant success through contrastive
learning on image-text datasets. By jointly train-
ing on large-scale image-text pairs, this approach
generates transferable representations that support
versatile downstream tasks, enhancing the efficacy
of vision encoders for RRG. Building on these ad-
vancements, recent studies (Zhang et al., 2020;
Huang et al., 2021; Wang et al., 2022b, 2023)
concentrate on refining vision encoders for RRG
using contrastive learning with image-text paired
datasets.

Despite the substantial advancements achieved
in this field, RRG remains a difficult task. As is
demonstrated in Figure 1, the radiology report com-
prise 6 sentences, describing 5 observations, among
which 3 are positive, 1 is negative, and 1 is uncer-
tain. The lengthy and complex nature of medical
reports necessitates both the encoder and decoder
be able to handle subtle and fine-grained represen-
tations. The accompanying bar chart displays the
distribution of each observation, each facing vary-
ing degrees of data imbalance. However, since a
report usually includes multiple observations, ad-
dressing the imbalance of one observation without
impacting others presents a significant challenge.

In summary, several challenges significantly im-
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Figure 1: Demonstration of challenges in RRG. Left shows an example from the MIMIC-CXR dataset, including a
X-ray image, a radiology report and the observations and corresponding labels extracted from the report. Right
shows the data distribution of MIMIC-CXR based on 14 observation, respectively.

pact the effectiveness of RRG models: (1) Com-
pared to image captioning, radiology reports are no-
tably longer and comprise multiple sentences, each
detailing specific medical observations. (2) Med-
ical datasets frequently exhibit substantial class
imbalances and skewed data distributions. (3) The
scarcity of training data particularly limits the per-
formance of data-intensive VLP models. Therefore,
an ideal RRG model should: (1) Capably learn sub-
tle and detailed representations both during the
encoding and decoding stages. (2) Effectively ad-
dress data imbalances for individual observations
without unintended consequences for others. (3)
Harness uni-modal data (such as image-only or
text-only) alongside image-text pairs for enhanced
training effectiveness.

Noticing that a fundamental distinction between
RRG and image captioning lies in the constrained
terminology used for describing diseases (observa-
tions) in radiology reports, compared to the open
vocabulary typically encountered in image caption-
ing tasks. Leveraging this distinction allows us to
break down the lengthy and complex full-text radi-
ology report into limited observation descriptions.
The challenge then shifts to how to effectively learn
subtle and nuanced representations from each ob-
servation and integrate them cohesively to generate
the complete radiology report.

In response to this challenge, we propose the
Divide and Conquer Radiology Report Generation
(DCRRG) model. This approach focuses on two
main stages: (1) Encoding Stage: The model learns
fine-grained representations through observation
prediction tasks. Each observation is treated inde-
pendently to capture detailed nuances specific to
that observation. (2) Decoding Stage: The model

generates a cohesive description for each indicated
observation, integrating them to form the full-text
radiology report.

Specifically, we employ prompts to bridge be-
tween individual observations and full reports. In
the encoding stage, both the text and image en-
coders are trained with prompts to predict observa-
tion labels. This setup allows us to implement data
balancing strategies and integrate uni-modal data
effectively. Subsequently, the encoders undergo
joint fine-tuning to align cross-modal representa-
tions via contrastive learning. In the decoding stage,
the decoder is trained to generate descriptions for
individual observations based on either image or
text representations, guided by prompts indicating
the specific observation to be generated. Prompt
tuning further refines the model for efficient full-
text report generation. In summary, our proposed
DCRRG model contributes:

• We propose a novel method for RRG, em-
ploying a divide-and-conquer approach through
observation-level training. This method opti-
mizes the feature extraction network specifically
for each individual observation, effectively miti-
gating the impact of data imbalance.

• To enhance the learning of uni-modal represen-
tations and facilitate integration between visual
and textual modalities, we introduce divide-and-
conquer contrastive learning (DCCLIP). This ap-
proach aims to refine accurate and fine-grained
representations, thereby boosting performance in
text-oriented medical report generation tasks.

• Experimental results on two benchmark datasets
demonstrate that our proposed method achieves
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significant improvements across all evaluation
metrics.

2 Related Works

2.1 Medical Report Generation
Medical report generation involves interpreting
medical images to generate comprehensive reports
(Jing et al., 2018, 2019; Chen et al., 2020). Un-
like image captioning (Xu et al., 2015; Anderson
et al., 2018; Liu et al., 2018; Gu et al., 2022), which
typically produces single-sentence descriptions for
general images, medical report generation aims to
generate paragraphs containing multiple clinical
descriptions.

Inspired by the success of image captioning, sev-
eral encoder-decoder-based frameworks have been
introduced for medical report generation. For in-
stance, (Jing et al., 2018) employed a hierarchical
LSTM with an attention mechanism, while (Chen
et al., 2020) utilized a Transformer to generate long
paragraphs. (Yuan et al., 2019) explored methods
to incorporate medical concepts to enhance perfor-
mance. Additionally, (Jing et al., 2018) and (You
et al., 2021) further integrated medical concepts
into their models. (Yang et al., 2022), (Liu et al.,
2021), and (Li et al., 2019) proposed approaches
to construct medical knowledge graphs, injecting
medical knowledge directly into the models.

In summary, deep learning models, especially
encoder-decoder frameworks, have shown promis-
ing results in medical report generation, primarily
trained end-to-end to produce full-text radiology
reports. In our study, we adopt a different approach
by decomposing the full-text RRG into tasks for
generating descriptions of individual observations.
We then fine-tune the model using prompt tuning
techniques to generate comprehensive radiology
reports.

2.2 Med-VLP
Vision-language pretraining (VLP) has demon-
strated its capability to learn effective visual rep-
resentations using image-caption pairs from gen-
eral domains. Many approaches focus on learn-
ing visual-semantic embeddings for tasks such as
vision-text retrieval (Liu et al., 2019; Wu et al.,
2019; Lu et al., 2019; Huang et al., 2020; Chen
et al., 2021) using attention or object detection
models, as well as vision-text contrastive learn-
ing (Zhang et al., 2020; Jia et al., 2021; Yuan
et al., 2021; Yu et al., 2022), and leveraging mul-
tiple forms of vision and text supervision (Singh

et al., 2021; Li et al., 2022). These methods are
predominantly applied in general domains where
vast amounts of web images and captions are avail-
able, far surpassing the scale of medical image-text
datasets. This stark contrast poses challenges for
applying self-supervised contrastive learning (CL)
techniques to large-scale vision-text transformers
in medical contexts. Although solutions such as
data augmentation (Li et al., 2021) and knowledge
graphs (Shen et al., 2022) have been proposed to
mitigate these challenges, the disparity in data scale
between general domains and medical domains re-
mains substantial.

Inspired by this, medical vision-language pre-
training (Med-VLP) was investigated based on con-
trastive learning as well (Zhang et al., 2020; Huang
et al., 2021; Wang et al., 2021). Nonetheless, they
all work on paired medical images and texts so still
encounter the lacking data challenge. To resolve
this, MedCLIP(Wang et al., 2022b) proposed to
decouple images and texts for contrastive learn-
ing by recombining image-text pairs. Phenotype-
CLIP(Wang et al., 2023) propose the phenotype-
based contrastive learning to learn fine-grained rep-
resentations.

Overall, the aforementioned Med-VLP models
address data scarcity by augmenting training data
through strategies like recombining or decompos-
ing original paired datasets within a cross-modal
training framework. In our study, we propose a
method to initially learn uni-modal representations
through pretraining. Subsequently, we fine-tune
these representations under a contrastive learning
framework to achieve cross-modal alignment. This
approach allows for straightforward implementa-
tion of data balancing and complementation strate-
gies during the pretraining phase.

3 Method

In this section, we will detail the implementation
of our proposed Divide and Conquer Radiology
Report Generation approach (DCRRG). The over-
all architecture of DCRRG is illustrated in Fig-
ure 2. Our model consists of four main steps.
Step 1 and Step 2 are collectively referred to as
DCCLIP, which constitutes a contrastive learning
model for Med-VLP. Initially, DCCLIP pretrains
on uni-modal data and subsequently finetunes on
paired image-text datasets. Step 3 involves gen-
erating observation descriptions using uni-modal
representations and prompts provided for each ob-
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Figure 2: The overall architecture of DCRRG. (1) Observation level fine-grained pretraining. The encoders are
trained based on single modality inputs to predict observation labels. (2) Contrastive Learning with calibrated
semantic matching loss. (3) Single Observation description generation. (4) Full report generation with prompt
tuning.

servation. In Step 4, prompt tuning is applied to
efficiently adjust the model parameters for full-text
report generation. The details of each step is de-
scribed in the following sections.

3.1 Observation Level Pretraining

In this step, we train the image encoder and text
encoder using uni-modal data. The labels for uni-
modal data are generated by an observation labeler,
leveraging the CheXpert labeler (Irvin et al., 2019)
in our study. For each image-text pair, a total of
14 observations are extracted. We treat unmen-
tioned labels as negative and exclude data with
uncertain labels from training. Optionally, we can
apply data re-sampling for balancing and supple-
ment the dataset with additional uni-modal data.
To optimize the training process, we use Cross-
Entropy Loss (CE Loss). This approach ensures
effective learning and alignment of uni-modal rep-
resentations during the initial training phase.

Image Encoder. We encode images into em-
beddings v ∈ RD using a vision encoder Eimg. A
projection head then maps the raw embeddings and
optional prompt tokens to vp ∈ RP .

v = Eimg(ximg) (1a)

vp = fv(concat(v, eprompt)) (1b)

where fv is the projection head of the vision en-
coder. eprompt ∈ R14 is the one-hot vector corre-
sponding to 14 observations.

Text Encoder. Similarly, we create clinically
meaningful text embeddings t ∈ RM by a text
encoder. We project them to tp ∈ RP as

t = Etxt(xtxt) (2a)

tp = ft(concat(t, eprompt)) (2b)

where ft is the projection head and Etxt denotes
the text encoder. This gives the same embedding
dimension P as the vision encoder.

3.2 Calibrated Semantic Matching Loss

In this step, we align cross-modal representations
through contrastive learning using image-text pairs.
Traditionally, InfoNCE loss in models like CLIP
(Radford et al., 2021) has been effective but can
lead to false negatives during training. To address
this, approaches like Semantic Matching Loss (SM
Loss), as proposed by Wang et al. (Wang et al.,
2022b), create soft targets based on similarity be-
tween image and text labels. However, in medi-
cal contexts, observation descriptions often con-
tain specific details about corresponding images.
This specificity can challenge SM Loss’s ability to
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distinguish samples with identical labels. To en-
hance its effectiveness, we propose calibrating SM
Loss using uni-modal similarities. This adjustment
helps SM Loss better capture nuanced distinctions
present in medical image-text pairs, thereby im-
proving alignment during contrastive learning.

During each iteration, with Nbatch input images
{ximage} and text {xtext} and the corresponding
observation labels limg and ltxt, the original soft
targets s for SM Loss is defined by

s =
l⊤img · ltxt

∥limg∥ · ∥ltxt∥
. (3)

For an image i, we obtain a set of sij where j =
1 . . . Nbatch corresponds to the batch of texts. The
calibrated soft target is computed by normalizing
weighted sij across j by softmax.

yv→t
ij =

exp(wijsij)∑Nbatch
j=1 exp(wijsij)

, (4)

where wij = sim(ti, tj)/2+0.5 and sim(·) repre-
sents the cosine similarity. Similarily, the reversed
text-to-image soft targets are obtained by

yt→v
ji =

exp(ŵjisji)∑Nbatch
i=1 exp(ŵjisji)

. (5)

where ŵji = sim(vj ,vi)/2 + 0.5. The logits are
obtained by cosine similarities between image and
text embeddings:

ŝij = ṽ⊤
i · t̃j , (6)

where ṽi and t̃j are normalized vp and tp, respec-
tively. The predicted similarity is also obtained by
softmax function

ŷij =
exp ŝij/τ∑Nbatch

i=1 exp ŝij/τ
. (7)

τ is the temperature initialized at 0.07. The se-
mantic matching loss is hence the cross entropy
between the logits and soft targets as

Lv→l = − 1

Nbatch

Nbatch∑

i=1

Nbatch∑

j=1

yij log ŷij . (8)

Likewise, we can compute Ll→v and then reach to

LCSM =
Lv→l + Ll→v

2
(9)

as the final training objective.

3.3 Observation Description Generation

In this step, the decoder is trained to generate ob-
servation descriptions using given uni-modal repre-
sentations and specific prompts. Due to alignment
achieved in previous steps between text and image
representations, text representations can be treated
as an augmented view of image representations,
effectively doubling the training data available to
the model. Furthermore, since the full-text report
generation task is decomposed into generating 14
observation descriptions, the total number of train-
ing samples is increased substantially—28 times
more compared to conventional RRG models. This
augmentation enhances the model’s ability to learn
from diverse perspectives embedded within each
observation, thereby improving the overall quality
and coherence of generated radiology reports.

Decoder. Our report decoder consists of two
Transformer decoder layers. The whole process of
a decoder layer fd(·) can be written as follows:

fd(y) = LN(FFN(eca) + eca), (10)

eca = LN(CA(eattn, fI) + eattn), (11)

eattn = LN(MMHA(y) + y)), (12)

where MMHA and CA represents the masked
multi-head self-attention and cross attention mech-
anism in (Vaswani et al., 2017). y is the input
of decoder. In Cross-attention sublayer, for each
head, {Q,K∗,V∗} comes from Q = Wq ∗ eattn,
K = Wk ∗ fI , and V = Wv ∗ fI , where W∗ are the
learnable parameters. The fd(y) will be sent to a
Linear & Log-Softmax layer to get the output of
target sentences. Notably, only token embedding is
adopted during the decoding procedure. The entire
auto-regressive generation process can be written
as follows:

p(T |I) =
∏

t=1

p(yt|y1, . . . , yt−1, I). (13)

where yt is the input token in time step t.
Typically, the report generation objective is the

cross-entropy loss to compare the predicted token
index sequence with the ground truth. Given the
ground truth report T̂ , all the underlying modules
are trained to maximize p(y|I) by minimizing the
following:

LRG = −
n̂∑

t=1

log p(ŷt|ŷ1, · · · , ŷt−1, I). (14)
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3.4 Report Generation with Prompt Tuning

In the final step, we employ the prompt tuning tech-
nique, specifically P-Tuning v2 (Liu et al., 2022), to
fine-tune the decoder for generating full-text radiol-
ogy reports. Here, we freeze the parameters of the
image encoder and the decoder that were pretrained
in previous steps. Prompt tuning involves training
a tunable soft prompt and a randomly-initialized
classification head under the same objectives as in
Step 3, where observation descriptions are gener-
ated from uni-modal representations and specific
prompts. This process ensures that the decoder
adapts efficiently to produce coherent and accurate
full-text reports based on the learned representa-
tions.

4 Experiments

We assess our methods across two dimensions: the
generated reports from DCRRG and the learned
representations from DCCLIP. First, we outline two
benchmark datasets, the metrics employed, and the
evaluation settings. Subsequently, we present the
primary findings and in-depth analysis of our ap-
proach on these datasets. The experimental settings
can be found in Appendix A.

4.1 Datasets

MIMIC-CXR (Johnson et al., 2019) is a compre-
hensive chest X-ray database containing 377,110
images and 227,835 corresponding free-text
radiology reports from the Beth Israel Deaconess
Medical Center in Boston, MA. We follow (Chen
et al., 2020) to pre-process the datasets: we adopt
the official split to split the MIMIC-CXR dataset.

CheXpert (Irvin et al., 2019) is another extensive
dataset comprising 224,316 chest X-rays collected
from Stanford Hospital. Each X-ray is paired with
its respective radiology report and labeled for the
presence of 14 medical observations. The dataset
encompasses data from 65,240 patients. For evalu-
ation, we adopt the official dataset split designed
for classification tasks. Additionally, following
methodologies described in (Huang et al., 2021;
Wang et al., 2022b), we sample a multi-class clas-
sification dataset named CheXpert-5x200 from the
testing split. This subset contains 200 images exclu-
sively labeled positive for the five CheXpert com-
petition tasks: Atelectasis, Cardiomegaly, Edema,
Pleural Effusion.

4.2 Baselines

Conventional RRG Baselines. To validate the
effectiveness of our proposed method in RRG, we
compare it against established image captioning
approaches such as S&T (Vinyals et al., 2015),
AdaAtt (Lu et al., 2017), and TopDown (Anderson
et al., 2018), as well as those specifically designed
for the medical domain including R2Gen (Chen
et al., 2020), PPKED (Liu et al., 2021), M2TR
(Nooralahzadeh et al., 2021), DeltaNet (Wu et al.,
2022), XProNet (Wang et al., 2022a), and DCL
(Li et al., 2023). Results from these baselines are
cited directly from their respective original papers,
ensuring consistency with the reported settings.

VLP Baselines. We extend our evaluation to
include a diverse set of VLP models: Con-
VIRT(Zhang et al., 2020), GLoRIA (Huang et al.,
2021), MedCLIP (Wang et al., 2022b) and Pheno-
typeCLIP(Wang et al., 2023). For the decoding
stage in downstream RRG tasks, we implement
settings consistent with those described in (Wang
et al., 2023). Additionally, we include CLIP (Rad-
ford et al., 2021) for evaluating DCCLIP, omitting
PhenotypeCLIP (Wang et al., 2023) due to lack of
public codebase and reported results in image-text
retrieval and classification tasks.

4.3 Evaluation Metrics

For evaluating report generation, we utilized stan-
dard metrics including BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Lin, 2004), and CIDEr (Vedantam
et al., 2015), computed with a standard evaluation
toolkit. While BLEU and METEOR are commonly
used in machine translation, ROUGE-L assesses
summary quality. To assess disease prediction ac-
curacy in report generation, we employed clinical
efficacy (CE) metrics. These metrics, such as pre-
cision, recall, and F1 scores, were computed using
disease labels extracted from both real reports and
model predictions from the CheXpert dataset (Irvin
et al., 2019).

For evaluating DCCLIP, we employed specific
metrics tailored to its tasks. We utilized the Pre-
cision@K metric in the image-text retrieval task,
which measures precision within the top K re-
trieved reports. This assessment determines if the
selected report matches the category of the query
image in the image-text retrieval process. Addition-
ally, for evaluating downstream classification tasks,

7602



Table 1: Experimental results of our model and baselines on the MIMIC-CXR dataset. The best results are in
boldface. The VLP baselines are highlighted in platinum. DCRRG w/o balancing denotes the model is trained
without data balancing technique. DCRRG w/ CheXpert denotes the model is trained with data complementation
from CheXpert. * denotes the re-implementations of existing contrastive learning methods for medical report
generation.

Model NLG Metrics CE Metrics
B-4 MTR R-L CIDEr P R F1

S&T (Vinyals et al., 2015) 0.084 0.124 0.263 - 0.249 0.203 0.204
AdaAtt (Lu et al., 2017) 0.088 0.118 0.266 0.084 0.268 0.186 0.181
TopDown (Anderson et al., 2018) 0.092 0.128 0.267 0.073 0.320 0.231 0.238
R2Gen (Chen et al., 2020) 0.103 0.142 0.277 0.253 0.333 0.273 0.276
PPKED (Liu et al., 2021) 0.106 0.149 0.284 0.237 - - -
M2TR (Nooralahzadeh et al., 2021) 0.107 0.145 0.272 - 0.240 0.428 0.308
DeltaNet (Wu et al., 2022) 0.114 - 0.277 0.281 - - -
XProNet (Wang et al., 2022a) 0.105 0.138 0.279 - - - -
DCL (Li et al., 2023) 0.109 0.150 0.284 0.281 0.471 0.352 0.373
ConVIRT* (Zhang et al., 2020) 0.104 0.142 0.279 0.255 0.333 0.275 0.281
GLoRIA* (Huang et al., 2021) 0.106 0.143 0.281 0.253 0.347 0.276 0.306
MedCLIP* (Wang et al., 2022b) 0.109 0.146 0.283 0.255 0.353 0.312 0.322
PhenotypeCLIP (Wang et al., 2023) 0.119 0.158 0.286 0.259 - - -
DCRRG 0.119 0.161 0.284 0.282 0.460 0.314 0.376
DCRRG w/o balancing 0.116 0.156 0.283 0.276 0.413 0.312 0.354
DCRRG w/ CheXpert 0.120 0.163 0.291 0.283 0.489 0.341 0.401

we used the Area Under the ROC Curve (AUROC).
This metric assesses the model’s ability to distin-
guish between different classes based on its ROC
curve performance.

4.4 Experimental Results

4.4.1 Radiology Report Generation
The results on the MIMIC-CXR datasets are pre-
sented in Table 1, where we compare our proposal
with existing state-of-the-art RRG models. Ad-
ditionally, we implemented three VLP methods,
namely ConVIRT (Zhang et al., 2020), MedCLIP
(Wang et al., 2022b), and GLoRIA (Huang et al.,
2021). The competitive performance of these VLP
models alongside dedicated medical report genera-
tion models underscores the importance of learning
fine-grained representations for generating lengthy
and complex reports.

Descriptive Accuracy The proposed DCRRG
method demonstrated promising performance on
the MIMIC-CXR benchmark datasets. R2Gen
(Chen et al., 2020) has recently been widely used
as a baseline for MRG models. PPKED (Liu et al.,
2021) integrates medical knowledge with typical
MRG frameworks. Other baseline models, such
as M2TR (Nooralahzadeh et al., 2021) and Top-
Down (Anderson et al., 2018), are also included

for comparison. As shown in Table 1, our DCRRG
achieves state-of-the-art descriptive accuracy, out-
performing others in METEOR and CIDEr metrics
while matching their performance in BLEU-4 and
ROUGE-L metrics. Higher CIDEr values indicate
that our model generates reports with more coher-
ent content topics, avoiding repetitive sentences
seen in the training set. When trained with addi-
tional data from CheXpert for complementation,
our model consistently surpasses all previous RRG
methods across all evaluation metrics.

Clinical Efficacy We also evaluate our method
by clinical efficacy (CE) metrics on the MIMIC-
CXR dataset and compare the performances with
other baseline models. Following official splitting,
we directly cite the results from original papers for
comparison. The experimental results in Table 1 re-
veal that our DCRRG significantly outperforms the
previous models on three CE metrics. The experi-
mental results in Table 1 demonstrate that DCRRG
significantly outperforms previous models on three
CE metrics. Compared to current state-of-the-art
methods that leverage general and specific knowl-
edge, our approach shows a notable performance
improvement. This enhancement underscores the
importance of our method and confirms its ability
to predict more accurate clinical information.
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Table 2: Results of Image-Text retrieval tasks
on CheXpert-5x200 dataset. We take the Preci-
sion@{1,2,5,10} to measure the performance of various
models in this task. Best within the data are in bold.
DCCLIP w/o ba denotes the model is trained without
data balancing technique.

Model P@1 P@2 P@5 P@10

CLIP 0.20 0.20 0.21 0.20
ConVIRT 0.21 0.20 0.20 0.19
GLoRIA 0.46 0.48 0.47 0.46
MedCLIP 0.45 0.50 0.48 0.49
DCCLIP 0.48 0.50 0.51 0.51

DCCLIP w/o ba 0.45 0.49 0.49 0.49

4.4.2 Image-text Retrieval
Following (Zhang et al., 2020; Huang et al., 2021;
Wang et al., 2022b), we use the CheXpert-5x200
dataset to evaluate the effectiveness of our represen-
tation learning framework for image-text retrieval.
Given an image as the input query, we retrieve tar-
get reports by computing the similarity between
the query image and all candidate reports using
the learned representations. Precision@K metric
is employed to measure the precision in the top K
retrieved reports, ensuring that the selected report
belongs to the same category as the query image.

Based on the results presented in Table 2, it is
evident that our method achieves superior perfor-
mance compared to all other methods. This un-
derscores the efficiency of our approach in pro-
viding necessary semantic information for text
retrieval. Moreover, DCCLIP achieves compet-
itive performance even without employing data
balancing techniques, highlighting the benefits of
observation-level pretraining compared to state-of-
the-art (SOTA) methods.

4.4.3 Classification
Following (Zhang et al., 2020), we assess each pre-
trained image encoder under two distinct settings:
a linear classification setup, where the pretrained
CNN weights remain frozen and only a linear clas-
sification head is trained; and a fine-tuning scenario,
where both the CNN weights and the linear head un-
dergo fine-tuning. These settings complement each
other in evaluation: the linear setup directly gauges
the quality of the extracted image features using
the pretrained CNN, while the fine-tuning setup
mirrors how the pretrained CNN weights are typi-
cally utilized in practical applications. To further

Table 3: Results of classification (AUROC score) on
CheXpert test sets based on different portion of training
data: 1%, 10%, 100%. Best within the data are in bold.
DCCLIP w/o ba denotes the model is trained without
data balancing technique.

Model Linear Finetuning
1% 10% 100% 1% 10% 100%

Random 56.1 62.6 65.7 70.4 80.7 85.4
ImageNet 74.4 79.1 81.4 80.1 84.3 87.1
CLIP 80.2 82.3 83.1 82.2 84.8 87.6
ConVIRT 85.9 86.8 87.3 87.0 88.1 88.3
GLoRIA 86.6 87.8 88.1 87.0 88.1 88.3
MedCLIP 86.8 87.6 88.3 87.1 87.9 88.2
DCCLIP 87.2 88.0 88.4 88.8 89.3 89.3
DCCLIP w/o ba 86.8 87.7 88.2 88.1 89.0 89.1

compare the data efficiency of various pretraining
methods, we evaluate the image encoders with 1%,
10%, and 100% of the training data, respectively,
in each setting.

Table 3 presents the classification results for
CheXpert across varying percentages of training
data. To mitigate the impact of result variance due
to random sampling of training data, we averaged
the outcomes over five independent runs. We use
the area under the ROC curve (AUROC) as our
evaluation metric. Our method achieves superior
performance compared to SOTA methods in both
settings. Notably, even when trained with only
1% of the data, our method consistently outper-
forms models initialized with ImageNet weights
trained on 100% of the data in both settings. This
underscores the efficacy of DCCLIP in learning
fine-grained representations for label-efficient clas-
sification.

4.5 Ablation Study

We performed ablation experiments to demonstrate
the effectiveness and various impacts of the inter-
mediate steps in our proposed method. The experi-
mental results are shown in Table 4. In summary,
we found that both Step 1 and Step 2 are essen-
tial for descriptive accuracy and clinical efficacy
in radiology report generation (RRG), with Step
1 having a significant impact on clinical efficacy.
Step 3 is important for descriptive accuracy but con-
tributes little to clinical efficacy. Utilizing Prompt
Tuning (PT) is competitive with Full-parameters
Fine-Tuning (FFT) in Step 4. The detialed key find-
ings of the ablation study are listed in Appendix
B.
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Figure 3: Qualitative comparison with a strong baseline model PhenotypeCLIP. We adopt the bold text to denote the
observation key words in the radiology reports.

4.6 Pipeline Error Analysis

The ablation study demonstrates the importance of
Step 1 in DCRRG. To evaluate the potential impact
of errors in observation labeling, we conducted
a pipeline error analysis to assess the correlation
between classification accuracy and final report
generation performance. We used the four variant
models in Step 1 (i.e., 6a 6d) to simulate various
degrees of pipeline errors. We measured the Area
Under the ROC Curve (AUROC) for predicting
each observation on the MIMIC-CXR testing set,
and also calculated the average AUROC for each
model. More details can be found in Appendix C.

4.7 Qualitative Analysis and Case Study

We further conducted a qualitative analysis to give
a better understanding of our method. Specifi-
cally, we show a medical report generated by a
strong baseline model PhenotypeCLIP and our
proposed DCRRG. As is shown in Figure 3, our
method can generate reports with better clinical
efficacy than PhenotypeCLIP. Although Pheno-
typeCLIP correctly describes the observation of
"cardiomegaly", “pneumothorax” and “pleural ef-
fusions", it failed to capture the observation of
"support device" and “basilar atelectasis”. Our
proposed DCRRG is able to correctly describe all
five observation in this example. One limitation
shown in this example is that DCRRG failed to
integrally described the observation of “pneumoth-
orax”, since our method tends to generate reports
with one sentence for each observation, while the
ground truth report has multiple sentences describ-
ing the observation of "pneumothorax".

We further utilize this example for case study
and demonstrate the intermediate results of our

proposed DCRRG. As is shown in Table 7, the im-
age encoder and the corresponding classification
head trained in Step 1 is able to accurately predict
the observation label. The corresponding single
observation descriptions generated in Step 3 are
also demonstrated. Each observation is described
in one sentence and the observation descriptions
are consistent with the observation labels. As we
further compare the observation description with
the generated report, we notice that there could be
redundant sentences in the generated report. For
example, "There are no findings of focal consoli-
dation, edema or pneumonia." describe the unmen-
tioned observations that did not occur in the ground
truth report. We believe that the redundancy in the
generated reports could potentially improve clini-
cal efficacy but might degrade descriptive accuracy
of DCRRG.

5 Conclusion

In this study, we introduce DCRRG, a divide and
conquer training strategy for radiology report gen-
eration. This approach optimizes the feature ex-
traction network individually for each observation,
effectively mitigating data imbalance. To enhance
the learning of uni-modal representations and facil-
itate integration between visual and textual modal-
ities, we propose divide-and-conquer contrastive
learning (DCCLIP). This method aims to refine
accurate and fine-grained representations, thereby
improving performance in text-oriented medical
report generation tasks. Experimental results on
two benchmark datasets show that our approach
achieves substantial enhancements across all evalu-
ation metrics.
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Limitations

Our framework has several limitations. Firstly,
since observations guide our model, accurate la-
beling by observation extraction tools is crucial.
Inaccuracies in this process may introduce biases.
Future work will explore leveraging Large Lan-
guage Models (LLMs) for more reliable observa-
tion extraction. Secondly, our framework operates
as a pipeline, where the performance of report gen-
eration heavily depends on VLP accuracy. Con-
sequently, errors can accumulate, especially with
smaller datasets. Lastly, our framework specializes
in generating radiology reports from Chest X-ray
images. Future investigations should extend its
applicability to other medical image types.

Ethics Statement

The MIMIC-CXR (Johnson et al., 2019) and CheX-
pert (Irvin et al., 2019) datasets used in our study
are publicly available, ensuring no protected health
information is disclosed. However, any inaccura-
cies in the generated reports, such as misdiagnoses
or missed abnormalities, can lead to incorrect clin-
ical outcomes. Therefore, it is crucial to control
the use of model-generated reports and ensure that
medical professionals review and validate them in
clinical practice. Similar to other deep learning
models, DCCLIP is susceptible to inherent biases
present in the training data. It is essential to ad-
dress fairness concerns and mitigate potential bi-
ases. Therefore, we strongly recommend users to
carefully consider the ethical implications of the
generated outputs in real-world applications.
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A Experimental Settings

We utilized ResNet-50 (He et al., 2015), pretrained
on ImageNet (Deng et al., 2009), as the image en-
coder to extract visual features from input medical
images, following the approach in (Zhang et al.,
2020). For textual features of input reports and sen-
tences, we employed BERT initialized with Clin-
icalBERT weights (Alsentzer et al., 2019). The
BERT model was configured with 8 attention heads
and a hidden size of 512. During the training of
DCCLIP in the encoding stage, we employed the
AdamW optimizer (Loshchilov and Hutter, 2019)
with an initial learning rate of 1e-4, weight decay
of 1e-6, and a batch size of 32. For training the
decoder in Steps 3 and 4, we also used the AdamW
optimizer with a learning rate of 1e-4 and a batch
size of 16. During RRG inference, we employed
a beam search of size 3 to improve the quality of
generated outputs.

7608

https://doi.org/10.18653/v1/2023.emnlp-main.989
https://doi.org/10.18653/v1/2023.emnlp-main.989
https://doi.org/10.18653/v1/2022.emnlp-main.256
https://doi.org/10.18653/v1/2022.emnlp-main.256
https://aclanthology.org/2022.coling-1.261
https://aclanthology.org/2022.coling-1.261
https://aclanthology.org/2022.coling-1.261
https://proceedings.mlr.press/v37/xuc15.html
https://proceedings.mlr.press/v37/xuc15.html


Table 4: Ablation study on the intermediate steps of DCRRG. Both NLG Metrics and CE Metrics are used to
evaluate the final generated text reports. Notice that Prompt Tuning (PT) in Step 4 must be bundled together
with Step 3, hence Full-parameters Fine-Tuning (FFT) is adopted when Step 3 is removed from the pipeline of
DCRRG, where both the image encoder and the decoder are tunable. All models are trained and tested solely on the
MIMIC-CXR datasets.

Model No. Step 1 Step 2 Step 3 Step 4 B-4 MTR R-L CIDEr P F1

1 ✓ × × FFT 0.112 0.148 0.282 0.257 0.436 0.363
2 × ✓ × FFT 0.110 0.145 0.283 0.257 0.357 0.324
3 × ✓ ✓ PT 0.113 0.150 0.280 0.276 0.360 0.327
4 ✓ × ✓ PT 0.116 0.156 0.282 0.279 0.438 0.365
5 ✓ ✓ × FFT 0.115 0.156 0.281 0.274 0.456 0.371
6 ✓ ✓ ✓ PT 0.119 0.161 0.284 0.282 0.460 0.376
7 ✓ ✓ ✓ FFT 0.120 0.160 0.284 0.283 0.459 0.376

Table 5: Ablation study on the important techniques used in Step 1, where balancing refers to re-sampling data
to balance labels for each observation and extra data refers to using additional data from the CheXpert dataset for
training. We keep Step 2, Step 3 and Step 4 under the default settings and evaluate the final generated text reports
with both NLG Metrics and CE Metrics.

Model No. balancing extra data B-4 MTR R-L CIDEr P R F1

6a × × 0.116 0.156 0.283 0.276 0.413 0.312 0.354
6b ✓ × 0.119 0.161 0.284 0.282 0.460 0.314 0.376
6c × ✓ 0.117 0.158 0.283 0.280 0.446 0.313 0.368
6d ✓ ✓ 0.120 0.163 0.291 0.283 0.489 0.341 0.401

Table 6: Area Under the ROC Curve (AUROC) for the
prediction of each observation of different models.

Observation 6a 6b 6c 6d
Atelectasis 0.62 0.63 0.64 0.65
Cardiomegaly 0.63 0.64 0.64 0.65
Consolidation 0.65 0.74 0.67 0.78
Edema 0.76 0.77 0.77 0.79
Enlarged Cardiomediastinum 0.61 0.70 0.63 0.76
Fracture 0.62 0.72 0.64 0.78
Lung Lesion 0.65 0.75 0.65 0.81
Lung Opacity 0.78 0.79 0.78 0.80
No Finding 0.74 0.74 0.75 0.74
Pleural Effusion 0.81 0.82 0.83 0.84
Pleural Other 0.62 0.79 0.62 0.85
Pneumonia 0.72 0.76 0.73 0.79
Pneumothorax 0.68 0.79 0.69 0.81
Support Devices 0.80 0.82 0.83 0.83
Average AUROC 0.69 0.75 0.71 0.78

B Ablation Study

The key findings of the ablation study are listed
below:

• Comparing Model 3 and Model 6 shows signif-
icant degradation in both NLG and CE Metrics
when Step 1 is removed. Additionally, comparing
Model 2 and Model 5 highlights the importance
of Step 1 for performance.

• Comparing Model 4 and Model 6 reveals that
Step 2 improves both NLG and CE Metrics. How-
ever, comparing Model 1 and Model 5 indicates
that Step 2 is particularly important for NLG
Metrics when Step 3 is removed.

• Comparing Model 5 and Model 6 shows that
Step 3 is essential for improving NLG Metrics
but not as important for CE Metrics. A similar
observation is made by comparing Model 2 and
Model 3.

• Comparing Model 6 and Model 7 demonstrates
that PT matches the performance of FFT, with
PT using only 0.1% to 3% of trainable parame-
ters per task compared to FFT. This substantially
reduces training time, memory cost, and per-task
storage cost.

We further examined how various techniques
in Step 1 impact the performance of DCRRG. As
shown in Table 5, Model 6d achieves the best per-
formance when both balancing and additional data
are applied during training. Additionally, we found
that balancing is more important than adding extra
data for training.
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Table 7: Intermediate results of our proposed DCRRG for the example of study s52926904. Here, label is denoted
as the label extracted by CheXpert from the ground true report. Probability is denoted as the probability for each
observation predicted by the image encoder and the corresponding classification head in Step 1. Observation
description is denoted as the single observation description generated in Step 3.

Observation Label Probability Observation description
Atelectasis 1 0.76 There is mild left base atelectasis seen on the frontal view.

Cardiomegaly 0 0.23 The cardiomediastinal silhouette is normal.
Consolidation u 0.19 There is no focal consolidation.

Edema u 0.27 The lungs are clear of edema.
Enlarged Cardiomediastinum u 0.30 The cardiomediastinum is unremarkable.

Fracture u 0.12 There is no visualized displaced rib fracture.
Lung Lesion u 0.67 Numerous bilateral lesions are found on the frontal view.
Lung Opacity u 0.12 There is no focal opacity to suggest pneumonia.
No Finding u 0.02 There is no finding for this study.

Pleural Effusion 1 0.81 There is pleural effusions.
Pleural Other u 0.10 There is no finding of pleural other.
Pneumonia u 0.10 No signs of pneumonia.

Pneumothorax 1 0.73 Moderate right lateral pneumothorax is new.
Support Devices 1 0.88 There is little change in the monitoring and support devices.

C Pipeline Error Analysis

As shown in Table 6, Model 6d achieved the high-
est average AUROC of 0.78 across 14 observations,
while Model 6a achieved the lowest average AU-
ROC of 0.69. By comparing the AUROC in Table
6 with the NLG and CE Metrics in Table 5, we ob-
served a positive correlation between classification
accuracy and final report generation performance.
However, DCRRG does not require classification
performance to be extremely accurate. Model 6b
outperformed state-of-the-art methods with an aver-
age AUROC of 0.75. Additionally, examining the
AUROC for each observation prediction task, we
noticed significant improvements in extremely im-
balanced observations when using balancing tech-
niques (Model 6b and Model 6d). We also found
that training with extra data (Model 6c) is not as
helpful as balancing (Model 6b).
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