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Abstract

Large Vision-Language Models (LVLMs) have
become pivotal at the intersection of computer
vision and natural language processing. How-
ever, the full potential of LVLMs’ Retrieval-
Augmented Generation (RAG) capabilities re-
mains underutilized. Existing works either
focus solely on the text modality or are lim-
ited to specific tasks. Moreover, most LVLMs
struggle to selectively utilize retrieved informa-
tion and are sensitive to irrelevant or mislead-
ing references. To address these challenges,
we propose a self-refinement framework de-
signed to teach LVLMs to Selectively Utilize
Retrieved Information (SURf). Specifically,
when given questions that are incorrectly an-
swered by the LVLM backbone, we obtain
references that help correct the answers (pos-
itive references) and those that do not (nega-
tive references). We then fine-tune the LVLM
backbone using a combination of these pos-
itive and negative references. Our experi-
ments across three tasks and seven datasets
demonstrate that our framework significantly
enhances LVLMs’ ability to effectively utilize
retrieved multimodal references and improves
their robustness against irrelevant or mislead-
ing information. The source code is available
at https://github.com/GasolSun36/SURf.

1 Introduction

Large Vision-Language Models (LVLMs) have be-
come crucial at the intersection of computer vision
and natural language processing (NLP), empower-
ing various applications by generating contextually
relevant textual descriptions from visual inputs (Liu
et al., 2023b; gpt, 2023; Dai et al., 2023; Bai et al.,
2023; Ye et al., 2023; Zhu et al., 2023; Fan et al.,
2024; Sun et al., 2024). These models capture
and translate complex visual patterns into coher-
ent linguistic representations. The development

*Work done during internship at Shanghai AI Laboratory.
†Both are corresponding authors.

Vanilla-RAG: Based on the test image 
and references, she is lying on the bed.

Ours: Based on the test image and 
references, she is lying on the floor.

Retrieval Augmentation Generation

A woman and her gold-
en retriever share a 
tranquil moment on the
floor...

A person and their bla-
ck and tan dachshund 
are peacefully sleeping 
on a bed, 

What does she 
lie on?

Figure 1: Illustration of multimodal RAG. RAG can
introduce misleading content, causing LVLMs to gen-
erate incorrect responses. SURf can selectively utilize
information from images and descriptions, e.g., the first
image-caption pair.).

of LVLMs is driven by continuous improvements
in model architecture, training methodologies, and
data diversity (Wang et al., 2024b,a; Yu et al., 2023;
Qu et al., 2024b), resulting in better performance
and broader applicability.

Although LVLMs excel in visual language rep-
resentation, they struggle with image generaliza-
tion and understanding (Qu et al., 2024c). Simi-
larly, LLMs face these challenges in the NLP do-
main but can mitigate them by incorporating addi-
tional knowledge or references through Retrieval-
Augmented Generation (RAG), ensuring high trust-
worthiness (Karpukhin et al., 2020; Asai et al.,
2023; Xu et al., 2023). However, in LVLMs,
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How many apples 
in the images?

VQA

Vanilla: There are three apples.

The image depicting 
five apples on a tree...

The picture shows 7 
apples .... leaves...

Ours: There are four apples.

Describe this 
image in details.

Captioning

Vanilla: A person walking in snow.

The image depicting 
a...the skier is in a 
crouched position... 

The image captures a 
dynamic scene ..a 

skier dressed in a ...

Ours: A man skiing in the snow.

What category 
is the image?

Classification

Vanilla: ship.

The image captures a 
moment of an airplane
soaring in blue sky...

..The airplane, painted 
in a pristine white...

Ours: airplane.

Figure 2: The illustration of Multimodal RAG for VQA, Captioning and Classification Tasks. Providing images
similar to the test images along with their descriptions as references can help LVLMs answer questions more
accurately.

the full potential of RAG remains under-explored.
Firstly, many previous multimodal RAG-related
works have only focused on the text modality
(Ramos et al., 2023c,a,b), without fully utilizing the
LVLMs’ understanding of visual content. Secondly,
the few works that integrate multimodal references
are often limited to specific tasks like image cap-
tioning, ignoring the broader potential of applying
RAG technology (Yang et al., 2023b; Yasunaga
et al., 2023). Finally, a significant issue overlooked
by existing research is the potential irrelevance or
even disruptive nature of retrieved content in prac-
tical applications. Under this circumstance, vanilla
LVLMs fail to dynamically select retrieval content,
but treat them indiscriminately, leading to a perfor-
mance decline (Lin et al., 2023b; Qu et al., 2024a).

In this paper, we propose a self-refinement
framework that enables LVLMs to selectively uti-
lize the retrieved information from both image
and text sources while effectively enhancing the
model’s robustness against irrelevant or misleading
content. Specifically, we identify the visual ques-
tions that are wrongly answered by LVLM and use
image-caption pairs to prompt the LVLMs to gener-
ate responses. Secondly, we assess the contribution
of the introduced image-caption pairs by invok-
ing external evaluation tools, thereby constructing
a training dataset with positive and negative sam-
ples. Subsequently, we build a RAG instruction
dataset to further train the LVLMs, allowing them
to better benefit from RAG tasks and improve their
robustness against irrelevant retrieval content. It
is worth noting that we only reconstruct data from
the SFT phase of the LVLMs without using any

additional new datasets. We extensively evaluate
our method across seven datasets and benchmarks
in three different tasks: VQA, image captioning,
and image classification. The experimental results
demonstrate that our approach can further enhance
the RAG capabilities of existing LVLMs and sig-
nificantly improve their robustness in generating
responses when faced with irrelevant images or
content.

Our contributions are summarized as follows: (1)
We empirically demonstrate that integrating Multi-
modal RAG with LVLMs can improve model per-
formance, while also revealing that current LVLMs
are highly sensitive to irrelevant and misleading
retrieval information, which presents a significant
challenge. (2) We design a lightweight and cost-
effective self-refinement framework specifically
aimed at teaching LVLMs to selectively utilize rel-
evant information. (3) Through extensive experi-
ments and evaluations, we show that our approach
enhances the models’ ability to effectively utilize
retrieval information, making them more robust
against irrelevant and misleading references.

2 Robust Multimodal RAG

2.1 Preliminaries

The RAG consists of two main components: a re-
triever and a generator. The retriever fetches rele-
vant information from a large document collection,
and the generator uses the retrieved document to
produce the final output. We can represent the func-
tioning of the RAG in LVLMs with the following
formulas:
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The image 
depicting A 
woman on a 
tiled floor ...

This image 
shows a woman  
sleeping on a 
bed ...

<Retrieval> 

Image-Caption Corpus

What does 
she lie on?

LVLMs

1. Select Wrongly Answered Questions

Filter

Before answering a question, the assistant should refer to image-
caption pairs in <Retrieval> that are similar to the test image.

System Prompt

<SEP> </Retrieval> 

Construct Instruction Tuning Dataset

Instruction Tuning

What does 
she lie on?

Sofa

BedFloor FloorTarget

LVLMs

...

What does 
she lie on?

What does 
she lie on?

2. Retrieval

LVLMs

3. Select Positives and Negatives

Eval Tools

...

Figure 3: Illustration of our training framework. First, we collect questions that LVLMs initially answered incorrectly.
Next, we retrieve the Top-N image-caption pairs from the corpus, allowing the LVLM to reattempt the questions.
We then evaluate the answers to see if they have improved (positive) or worsened (negative). After that, we filter for
the highest-quality training data and use it for instruction tuning to train the LVLMs.

Given an input x (e.g., a question q or instruc-
tion with a feature vector of an image itest), the
retriever fetches k relevant images {i1, i2, . . . , ik}
from an image set of image-caption collection D.
The probability distribution of the retriever can be
represented as P̄ (i | x). The generator uses the re-
trieved images {i1, i2, . . . , ik}, the corresponding
captions {c1, c2, . . . , cm} and the input x to gen-
erate the output y (e.g., an answer, image caption,
or classification label). The conditional probability
distribution of the generator can be represented as:

P (y | x, {[i1, c1], [i2, c2] . . . , [ik, ck]} (1)

The final output of the LVLM with RAG
is based on the joint probability of the input
x and the set of retrieved image-caption pairs
{[i1, c1], [i2, c2], . . . , [ik, ck]}:

P (y | x) =
k∑

j=1

P (y | x, rj)P̄ (ij | x) (2)

where ri = [ij , cj ] represents the retrieved image-
caption pair, with cj being the caption correspond-
ing to the retrieved image ij .

2.2 Multimodal RAG Benefit LVLMs
RAG has been proven to improve model perfor-
mance on downstream tasks while maintaining a
high level of trustworthiness in the field of NLP
(Karpukhin et al., 2020; Asai et al., 2023; Xu et al.,
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Figure 4: Performance of the base model (LLaVA-1.5-
7B) without using RAG (Base), RAG with irrelevant
content (Irrelevant), and RAG on POPE-popular, MS-
COCO, and CIFAR-10.

2023; Jin et al., 2024). However, in LVLMs, the
full potential of RAG remains under-explored.

As shown in Figure 2, when addressing tasks
such as VQA, captioning, and classification, we
can enhance the model performance by retrieving
relevant images and their corresponding descrip-
tions to provide a pattern mapping for the input
x. The collection of pattern state is denoted as
M = {M0,M1, · · · ,Mn}, and Mi ∼ ([I, T ] ∈
M) , where I and T denote the image and descrip-
tion, respectively. Next, our goal is to learn this
mapping:

f : x→ f(x|Mi1 ,Mi2 , . . . ,Mik) (3)
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To better understand the impact of RAG on
model performance, we conducted experiments
comparing direct inference with RAG-enhanced
inference across three datasets. Figure 4 illustrates
the performance differences. It can be observed
that retrieving and incorporating additional multi-
modal information (both image and text) signifi-
cantly improves the model’s performance in tasks
across VQA, Image Captioning, and Classification.

2.3 Irrelevant Harms Model Performance

Typically, the retrieval process P̄ (ij | x) or P̄ (cj |
x) is typically implemented by computing image-
to-image or image-to-text similarity in CLIP em-
bedding space (Ramos et al., 2023c,a). However,
this retrieval process is not always reliable, lead-
ing to the inclusion of irrelevant or misleading ref-
erences. For example in Figure 1, the similarity
scores returned the Top-2 images most similar to
the test image. Nevertheless, these two images
contribute differently to the original question. The
latter image misleads the model and causes incor-
rect responses.

Figure 4 demonstrates the impact of irrelevant
information on RAG. It can be seen that the perfor-
mance of RAG is even worse than without intro-
ducing any additional information, which indicates
the negative impact of irrelevant or disturbing in-
formation on current LVLMs. We believe that the
RAG of current LVLMs still has significant poten-
tial. If we can teach the model to selectively utilize
the retrieved information and ignore the irrelevant
or misleading ones, the performance of RAG in
LVLMs will be further improved, potentially ap-
proaching the results shown by the gray bars.

2.4 Robust RAG Training Framework

Since RAG has great potential to help improve the
accuracy of model generation, and regardless of
how the retriever is optimized, achieving perfect
retrieval recall is unattainable (Radford et al., 2021;
Cherti et al., 2023). Therefore, we choose to op-
timize P (y | x, ri), through teaching the model
to learn to selectively utilize the retrieved infor-
mation. We propose a self-refinement framework
that enables LVLMs to selectively refer to rele-
vant information from both image and text sources
while effectively enhancing the model’s robustness
against irrelevant or misleading content.

2.4.1 Construction of Positive and Negative
Examples

Introducing both relevant and irrelevant content
during training can enhance the model’s ability to
distinguish and select relevant information (Lin
et al., 2023b). Therefore, at this stage, we construct
positive and negative examples (denoted as Cpos
and Cneg) for subsequent robust training.

We hypothesize that if the model initially an-
swers a question incorrectly but can answer cor-
rectly after including an example (both image
and description), that example contains useful
information (positive). Otherwise, the example
is considered misleading or irrelevant (negative).
Specifically, we first collect the data used by the
LVLM during the SFT stage and use a fixed-
parameter LVLM to answer questions based on
images, recording incorrect examples. Then, we
perform retrieval from the image-caption corpus to
obtain the Top-N images and their corresponding
descriptions. These are then appended to the test
image and question, allowing the LVLM to answer
the question again. We use specific evaluation tools
to determine whether the answer has improved, re-
mained unchanged, or worsened. Image-caption
pairs that successfully improve the answer are con-
sidered positive examples of the current question,
while those that do not cause any change or worsen
the answer are considered negative examples of the
current question.

Notably, the data we construct is sourced from
the examples in the existing LVLM training data
used during the instruction fine-tuning stage, re-
quiring no new external data.

2.4.2 Data Filtering
Due to the token length limitation in LVLMs, we
need to further filter the positive and negative ex-
amples obtained in the previous step. We exclude
examples from the Top-N image-caption pairs that
contain only positive or negative examples. For
positive examples, we select the image with the
highest similarity to the test image to ensure the in-
clusion of highly relevant information and to avoid
model training collapse:

ppos ∼ max
ij∈Cpos

pθV (x, ij) (4)

For negative examples, we choose the image
with the highest similarity to the test image as hard
negatives. These hard negatives are more similar
to the positive examples, thus requiring the model
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VQA Captioning Classification Avg.
POPE (R) POPE (P) POPE (A) MMstar VizwizV MS-COCO VizwizC CIFAR-10 EmoSet

7B Parameter Model
Zero-shot 87.3 86.1 84.2 30.3 50.0 198.6 134.5 81.5 52.8 89.48
Vanilla-RAG 87.9 86.3 83.3 32.1 48.3 178.1 169.6 79.7 50.4 90.63
Rerank-RAG 88.3 86.3 83.4 31.4 49.3 210.0 164.2 80.9 50.5 93.81
Filter-RAG 88.5 86.6 83.9 31.8 51.5 231.1 172.0 82.2 51.8 97.71
SURf 89.8 87.9 83.6 33.5 54.3 238.4 177.4 83.5 53.1 100.17

13B Parameter Model
Zero-shot 87.1 86.2 84.5 32.8 53.6 210.0 150.2 82.6 56.4 93.71
Vanilla-RAG 88.3 86.4 83.4 33.1 50.2 218.5 160.9 80.7 55.6 95.23
Rerank-RAG 88.4 86.4 83.6 33.5 50.9 223.1 162.1 82.0 56.0 96.22
Filter-RAG 88.6 86.5 83.8 33.7 51.7 226.7 164.1 83.2 56.5 97.20
SURf 89.5 87.7 84.6 34.5 54.6 250.9 177.5 85.1 58.1 102.50

Table 1: Performance comparison of our model on 7B and 13B parameters using four methods across seven tasks.
In POPE, (R), (P), and (A) stand for Random, Popular, and Adversarial subsets, respectively (applies to all tables
below.). VizwizV and VizwizC represents VQA and captioning based on Vizwiz. The best performance in the table
is highlighted in bold.

Para. Shots
POPE (R) POPE (P) POPE (A) MS-COCO
Acc. F1 Acc. F1 Acc. F1 CIDEr ↑

Flamingo (Alayrac et al., 2022) 9B 4-shots - - - - - - 93.1
OpenFlamingo (Awadalla et al., 2023) 9B 4-shots 48.5 48.1 49.5 49.0 48.9 48.5 89.0
Otter (Li et al., 2023a) 9B 4-shots 82.5 81.8 74.7 73.9 69.9 69.4 92.2
MMICL (Zhao et al., 2023) 12.1B 4-shots 87.3 86.6 82.7 82.1 81.0 80.7 95.7
SURf 7B 2-shots 89.8 89.3 87.9 87.6 83.6 83.9 101.3

Table 2: Performance of our 7B model compared to four ICL models on the three POPE subsets (VQA) and
MS-COCO (captioning). The results of the ICL models are directly from the original paper.

to develop higher discriminative capabilities to ac-
curately identify them:

pneg ∼ max
ij∈Cneg

pθV (x, ij) (5)

2.4.3 RAG Instruction-Tuning

Using the high-quality positive and negative ex-
ample pairs generated through the above process,
we fine-tune the existing model with RAG instruc-
tions. The retrieved images and their correspond-
ing descriptions are concatenated sequentially be-
fore the test image, enclosed by special characters
<Retrieval> and </Retrieval>. This ensures
that the model can effectively distinguish between
retrieved-context and the actual test input, enhanc-
ing its ability to leverage relevant information while
minimizing the impact of irrelevant or misleading
data.

The algorithm of our method is shown in the
Appendix Algorithm 1.

3 Experiment

3.1 Datasets
We evaluated our model using seven datasets
across three distinct tasks: VQA: POPE (Li et al.,
2023c), MMStar (Chen et al., 2024), Vizwiz-
VQA (Chen et al., 2022), Image Captioning: MS-
COCO (Lin et al., 2014), Vizwiz-Caption (Gu-
rari et al., 2020), Image Classification: CIFAR-10
(Krizhevsky, 2009), EmoSet (Yang et al., 2023a).
For more detailed information and metrics can be
found in the Appendix A.2.

3.2 Baselines
We compared four methods among LlaVA-1.5-7B
and LLaVA-1.5-13B (Liu et al., 2023b):
Zero-shot Directly prompting LVLMs to generate
responses.
Vanilla-RAG Concatenating the Top-N image-
caption pairs from the database, which have the
highest CLIP score similarity to the test image be-
fore the questions and images for the LVLMs to
respond.
Rerank-RAG Building on Vanilla-RAG, we
prompt the LLM to generate a caption for the test
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POPE (R) POPE (P) POPE (A) MS-COCO CIFAR-10
Acc. F1 Acc. F1 Acc. F1 B@4 METEOR ROUGE-L CIDEr SPICE Acc.

Zero-shot 87.3 86.0 86.1 84.9 84.2 83.4 22.3 28.0 50.9 75.3 22.1 81.5

Vanilla-RAG 87.9 86.5 86.3 85.0 83.3 82.5 24.5 28.3 51.4 79.8 22.4 79.7
w/ 1k 87.5 86.3 85.4 84.2 82.2 81.3 22.5 27.8 50.5 75.0 21.8 79.5
w/ 5k 87.4 86.2 85.3 84.1 82.2 81.3 22.2 27.7 50.4 75.0 21.6 77.1
w/ 10k 87.2 86.0 85.0 83.8 82.1 81.2 22.0 27.4 50.1 75.4 21.2 76.7
w/ 100k 87.0 85.9 84.9 83.7 82.0 81.1 22.1 27.3 50.3 74.8 21.5 76.4
w/ 1,000k 86.7 85.0 84.5 83.1 81.8 80.8 22.0 27.5 49.9 73.6 21.2 75.6

Ours 89.8 89.3 87.9 87.6 83.6 83.9 27.9 29.9 55.1 101.3 24.2 83.5
w/ 1k 88.9 88.3 87.8 87.3 83.1 83.0 26.8 29.4 54.2 97.3 23.7 83.1
w/ 5k 89.3 88.7 87.8 87.3 83.1 83.4 26.5 29.1 53.6 97.4 23.5 82.4
w/ 10k 89.4 88.8 87.6 87.3 83.2 83.5 26.9 29.4 54.2 97.7 23.8 83.4
w/ 100k 89.1 88.5 87.7 87.2 83.3 83.4 26.6 29.2 53.9 96.5 23.6 80.5
w/ 1,000k 89.2 88.7 87.9 87.4 83.6 83.6 27.1 29.4 54.3 98.4 23.7 80.9

Table 3: Performance comparison of our model and vanilla-RAG on three tasks when introducing irrelevant image-
caption pairs. "1k to 1,000k" indicates the range of similarity between the introduced images and the test images,
with larger values indicating less relevance.

POPE (R) POPE (P) POPE (A) MS-COCO CIFAR-10
Acc. F1 Acc. F1 Acc. F1 B@4 METEOR ROUGE-L CIDEr SPICE Acc.

Vanilla-RAG 87.9 86.5 86.3 85.0 83.3 82.5 24.9 28.5 52.8 89.7 22.6 79.5
w/ Switch 87.2 86.0 85.7 84.6 82.4 82.0 22.2 28.0 50.8 75.1 22.0 78.4

Ours 89.8 89.3 87.9 87.6 83.6 83.9 27.9 29.9 55.1 101.3 24.2 83.5
w/ Switch 89.6 89.1 87.9 87.6 83.6 83.8 26.8 29.3 54.1 97.1 23.7 83.4

Table 4: Performance comparison of our model and vanilla-RAG on three tasks in the random switching of retrieved
content setting.

image. We then calculate the BERT-Score between
this caption and the descriptions of the retrieved im-
ages, ranking the image-caption pairs with higher
relevance scores at the top.
Filter-RAG Enhancing Rerank-RAG by removing
any image-caption pairs with a similarity score less
than S.

Additionally, we compared four In-Context
Learning (ICL) models: Flamingo (Alayrac et al.,
2022), OpenFlamingo (Awadalla et al., 2023), Otter
(Li et al., 2023a), and MMICL (Zhao et al., 2023).
For all approaches, we used greedy decoding as the
decoding strategy.

3.3 Implementation details

We collected 60,000 initial incorrect responses
from LVLMs and generated 10,000 samples with
positive and negative sample pairs. After filter-
ing, we refined this to 2,000 samples for the final
training data. We use LLaVA-1.5 as the LVLM
backbone of our model SURf-7B and SURf-13B
and use CLIP (ViT-L with a resolution of 336*336)
(Radford et al., 2021) as the vision encoder. Our
7B and 13B models are further trained from the

instruction-finetuned LLaVA-1.5-7B and LLaVA-
1.5-13B models following previous works (Lin
et al., 2024, 2023a; Li et al., 2023b; Liu et al.,
2023c) since LLaVA is the most popular used
LVLMs. We use 8 A100-80G to training 1 hour for
2 epochs. For the VQA and image captioning task,
we use exact match and Bert-Score (Zhang et al.,
2020) as the evaluation tool respectively, men-
tioned in Section 2.4.2. We use ShareGPT4v-PT
(Chen et al., 2023) as our database for RAG, which
includes approximately 1,246k image-caption pairs
with an average caption length of 826. For the re-
trieval system, we use FAISS (Johnson et al., 2021)
with flat indexes to pre-index the computed embed-
dings of all images in the database.

3.4 Experimental Results

Compare to Baselines Table 1 presents the com-
parison of our model, trained with our method,
against four other methods. On the VQA task,
our model significantly outperforms previous meth-
ods, with a VQA accuracy improvement of approx-
imately 3.7% for the 7B model compared to zero-
shot and 2.3% compared to Filter-RAG, achieving
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Figure 5: Ablation Study of Database Size and Data Filter.
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Figure 6: Efficiency analysis of our model compared to
four methods. We report the running times per sample.

state-of-the-art results. Furthermore, on the cap-
tioning task, the improvement of our model is even
more pronounced (detailed results can be found in
the Appendix).

In contrast, for the classification task, vanilla-
RAG may perform worse than direct inference.
However, our training method enables the model to
selectively refer to the retrieved content, resulting
in a final performance that significantly surpasses
zero-shot. For the 13B model, the improvement
in captioning is even more significant, with an ap-
proximate 34.1% increase compared to zero-shot.
Additionally, the table illustrates that simple meth-
ods, such as reranking and filtering, cannot effec-
tively address the problem of irrelevant content
introduced by retrieval.

Compare to ICL models The experiments in Ta-
ble 2 compare our model with various ICL models,
as ICL models are very similar to ours at the input
level. Despite having fewer parameters and exem-
plars (For the ICL models, more shots correspond
to better performance, we used their 4-shot results
for comparison since they only reported results
for 4-shot or 32-shot scenarios.) in the prompts

compared to the other models, our model achieves
the best performance on both the POPE and MS-
COCO datasets. Specifically, it improves the av-
erage accuracy by 3.4% and the F1 score by 3.8%
on POPE compared to the second-best model. This
demonstrates that our model can effectively utilize
the retrieved content to enhance the performance
of downstream tasks.

Robustness Tables 3 and 4 present the results of
our robustness tests. In Table 3, we maintain the
image-caption pair with the highest CLIP similarity
score among the retrieved content to ensure effec-
tive information. We also introduce image-caption
pairs from the Top-K (from 1k to 1,000k) positions
as forced irrelevant information. The results show
that the performance of vanilla-RAG significantly
declines on the three datasets as more irrelevant
image-caption pairs are introduced. In contrast, our
model’s performance remains very stable. Notably,
the model’s performance when introducing 100k
and 1000k irrelevant image-caption pairs is better
than when introducing 1k pairs. This improve-
ment is because, after training with hard negative
samples, our model can easily distinguish content
unrelated to the test image and question, thereby
focusing more on other relevant information in the
retrieval.

Table 4 shows that our model remains ro-
bust even after randomly shuffling the examples,
whereas vanilla-RAG exhibits a significant decline
in performance. This demonstrates that training
the model with our proposed framework enables
it to selectively extract relevant information from
the retrieved content, making it less sensitive to the
order of the examples.

7617



3.5 Ablation Study
Size of the Database We conducted experiments
using different databases as retrieval sources, with
results shown in Figure 5(a). It can be seen that
using COCO-2017 (approximately 118k image-
caption pairs) and ShareGPT-4V (approximately
1,246k image-caption pairs) results in notable dif-
ferences in model performance for VQA and classi-
fication tasks, while the metrics for the captioning
task show minimal differences. The reason is that
VQA and classification tasks are more challenging
for the model compared to captioning, requiring
a larger retrieval source to provide more diverse
reference image-caption pairs.

Data Filter Figure 5(b) presents the results with
and without using the data filtering step. It can
be seen that the performance of the model trained
without data filtering is significantly worse com-
pared to when data filtering is used. This highlights
the importance of filtering positive and negative
samples and training with hard negative sampling
in our training framework.

Efficiency Analysis We compared the efficiency
of our method with four other methods, as shown in
Figure 6. We calculate the average running time for
1,000 samples in image captioning tasks with the
max token length set to 256. It can be observed that
our method increases the time by approximately
1.3 seconds per sample compared to the zero-shot
approach. This increase is primarily due to the
time required to convert the image to an embed-
ding, retrieval time, and the additional overhead
introduced by the increased length of the prompt.
However, this slight increase in time is acceptable
considering the performance improvement.

In contrast, Rerank-RAG and Filter-RAG are
slower because they require additional prompts for
the LVLMs to generate captions for the current
image, which are then used for text similarity com-
parisons.

4 Related Work

4.1 Large Vision-Language Models
Large vision-language models (LVLMs) have
greatly benefited from advancements in large lan-
guage models (LLMs) (Touvron et al., 2023; Chi-
ang et al., 2023; Su et al., 2024a,c), which inte-
grate a vision encoder with a language model back-
bone. Leveraging the success of LLMs through pre-
training and instruction tuning (Liu et al., 2023b;

Ye et al., 2023; Zhu et al., 2023; Bai et al., 2023;
Dai et al., 2023), LVLMs like LLaVA (Liu et al.,
2023b) employ GPT-4V1 to generate diverse in-
struction datasets, thereby enhancing their capacity
to understand images and follow human instruc-
tions. Despite these successes, current MLLMs
still face significant challenges with hallucinations
(Su et al., 2022; Li et al., 2023d; Liu et al., 2023a;
Wang et al., 2024a; Zhao et al., 2024; Leng et al.,
2023; Zhang et al., 2024; Zhou et al., 2024). These
issues often result from misalignment between the
vision and language components, leading to ne-
glecting image details and generating incorrect con-
tent. Our work aims to improve LVLMs’ ability
to selectively reference retrieved information and
enhance robustness against misleading content.

4.2 Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) has be-
come a powerful approach in natural language pro-
cessing, combining the strengths of retrieval-based
methods and generative models (Merth et al., 2024;
Asai et al., 2023; Xu et al., 2023; Lin et al., 2023b;
Su et al., 2024b). In the NLP domain, RAG aims
to select the most relevant documents from a large
corpus using techniques such as BM25 (Robertson
and Zaragoza, 2009) and neural retrievers like DPR
(Karpukhin et al., 2020). However, the challenge in
the multimodal domain is considerably higher, as
the retrieval dimension encompasses images along
with text. Previous works (Yang et al., 2023b;
Ramos et al., 2023c; Yasunaga et al., 2023; Ramos
et al., 2023a,b; Xia et al., 2024c,a,b) have shown
that retrieving similar images based on a test image
and using their corresponding captions can enhance
model performance on captioning tasks. Neverthe-
less, these methods often fail to address how to
manage irrelevant image-caption pairs, which can
decrease model accuracy. Our work focuses on
improving LVLMs’ ability to selectively reference
pertinent retrieved information and increase robust-
ness against misleading content, thereby enhancing
performance across various downstream tasks.

5 Conclusion

This paper introduces a robust self-refinement mul-
timodal RAG training framework designed for
LVLMs. Our approach incorporates retrieval in-
formation for initially incorrect answers, filter-
ing in beneficial positive examples and excluding

1https://openai.com/research/gpt-4v-system-card
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detrimental negative ones. We implement a hard-
negative sampling strategy to preserve the training
data of the highest quality and employ RAG-based
instruction fine-tuning. Experimental results across
seven datasets spanning three different tasks show
that our method significantly enhances the capa-
bility of LVLMs to effectively utilize multimodal
retrieval information, while also improving their
resilience against misleading content.

6 Limitation

Our method mainly has three limitations:

• Our retrieval approach heavily depends on
large-scale, high-quality data sources. While
using only the training data as the data source
is a feasible solution, the performance is
slightly inferior compared to large-scale data
sources in complex tasks. Future work should
explore how to leverage small sample data
sources for inference through retrieval.

• Despite our method having been extensively
evaluated on tasks such as Visual Question
Answering (VQA), image captioning, and im-
age classification, its generalization to other
visual tasks, such as image generation and
image segmentation, remains unexplored. Fu-
ture work should investigate the adaptability
of our framework to a broader range of tasks.

• Given that the retrieval process currently sup-
ports a maximum of three image-caption pairs
due to lengthy descriptions, future optimiza-
tions could include using shorter captions,
employing methods to compress descriptions,
or increasing the maximum input tokens for
LVLMs. These improvements would enable
more image-caption pairs to be included, en-
hancing the accuracy of downstream tasks of
LVLMs.
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A Appendix

A.1 Algorithm

Algorithm 1 Robust RAG Training Framework

Require: Input question q and image itest, Image-
Caption collection D, Evaluate Tools T , Vision
Encoder pθV , LVLMs Mθ, SFT data collection
C, Training data set S, Positive set Cpos, Neg-
ative set Cneg

1: S ← []
2: for each instruction x in C do
3: response←Mθ(x)
4: state← T (response)
5: if not state then
6: S ← S ∪ {x}
7: end if
8: end for
9: for each instruction x in S do

10: [i, c]← Retrieval from D with query itest
11: response←Mθ(x, [i, c])
12: state← T (response)
13: if state then
14: Cpos ← Cpos ∪ {(x,
15: [maxij∈Cpos p

θ
V (x, ij), cj ])}

16: else
17: Cneg ← Cneg ∪ {(x,
18: [maxij∈Cneg p

θ
V (x, ij), cj ])}

19: end if
20: end for
21: S ← [Cpos,Cneg]
22: while Mθ has not converged do
23: Update parameters of Mθ on S
24: end while

A.2 Data Analysis
In this section, we introduce the datasets used in
our experiments. The statistics of these datasets are
shown in Table 5.

POPE POPE (Li et al., 2023c) offers a method to
assess object hallucination in LVLMs by querying
if specific objects exist in images. The queries are
balanced between existent and non-existent objects
(50% each). There are three sampling settings:
random, popular, and adversarial. The evaluation
pivots on two key metrics: Accuracy and the F1
score.

MMStar MMStar (Chen et al., 2024) is an ad-
vanced benchmark designed to evaluate the capa-
bilities of LVLMs across multiple dimensions. The

Dataset/Benchmark Answer Type Test

POPE Yes/No 9,000
MMStar Multiple Choice 1,500
Vizwiz-VQA Single word or Phrase 8,000
MS-COCO Text 5,000
Vizwiz-Caption Text 7,750
CIFAR-10 Class Name 10,000
EmoSet Class Name 800*

Table 5: The statistics of the datasets used in this pa-
per. * denotes we randomly selected 800 samples from
EmoSet to constitute the test set.

benchmark includes 1,500 meticulously selected
challenge samples. These samples are initially cho-
sen from existing benchmarks using an automated
pipeline, followed by a rigorous human review to
ensure high quality.

Vizwiz-VQA Vizwiz-VQA (Chen et al., 2022) is
the task of returning the answer to a question about
an image. It has 8,000 test samples with the unique
label "Unanswerable."

MS-COCO The MS-COCO (Lin et al., 2014)
dataset is a large-scale dataset for object detection,
segmentation, key-point detection, and captioning.
We use this dataset only for the image captioning
task.

Vizwiz-Caption VizWiz-Caption (Gurari et al.,
2020) is a specialized dataset for evaluating and
improving image captioning systems, particularly
for visually impaired users. It consists of images
taken by visually impaired individuals using their
smartphones, accompanied by human-generated
captions.

CIFAR-10 CIFAR-10 (Krizhevsky, 2009) is a
well-known benchmark dataset primarily used for
evaluating image classification algorithms. The
dataset is split into 50,000 training images and
10,000 test images, divided into ten different
classes: airplanes, automobiles, birds, cats, deer,
dogs, frogs, horses, ships, and trucks.

EmoSet EmoSet (Yang et al., 2023a) comprises
3.3 million images in total, with 118,102 of these
images carefully labeled by human annotators,
making it five times larger than the largest existing
dataset. We randomly sampled 100 instances from
each class to serve as our test set.

7623



POPE (R) POPE (P) POPE (A) MS-COCO CIFAR-10
Acc. F1 Acc. F1 Acc. F1 B@4 METEOR ROUGE-L CIDEr SPICE Acc.

Zero-shot 87.3 86.0 86.1 84.9 84.2 83.4 22.8 28.2 51.4 85.4 22.2 81.5
1-shot

Vanilla-RAG 87.7 86.3 85.2 84.1 82.8 81.9 22.1 27.8 50.7 76.2 21.9 79.8
Ours 89.6 89.1 87.8 87.4 83.3 83.7 26.6 29.4 54.0 96.2 23.7 82.4

2-shot
Vanilla-RAG 87.9 86.5 86.3 85.0 83.3 82.5 24.9 28.5 52.8 89.7 22.6 79.5
Ours 89.8 89.3 87.9 87.6 83.6 83.9 27.9 29.9 55.1 101.3 24.2 83.5

3-shot
Vanilla-RAG 87.5 86.0 85.5 84.2 82.6 81.6 23.0 28.1 51.4 79.2 22.2 79.1
Ours 89.3 88.7 87.8 87.4 83.2 83.3 27.1 29.3 54.4 98.7 23.6 82.0

Table 6: Number of exemplars.

POPE (R) POPE (P) POPE (A) MS-COCO CIFAR-10
Acc. F1 Acc. F1 Acc. F1 B@4 METEOR ROUGE-L CIDEr SPICE Acc.

Vanilla-RAG 87.9 86.5 86.3 85.0 83.3 82.5 24.5 28.3 51.4 79.8 22.4 79.7

1k 86.6 84.8 85.8 84.0 83.2 81.6 25.3 26.7 51.0 98.1 22.7 79.2
2k 89.8 89.3 87.9 87.6 83.6 83.9 27.9 29.9 55.1 101.3 24.2 83.5
3k 88.8 87.9 87.3 86.5 83.2 82.9 27.5 29.4 53.5 99.3 23.9 81.5
4k 88.2 87.5 87.0 86.3 82.9 82.5 26.8 28.8 51.4 96.8 23.0 79.6

Table 7: Effect of training data size.

A.2.1 Metrics
Unless otherwise specified, we use exact match
as the evaluation metric for VQA and classifica-
tion tasks. For captioning tasks, we use BLEU-4,
ROUGE-L, CIDEr, METEOR, and SPICE as eval-
uation metrics2.

A.3 Additional Ablation Study and
Experiment Analysis

A.3.1 Sensitivity to the Number of Examplars
Table 6 shows the performance of our model with
different numbers of examples. Due to the long
captions of ShareGPT-4V, only three examples can
fit within a 4096 context window. Our method
demonstrates robustness with 1, 2, and 3 exam-
ples, indicating adaptability to various numbers of
examples. However, the performance peaks with
2 examples and declines with 1 and 3 examples.
The decline with 1 example may be due to insuffi-
cient information, while 3 examples may introduce
excessive irrelevant information.

A.3.2 Effect of Training Data Size
Table 7 shows the experiments on the amount of
training data. Using only 2k data points, our model
is already able to utilize RAG and achieve the best
performance fully. Although the performance with

2We use the official COCO evaluation toolkit.

3k and 4k data points is slightly worse than with
2k, the results still surpass those of vanilla-RAG.
This indicates that our framework can sufficiently
leverage its capabilities using just 2k samples self-
generated by the model.

A.3.3 Effect of Different Retrieved Content
In this section, we explore the performance differ-
ences when using image-caption pairs versus using
only captions for retrieval across three tasks, as
shown in Table 8. For VQA and classification tasks,
using both image and caption yields the best results,
as the additional information from the image is ben-
eficial for tasks that require a strong understanding
of the image. However, for the captioning task,
using only captions performs better since this task
requires the model to generate a relevant response
based solely on the retrieved descriptions.

A.3.4 Detail Results of Captioning Tasks
In the main table, the metrics for the captioning
task are the sum of BLEU-4, METEOR, ROUGE-
L, CIDEr, and SPICE. We present the detailed re-
sults of our 7B and 13B models on MS-COCO and
Vizwiz-Caption in Table 9.

A.3.5 Effect of Irrelevant Content
We also tested Qwen-VL (Bai et al., 2023) and
mPLUG-Owl2 (Ye et al., 2023) under three settings
(Base, Irrelevant, and RAG) across three tasks. The
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POPE (R) POPE (P) POPE (A) MS-COCO CIFAR-10
Acc. F1 Acc. F1 Acc. F1 B@4 METEOR ROUGE-L CIDEr SPICE Acc.

Vanilla-RAG
w/ image-caption 87.9 86.5 86.3 85.0 83.3 82.5 24.5 28.3 51.4 79.8 22.4 79.7
w/ caption 87.4 86.3 85.9 84.7 83.0 82.3 24.7 28.5 51.8 80.6 22.9 79.2

Table 8: Performance of Vanilla-RAG on downstream tasks with different retrieval content.

MS-COCO Vizwiz-Caption Avg.
B@4 METEOR ROUGE-L CIDEr SPICE B@4 METEOR ROUGE-L CIDEr SPICE

7B Parameter Model
Zero-shot 22.3 28.0 50.9 75.3 22.1 15.2 19.3 40.9 47.3 11.8 33.51
Vanilla-RAG 24.5 28.3 51.4 79.8 22.4 21.0 21.6 45.2 67.1 14.7 37.60
Rerank-RAG 24.7 28.6 52.0 82.1 22.6 20.5 20.9 44.3 64.6 13.9 37.42
Filter-RAG 26.8 29.4 54.2 97.0 23.7 21.4 21.8 45.9 68.0 14.9 40.31
Ours 27.9 29.9 55.1 101.3 24.2 22.4 22.3 46.3 71.1 15.3 43.57

13B Parameter Model
Zero-shot 22.8 28.2 51.4 85.4 22.2 18.0 19.8 42.5 57.2 12.7 36.52
Vanilla-RAG 24.9 28.5 52.8 89.7 22.6 21.6 21.3 45.4 59.4 13.2 37.94
Rerank-RAG 25.1 28.6 53.5 93.1 22.8 21.8 21.2 45.5 60.2 13.4 38.52
Filter-RAG 25.5 28.7 53.9 95.6 23.0 22.0 21.4 45.6 61.5 13.6 39.08
Ours 30.8 29.1 56.0 111.5 23.5 24.5 21.1 46.2 71.2 14.5 44.83

Table 9: Full results of 7B and 13B Robust-LlaVA on MS-COCO and Vizwiz-Caption. The best performance in the
table is highlighted in bold.

results are shown in Figures 7(a) and 7(b). It can
be observed that irrelevant content has a significant
impact on the current LVLMs.

A.4 Case Study
We present four examples comparing our method
with zero-shot and vanilla-RAG, as shown in Fig-
ures 8, 9, 10, and 11.
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(a) Performance of the base model (Qwen-VL) without
using RAG (Base), RAG with irrelevant content (Irrelevant),
and RAG on POPE-popular, MS-COCO, and CIFAR-10.
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(b) Performance of the base model (mPLUG-Owl2) without
using RAG (Base), RAG with irrelevant content (Irrelevant),
and RAG on POPE-popular, MS-COCO, and CIFAR-10.

Figure 7: Ablation Study of Database Size and Data Filter.

Question: Is there a tennis 
ball in the image?

Vanilla: Yes, there is a tennis 
ball.

A young girl stands on a 
vibrant green tennis court, 
dressed in light blue ...as if 

waiting for the ball or 
observing the court...   

A young girl, dressed in a 
colorful outfit and holding a 
tennis racket, is intensely 
focused ... surrounded by a 
green fence and scattered 

tennis ball...

Vanilla-RAG: No, there is no ball in the image.

Ours: Yes, there is a tennis ball in the image.

Figure 8: Case for comparing our method with zero-shot and vanilla-RAG.
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Question: How many bottles 
in the image?

Vanilla: there is one bottle in 
the image.

The image features a 
tantalizing meal on a white 
plate, consisting of a pulled 
pork sandwich with a bite 

taken out of it, ... arranged 
artfully to create...

A plate of food, consisting of 
a sandwich with lettuce and 
tomato on .... pile of golden 

brown fries, accompanied by a 
freshly poured glass of beer, 

is placed on a ....

Vanilla-RAG: There are one bottle in the image.

Ours: There are two bottles in the image.

Figure 9: Case for comparing our method with zero-shot and vanilla-RAG.
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Question: What sort of wires 
are above the vehicle?

Vanilla: Plastic.

The image depicts a vibrant 
city street scene featuring a 
blue and yellow King County 

Metro Transit bus driving by a 
commercial building with a red 

awning, highlight...

The photo depicts a lively 
street scene in Vancouver, 

Canada, featuring a blue and 
white bus making a left turn 

at an intersection, surrounded 
by other vehicles ...

Vanilla-RAG: There is no wire above the vehicle.

Ours: Electrical.

Figure 10: Case for comparing our method with zero-shot and vanilla-RAG.
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Question: Do the bicycles 
have any additional features?

Vanilla: There are some 
baskets on the bicycles.

The image depicts three  
facing the same direction with 
baskets on the front, evoking 

a sense of anticipation and 
potential adventure against a 

rustic orange ...

The image depicts a colorful 
row of bicycles, arranged in an 
orderly fashion, parked on a 
sidewalk in an urban setting 

with lush greenery in the 
background ...

Vanilla-RAG: There are some baskets on the 
bicycles.

Ours: Yes, the bicycles have baskets and coolers 
on them, making them suitable for deliveries.

Figure 11: Case for comparing our method with zero-shot and vanilla-RAG.
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