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Abstract

Despite the great success of Large Vision-
Language Models (LVLMs), they inevitably suf-
fer from hallucination. As we know, both the
visual encoder and the Large Language Model
(LLM) decoder in LVLMs are Transformer-
based, allowing the model to extract visual infor-
mation and generate text outputs via attention
mechanisms. We find that the attention distribu-
tion of LLM decoder on image tokens is highly
consistent with the visual encoder and both
distributions tend to focus on particular back-
ground tokens rather than the referred objects
in the image. We attribute to the unexpected
attention distribution to an inherent flaw in the
visual encoder itself, which misguides LLMs to
over emphasize the redundant information and
generate object hallucination. To address the is-
sue, we propose DAMRO, a novel training-free
strategy that Dive into Attention Mechanism of
LVLM to Reduce Object Hallucination. Specif-
ically, our approach employs classification to-
ken (CLS) of ViT to filter out high-attention
outlier tokens scattered in the background and
then eliminate their influence during decoding
stage. We evaluate our method on LVLMs in-
cluding LLaVA-1.5, LLaVA-NeXT and Instruct-
BLIP, using various benchmarks such as POPE,
CHAIR, MME and GPT-4V Aided Evaluation.
The results demonstrate that our approach sig-
nificantly reduces the impact of these outlier
tokens, thus effectively alleviating the halluci-
nation of LVLMs.

1 Introduction

Large Vision-Language Models (LVLMs) research
(Dai et al., 2023; Liu et al., 2024b; Chen et al.,
2023; Ye et al., 2023) has witnessed rapid advance-
ment in the past few years, particularly demonstrat-
ing strong capabilities in visual reasoning tasks.
However, LVLMs still face significant challenges
related to object hallucination (Rohrbach et al.,
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2018), where the objects described in the gener-
ated text do not align with the visual ground truth
of the input. This issue is prevalent across various
models, posing a critical problem for the reliability
and safety of LVLMs (Ahmad et al., 2023).

Recently, the issue of object hallucination in
LVLMs has gained increasing attention. Early
work has tried many methods, such as optimizing
the training and fine-tuning methods (Sarkar et al.,
2024; Xiao et al., 2024), incorporating external in-
formation or models, e.g. DETR (Carion et al.,
2020)(Zhao et al., 2024; Chen et al., 2024), pro-
viding feedback on hallucinated information and
reprocesses (Zhou et al., 2024; Yin et al., 2023).
Efforts also include LLM decoding methods, like
contrastive decoding (Leng et al., 2024; Favero
et al., 2024) and other novel decoding methods
(Huang et al., 2024).

These approaches mainly focus on improving
the overall model architecture or specific mod-
ules within LVLMs, such as the visual encoder
or LLM decoder. However, they often overlook
the fundamental component of LVLMs, the Vision
Transformer (ViT) structure (Dosovitskiy et al.,
2021), and its impact on the hallucination genera-
tion mechanism during the LLM decoding stage.

Based on LLaVA-1.5 (Liu et al., 2024a), we ex-
plore the attention map in both the visual encoder
and the LLM decoder. We find outlier tokens in
the attention map of both components, which are
highly consistent with each other. These high-norm
outlier tokens often contain globally redundant vi-
sual information (Darcet et al., 2024). Additionally,
our analysis reveals a correlation between atten-
tion to these tokens and the occurrence of object
hallucination.

To address the aforementioned issue, we propose
the Dive into Attention Mechanism of LVLM to
Reduce Object Hallucination (DAMRO) method,
as illustrated in Figure 1. DAMRO filters out
high-norm outlier tokens from the ViT attention
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Figure 1: An overview of DAMRO. We utilize attention mechanism to filter the outlier tokens, and then apply
contrastive decoding to mitigate the influence of outlier tokens in LLM decoding stage.

map, identifying them as negative tokens, and then
projects them into the LLM along with normal
tokens. Contrastive decoding is then applied to re-
duce the LLM decoder’s reliance on these tokens
that contain globally redundant information and
to enhance its focus on object-level details, thus
mitigating model hallucination.

Our method is training-free and does not intro-
duce external information or models. It outper-
forms similar approaches such as M3ID (Favero
et al., 2024) and VCD (Leng et al., 2024) in overall
effectiveness. Additionally, since ViT is such a pop-
ular backbone of visual encoder (Yin et al., 2024)
that our approach demonstrates strong generaliz-
ability due to its utilizing on attention mechanism.

In conclusion, our main contributions are sum-
marized as follows:

• We conduct in-depth analysis of the relation-
ship between the attention maps of the visual
encoder and the LLM decoder, revealing a
high consistency in the distribution of their
outlier tokens.

• We analyze the impact of the consistency on
object hallucination and design the DAMRO
method to mitigate the hallucination in
LVLMs.

• We demonstrate effectiveness of our method
via extensive experiments on various models
and benchmarks. Moreover, our training-free
approach is applicable to most LVLMs with-
out external knowledge or models.

2 Related Work

2.1 Hallucination in LVLMs

In LVLMs, hallucination refers to discrepancies
between visual input (ground truth) and textual out-
put. Hallucination is initially identified and stud-
ied in LLM research (Huang et al., 2023; Ji et al.,
2023). However, LVLMs also suffer from halluci-
nation, which is much more complex due to their
intricate structure. Han et al. (2024) analyze hallu-
cination from the perspective of training data bias.
Tong et al. (2024), Jiang et al. (2024), and Huang
et al. (2024) focus on structural causes, revealing
the flaws in visual encoders, the misalignment of
visual-textual modalities, and the inherent halluci-
nations of LLM respectively. Zhou et al. (2024)
identify patterns in LVLM input and output, propos-
ing object co-occurrence, model uncertainty, and
the spatial positioning in sentence as causes. These
studies reveal the mechanisms of hallucinations
and offer new approaches to address this issue in
LVLMs.

Unlike previous studies, we start by analyzing
the attention maps of the visual encoder and LLM
decoder, focusing on their distribution characteris-
tics and correlations. This analysis provides new
insights into object hallucination.

2.2 Contrastive Decoding to Mitigate
Hallucination

Contrastive decoding (Li et al., 2023a) is first intro-
duced in text generation tasks in LLMs to reduce
noise by subtracting the distribution of an amateur
model. To address hallucination issues in LVLMs,
researchers have introduced contrastive decoding
to improve model performance. Leng et al. (2024)
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Figure 2: Attention map of visual encoder. Left: original image. Middle: attention map of InstructBLIP ViT
(16x16). Right: attention map of LLaVA-1.5 ViT (24x24).

apply Gaussian noise to images to increase visual
uncertainty. They use these noisy images as nega-
tive samples to subtract the LLM’s prior and reduce
object hallucination. Favero et al. (2024) employ
pure text inputs as negative samples. They apply
contrastive decoding to enhance the influence of vi-
sual information during text generation. Wang et al.
(2024) introduce a disturbance instruction to force
the model to output an error distribution, which is
then subtracted to mitigate hallucination.

Given that our method draws on contrastive de-
coding and considering the generality and effec-
tiveness of these methods, in section 5.1, we select
VCD (Leng et al., 2024) and M3ID (Favero et al.,
2024) as our baselines for experimental compari-
son.

3 Motivation

3.1 Problem Formulation

We segment the LVLM generation process into
three distinct stages: Visual Encoding, Projection,
and LLM Decoding. In the initial stage, an input
image is divided into n patches, each projected into
a token embedding via Vision Transformer. The set
of n tokens is represented as Xv = {Xvi |0 ≤ i <
n} . Then tokens are forwarded to the LLM after
projection. Concurrently, the prompt is tokenized
into tokens Xl and is put into the LLM directly or
indirectly.

In the decoding stage, we perform autoregressive
decoding with the transformer, which is formulated
in Eq. 1.

pt = softmax(logitsθ(yt|y<t, Xv, Xl)). (1)

where pt represents probability distribution of next
token yt in the t-th step of decoding, y<t represents
the generated text from 0 to t− 1 step and logitsθ
represents the logit distribution. Then the LLM

adopts a specific strategy to obtain the next token
based on the probability distribution pt.

We studied the impact of the visual token Xv on
logitsθ(yt|y<t, Xv, Xl) to reduce the likelihood of
hallucination occurrence.

3.2 Drawbacks of ViT

The Vision Transformer (Dosovitskiy et al., 2021)
has gained widespread favor as the backbone visual
encoder for all LVLMs due to its superior visual
representation capabilities. However, Darcet et al.
(2024) find that there are always high-norm outlier
tokens in ViT, which tend to appear in background
regions with redundant patch information, contain-
ing minimal local information but a little global
information.

The attention map of LVLMs’ visual encoder
also focus on a small number of high-norm outlier
tokens, as illustrated in Figure 2. We posit that
these outlier tokens embody the negative visual
priors within the ViT. And when image tokens are
projected and sent to the LLM, the LLM also tends
to focus on these tokens due to their high attention
value in visual encoder, leading to the ignorance of
local information contained within other patches.
This may result in a degradation of the model’s
fine-grained visual capabilities.

To validate the information contained within
these tokens as perceived by the LLM, we con-
ducted ablation experiments (results provided in
Appendix B.3). The findings confirmed that these
few tokens indeed contain substantial information,
but are not accurate enough.

3.3 Outlier Tokens Cause Hallucination

Based on the aforementioned issues in ViT, we
attempt to observe the attention maps of image to-
kens during LLM decoding stage. We find that
LLM decoder attention map also features with a
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Figure 3: LLM decoder attention map of "plant" to-
ken (non-hallucinatory). It is evident that attention can
accurately locate the position of the plotted plant.

Figure 4: LLM decoder attention map of "clock" to-
ken (hallucinatory). The attention mainly focus on the
outlier tokens in the background, whose positions are
the same in visual encoder attention map in the right
sub-image of Figure 2.

few outlier tokens at the same position as visual
encoder that get most of the attention compared to
other tokens, as illustrated in Figure 5. We assume
that this consistency is related to the occurrence of
hallucination, where the LLM decoder pays more
attention to outlier tokens identified in visual encod-
ing stage. And we selected an example (Figure 3, 4)
to demonstrate this correlation. To quantitatively
characterize the consistency, we propose an evalua-
tion metric Hi, where Sv(i) denotes the set of top i
tokens of attention value from the visual encoder’s
attention map, while Sl(i) represents the set of top
i tokens from the LLM decoder’s attention map.
And in this formulation, |S| denotes the cardinal-
ity of the set S, which is the number of elements
contained within S.

Hi =
|Sv(i) ∩ Sl(i)|

i
. (2)

We randomly select 1000 images from the val2014
subset in MSCOCO dataset (Lin et al., 2014) and
query LLaVA-1.5 with the prompt "What can you
see in this image ?" to get the descriptions from
model. We use the generated captions and ob-
ject words as two kinds of units and employed
CHAIR (Rohrbach et al., 2018) to identify hallu-
cinations. We then utilize metric Hi to analyze
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Figure 5: The proportion of the overall attention map in
LLM decoder.

Granularity HA Non-HA
sentence-level 0.0554 0.0539
object-level 0.0605 0.0551

Table 1: F Value results. HA: hallucinatory, Non-HA:
non-hallucinatory. It is easily observed that at both
the sentence level and the object level, the influence of
outlier tokens from the visual encoder is greater when
hallucinations occur.

the relation between the occurrence of hallucina-
tions and the consistency of their distributions, as
illustrated in Figure 6.

Additionally, we found that the top three tokens
with the highest attention score in the visual en-
coding stage accounted for more than 99% of the
attention, as shown in Figure 7. To further verify
the influence of these tokens, we analyzed the pro-
portion of the same three tokens1 in the attention
map of LLM decoder. The evaluation metric of the
influence is denoted as F , defined as

F =

∑3
j=1ATT (Lv(j))∑n−1

i=0 ATT (i)
. (3)

where Lv(i) represents the position of the token
with i-th highest attention value in the visual en-
coder attention map and ATT (i) represents the
LLM decoder attention value of the token at posi-
tion i.

Similarly, we use generated captions and object
words as units to identify hallucinations. And we
get the F results in Table 1. It can be observed
that outlier tokens in visual encoding stage indeed
have influence on the subsequent LLM decoding
stage, which is closely related to the occurrence of
hallucinations.

1Unless otherwise specified, in this paper, the same to-
kens in the visual encoder and LLM decoder refer to tokens
corresponding to the same spatial positions in the image.
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Figure 6: Top 1-10 outlier tokens overlap rate between
visual encoder and LLM decoder. Both of object-level
and sentence-level results show that hallucination tends
to happen when overlap rate is higher, especially con-
sidering the top tokens.

4 Methods

4.1 Outlier Tokens Selection
In the final layer of self-attention in ViT, the class
token [CLS] is generally used for classification
(Dosovitskiy et al., 2021). The [CLS] token is used
as the query vector in attention calculation with
other visual tokens as key vector:

Acls = softmax
(
QclsK

T

√
d

)
. (4)

where Qcls is the result of the [CLS] token’s query
vector after being multiplied by the correspond-
ing weights; KT is the result of all other image
tokens’ key vectors after being multiplied by their
corresponding weights, and d is the dimension of
Qcls.

We sample the top k outlier tokens based on
attention value between the class token [CLS] and
spatial visual tokens, which is denoted as:

tokenoutlier = argmax
tokeni

(Acls(tokeni)). (5)

For the selection of the top k, it is important to
note that LLaVA-1.5 (Liu et al., 2024a) and In-
structBLIP (Dai et al., 2023) have different ViT
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Figure 7: The proportion of the overall attention map
occupied by tokens sorted by attention value in visual
encoder.

structures. ViT in LLaVA-1.5 contains 576 (24x24)
image tokens, whereas InstructBLIP has only 256
(16x16). The different numbers of image tokens
lead to different choices in values of k for the top
k selection. The difference in k value will be dis-
cussed in detail in the ablation experiment in Ap-
pendix B.

4.2 Contrastive Decoding

We use Contrastive Decoding (Li et al., 2023a) to
mitigate the impact of visual outlier tokens from
the visual encoder on subsequent text generation.
In LVLMs, Contrastive Decoding is typically con-
ducted during the sampling process of LLM decod-
ing, where the next token is determined based on
the probability distribution in the logits space.

Answer generation in LLMs is an autoregres-
sive process, in which the contrastive decoding is
formulated as Eq. 6.

pt = softmax((1 + α)logitsθ(yt|y<t, v, x)

−αlogitsθ(yt|y<t, vcls, x)).
(6)

where the probability distribution of the next token
at step t is pt with x being the prompt input. vcls ∈
v is visual information filtered by [CLS] token from
overall visual information v.

The probability distribution in the logits space at-
tenuates the influence of previous outlier tokens on
decoding. This allows the model to focus more on
fine-grained semantic information and eliminates
redundant information containing visual encoder
priors, thus mitigating hallucinations in the LVLM.

To address the issue of excessive removal of
global information, we introduced an adaptive plau-
sibility constraint (Li et al., 2023a). In constrative
decoding stage, we set a threshold β to truncate
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the new probability distribution based on the con-
fidence level of the original model’s predictions.
The specific form is shown in Eq. 7:

Vhead(y<t) ={yt ∈ V : pθ(yt|v, x, y<t)

≥ βmax
w

pθ(w|v, x, y<t)}. (7)

Vhead serves as a filtering constraint for sampling
the next token. The whole algorithm is further
explained in Algo. 1.

Algorithm 1 DAMRO
Require: text query x, image input v, visual en-

coder Iϕ.
1: Initialize empty output y = [].
2: Large Language ModelMθ.
3: for t=0,1,2... do
4: Iϕ(v)

n
i=1 ← VisualEncoder(v)

5: log porigin ← logitsθ(yt|y<t, Iϕ(v)
n
i=1, x)

6: Attnic ← Attention(tokencls, Iϕ(v)
n
i=1)

7: Ioutlier = argmaxI(Attnic)
8: log pnegetive ← logitsθ(yt|y<t, Ioutlier, x)
9: Get token distribution in constrastive learn-

ing, pt ← softmax((1 + α) log porigin −
α log pnegetive),

10: Considering adaptive plausibility constraint,
pt = pt if pt ≥ max(log porigin) else 0

11: Get next token using random sample strat-
egy yt.

12: y = [y, yt]
13: if yt = <EOS> then
14: break
15: end if
16: end for
17: return Generated prompt y.

5 Experiments

5.1 Experimental Settings

LVLM Models We select three of the most repre-
sentative LVLM models for evaluation: LLaVA-
1.5-7b, LLaVA-NeXT-7b, and InstructBLIP-7b.
For visual encoder, LLaVA-1.5 and LLaVA-NeXT
share the same ViT backbone, both using ViT-L-
336px pretrained from CLIP-L/14-336px (Radford
et al., 2021). In contrast, InstructBLIP uses ViT-
g/14 pretrained from EVA-CLIP (Sun et al., 2023).
All three models use Vicuna2 (Chiang et al., 2023)
as the LLM module.

2Vicuna-7b v1.5 for LLaVA-1.5 and LLaVA-NeXT,
Vicuna-7b v1.1 for InstrutBLIP

Regarding the connection module between the
two modalities, LLaVA-1.5 and LLaVA-NeXT use
MLP layers to bridge feature gap between vision
and text modalities without changing the amount
of image tokens in the LLM. Conversely, Instruct-
BLIP employs Q-Former (Zhang et al., 2024) for
modality alignment, which standardized the num-
ber of visual tokens in LLM to 32.

Our approach is based on LLaVA-1.5 in the anal-
ysis of Section 3.3. For more insights into general-
izability, we also test our method on InstructBLIP,
which has a significantly different structure com-
pared to LLaVA-1.5, and we find that the perfor-
mance still surpasses that of original model. This
demonstrates that mitigating the impact of outlier
tokens in the visual encoder is effective in alleviat-
ing hallucination across different projection mod-
ules.

Baselines We select two popular and training-
free contrastive decoding methods: VCD (Leng
et al., 2024) and M3ID (Favero et al., 2024). Both
approaches aim to enhance the impact of visual
features during the LLM decoding phase by elim-
inating language priors. VCD generates negative
logits using Gaussian blurring, while M3ID gen-
erates negative logits using pure text that without
visual information. Additionally, we include the
original model for comparison to highlight the im-
provements over the baseline model. For detailed
experimental hyperparameter settings of these base-
lines, please refer to Appendix A.

Implementation Details Considering the charac-
teristics of different visual encoders, for LLaVA-
1.5 and LLaVA-NeXT, we set α (Eq. 6) to 0.5 for
CHAIR benchmark and 2 for other benchmarks and
we select top 10 (Eq. 5) tokens as outlier tokens.
For InstructBLIP, we set α to 1.5 for CHAIR bench-
mark and 0.5 for other benchmarks and we select
top 4 tokens as outlier tokens. To avoid introducing
additional factors, we directly use the probability
distribution generated by the softmax function as
the sampling distribution and employ the basic ran-
dom sampling decoding strategy. For all experi-
ments, the seed is set to 42, max_new_token is set
to 1024 and β (Eq. 7) is set to 0.1 .

5.2 Benchmarks and Experimental Results
POPE The Polling-based Object Probing Eval-
uation (POPE) (Li et al., 2023b) is a streamlined
approach to assess object hallucination. LVLMs
are required to respond to formatted questions in
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Base Model Method Precision Recall F1 Score Accuracy
LLaVA-1.5 Original 88.63 73.76 80.48 82.08

VCD 86.15 83.78 84.87 84.98
M3ID 92.48 75.22 82.93 82.93

DAMRO 88.84 81.09 84.72 85.31

LLaVA-NeXT Original 92.28 75.58 83.07 84.57
VCD 91.90 82.4 86.86 87.50
M3ID 94.23 79.2 86.05 80.87

DAMRO 90.02 85.40 87.60 87.87

InstructBLIP Original 78.64 79.42 78.99 78.85
VCD 84.88 79.93 81.96 82.56
M3ID 90.59 70.58 79.33 81.60

DAMRO 80.67 83.89 82.20 81.77

Table 2: Results of POPE. (The foundation model without methods is denoted as Original). The best value in the
table is highlighted in bold, and the second best value is underlined.

the form: "Is there a <object> in the image?" with
"Yes" or "No," . The answers to these questions al-
ternate between "Yes" and "No," ensuring an equal
50% probability for each response. The complete
POPE test is divided into three splits: random, pop-
ular and adversarial, in which missing objects are
randomly selected, most frequently occurring in the
dataset, and highly correlated with those present in
the image respectively.

The dataset consists of 500 randomly selected
images from the MSCOCO (Lin et al., 2014) vali-
dation set. To facilitate testing, we add the prompt
"Please use one word to answer this question." to
restrict LVLM responses to "Yes" or "No". Four
key evaluation metrics are generated: Precision,
Recall, F1 score, and Accuracy. We average the
results across the three splits, and the outcomes are
presented in Table 2. More details are shown in
Appendix C.1.

CHAIR The Caption Hallucination Assessment
with Image Relevance (CHAIR) (Rohrbach et al.,
2018) is a widely used metric for evaluating object
hallucination in image captioning tasks. CHAIR
compares the captions generated by the LVLM with
the ground truth to identify correctly and incor-
rectly described objects in the captions. It then
calculates the proportion of objects mentioned in
the captions that are not present in the images
CHAIR evaluates hallucination on two dimensions:
CHAIRS and CHAIRI . The former calculates the
proportion of sentences containing hallucinations
at the sentence level, while the latter computes the
proportion of hallucinated objects out of all identi-

Model Method CS ↓ CI ↓
LLaVA- Original 12.4 7.2

1.5 VCD 7.6 4.1
M3ID 9.2 5.3

DAMRO 6.0 3.6

LLaVA- Original 4.2 9.0
NeXT VCD 3.0 4.1

M3ID 4.2 6.8
DAMRO 3.0 5.2

Instruct- Original 7.8 5.2
BLIP VCD 3.2 1.9

M3ID 5.2 3.7
DAMRO 2.8 1.7

Table 3: Results of CHAIR. CS : CHAIRS , CI :
CHAIRI .

fied objects at the object level. These two metrics
can be formulated as follows:

CHAIRS =
|{captions w/ hallucinated objects}|

|{all captions}| .

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}| .

(8)

Similarly, we conducted the CHAIR evaluation
on the MSCOCO dataset with 80 annotated ob-
ject categories. We randomly selected 500 images
from the validation set of COCO 2014 and used the
prompt "Generate a short caption of this image." to
obtain the generated captions.

The test results are shown in Table 3. It can
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Figure 8: Results of MME.

be observed that, CHAIR scores on LLaVA-1.5
and InstructBLIP both surpassed the baseline com-
pared to other methods, which achieve significant
improvements in comparison with base model.

MME Hallucination Subset The Multimodal
Large Language Model Evaluation (MME) (Fu
et al., 2024) assesses LVLMs using a set of compre-
hensive metrics. Following the methodologies of
Yin et al. (2023) and Leng et al. (2024), we adopted
"existence" and "count" from the MME bench-
mark as object-level evaluation metrics, and "color"
and "position" as attribute-level evaluation metrics.
The experimental results in Figure 8 demonstrate
that our approach generally improves performance
across three models, confirming its effectiveness.
However, for InstructBLIP, metrics for count and
position show a decline. We hypothesize that this is
due to the unique structure of InstructBLIP, which

Model Method A D
LLaVA-1.5 Original 5.356 5.067

DAMRO 6.611 6.078
LLaVA-NeXT Original 6.456 6.332

DAMRO 7.189 6.656
InstructBLIP Original 5.833 5.400

DAMRO 6.756 5.967

Table 4: Results of GPT4V-aided evaluation. A: accu-
racy, D: detailedness.

relies on certain outlier tokens for spatial reason-
ing. Compared to the LLaVA series of foundation
models, InstructBLIP has significantly weaker posi-
tional capabilities, possibly explaining the reduced
effectiveness of our approach for this model. Ex-
periment Details are shown in Appendix C.2.

GPT4V-Aided Evaluation The GPT-4V-aided
evaluation employs GPT-4V3 as an evaluator to
compare the outputs of two LVLM assistants. GPT-
4V assigns scores out of 10 based on two criteria:
1) accuracy, which measures how accurately each
assistant describes the image, and 2) detailedness,
which evaluates the richness of necessary details
in the responses. We select LLaVA-QA90 4 for
our tests on GPT-4V. The dataset consists of 30
images from COCO val2014, each paired with 3
questions to comprehensively evaluate the capabili-
ties of LVLMs. Table 6 presents the overall scores
of GPT-4V in terms of accuracy and detailedness,
with detailed results provided in the appendix C.3.

6 Conclusions

In this paper, we investigate the relationship be-
tween the attention maps of the visual encoder
and the LLM decoder, and explore its impact on
the mechanism of object hallucination in LVLMs.
Based on our analysis of attention mechanism, we
propose the Dive into Attention Mechanism to mit-
igate object hallucination (DAMRO) method. Our
method demonstrates its effectiveness and general-
izability on various models and benchmarks. Ex-
periments show that our method effectively reduces
hallucination issues in LVLMs across multiple do-
mains, especially in fine-grained semantic hallu-
cinations. Additionally, we hope our findings on
Encoder-Decoder attention mechanism will inspire

3https://openai.com/index/gpt-4v-system-card/
4https://github.com/haotian-liu/LLaVA/blob/

main/playground/data/coco2014_val_gpt4_qa_30x3.
jsonl
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further research on LVLM foundation model struc-
tures.

Limitations

Our method (DAMRO) is based on the relation-
ship between the attention mechanisms of the vi-
sual encoder and the LLM decoder. It relies solely
on empirical analysis and lacks further theoreti-
cal proof. Additionally, we have not conducted a
detailed exploration of more complex projection
modules in the visual encoder and LLM decoder
(e.g. QFormer (Zhang et al., 2024)). With the rapid
development and continual refinement of LVLM
models, whether our method remains applicable to
future models poses a significant challenge.
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A More Implementation Details

For the baselines M3ID and VCD, we employ
the same direct sampling strategy as DAMRO.
Throughout the entire experiment, our experimen-
tal hyperparameters remain consistent. The hyper-
parameters are listed in the table below:
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Hyperparameters Value
Forgetting Factor(POPE) γ 0.2
Forgetting Factor(CHAIR, MME) γ 0.01
Threshold 0.9

Table 5: M3ID Hyperparameters Settings.

Hyperparameters Value
Amplification Factor α 1
Adaptive Plausibility Threshold β 0.1
Diffusion Noise Step 999

Table 6: VCD Hyperparameters Settings.

B Ablation Study

Considering that CHAIR can more precisely assess
the generative capabilities of the model, and given
that LLaVA-1.5 and LLaVA-NeXT have similar
model structures, we choose to test the parameter
sensitivity of DAMRO on LLaVA-1.5 and Instruct-
BLIP using CHAIR. The following two parameter
ablation experiments are based on this setup. As for
how many visual tokens are enough, we conduct
ablation experiments on LLaVA-1.5 using POPE,
CHAIR and MME benchmarks.

B.1 Effect of α in Visual Contrastive Decoding

The results of the experiments with LLaVA-1.5
and InstructBLIP are shown in Figure 9 and Fig-
ure 10. It can be observed that when the value of
α is too large or too small, the performance of the
models deteriorates. α highlights the adjustment
strength for outliers in our method, and the optimal
adjustment strength varies for different models.

B.2 Effect of Outlier Token Number top k

We use hyperparameters to define the number of
outlier tokens, which vary across different visual
encoders. Removing the top k outlier tokens aims
to eliminate the redundant negative information
they carry. However, this redundant information
also contains a certain degree of global information,
which can be beneficial for the results. Therefore,
it is crucial to reasonably select the top k for our
method. The results of the ablation experiments
are shown in Figure 11 and Figure 12.

B.3 How Many Visual Tokens are Enough

We conduct experiments using LLaVA-1.5 on
CHAIR, POPE(only on random split), and MME,
and found that a small number of visual tokens,
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Figure 9: Ablation study of α in LLaVA-1.5, top k=10.

0.5 1.0 1.5 2.0 2.5

2

3

4

5

6

7

8
CHAIRs
CHAIRi
Original CHAIRs
Original CHAIRi

Figure 10: Ablation study of α in InstructBLIP, top k=4.

or even a single token, can contain the basic infor-
mation of an entire image. POPE,CHAIR,MME
results are shown in Table 7,Table 8 and Table 9
respectively. Additionally, we select some images
and examples from these CHAIR experiments, as
shown in Figure 13 and Figure 14. It is evident that
a few tokens indeed contain a large amount of infor-
mation. However, the error rate of this information
is quite high, easily leading to the co-occurrence
of related objects, which reflects the priors of the
visual encoder.

An interesting phenomenon is that using only a
small number of tokens, some metric results are ac-
tually better than using more tokens. We attribute
this to the fact that the LLM’s attention to visual to-
kens cannot accurately capture the information they
contain. Therefore, this also provides an idea for
better selection and acquisition of effective tokens
in future LVLM models.
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Figure 11: Ablation study of top k in LLaVA-1.5,
α=0.5.
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Figure 12: Ablation study of top k in InstructBLIP,
α=1.5.

Precision Recall F1 Accuracy
top 1 89.93 70.87 79.27 81.47
top 2 90.47 69.60 78.67 81.13
top 5 93.29 64.93 76.57 80.13
top 10 94.76 63.93 76.35 80.20
top 100 95.50 66.47 78.38 81.67

all 92.32 73.73 81.97 83.80

Table 7: POPE results with token numbers changed.

C Detailed Results on POPE, MME and
GPT4V-Aided Evaluation

C.1 POPE Details

The detailed results of POPE on different sub-
datasets are shown in Table 10.Our method
achieved excellent results across different subsets.

CHAIRs ↓ CHAIRi ↓ Recall ↑
top1 58.6 18.4 61.4
top2 53.6 17.0 61.0
top5 57.8 15.1 67.0

top10 50.6 14.4 60.5
top100 57.8 15.1 67.0

all 60.2 16.8 68.1

Table 8: CHAIR results with token numbers changed.

C.2 MME Details
The detailed results of MME are shown in Table 11

C.3 GPT4V-aided Evaluation Details
To evaluate open-ended generation, we utilize GPT-
4V to assess the accuracy and detailedness of
LVLMs’ responses. The specific configurations
are detailed in Table 12. Additionally, two illustra-
tive evaluation cases are presented in Figure 15 and
Figure 16.
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existence count position color total
top1 175.00 81.67 98.33 116.67 471.67
top2 180.00 91.67 96.66 136.66 504.99
top5 168.33 90.00 116.67 125.00 500.00
top10 178.33 80.00 96.66 118.33 473.32
top100 170.00 80.00 90.00 121.67 461.67

all 185.00 98.30 115.00 138.30 536.30

Table 9: MME results with token numbers changed.

Model Dataset Method Precision Recall F1 Accuracy
LLaVA-1.5 random Original 92.321 73.733 81.987 83.800

DAMRO 94.557 81.067 87.294 88.200
VCD 91.886 83.8 87.657 88.200
M3ID 96.331 75.267 84.506 86.200

popular Original 89.700 73.733 80.937 82.633
DAMRO 89.280 81.067 84.976 85.667
VCD 87.231 83.800 85.481 85.767
M3ID 92.923 75.267 83.168 84.767

adversarial Original 83.864 73.800 78.511 79.800
DAMRO 82.677 81.133 81.898 82.067
VCD 79.343 83.733 81.479 80.967
M3ID 88.185 75.133 81.138 82.533

LLaVA-NeXT random Original 96.500 75.600 84.785 86.433
DAMRO 94.749 85.400 89.832 90.333
VCD 96.187 82.400 88.760 89.567
M3ID 97.457 79.200 87.385 88.567

popular Original 92.571 75.600 83.229 84.767
DAMRO 90.594 85.400 87.920 88.267
VCD 92.170 82.400 87.010 87.700
M3ID 93.913 79.200 85.931 87.033

adversarial Original 87.761 75.533 81.189 82.500
DAMRO 84.720 85.400 85.059 85.000
VCD 87.340 82.400 84.803 85.233
M3ID 91.314 79.200 84.827 85.833

InstrucBLIP random Original 81.975 79.133 80.523 80.867
DAMRO 85.890 84.000 84.934 85.100
VCD 89.694 80.067 84.607 85.433
M3ID 93.451 70.400 80.304 82.733

popular Original 79.112 79.067 79.093 79.100
DAMRO 80.089 83.667 81.839 81.433
VCD 83.907 79.600 81.697 82.167
M3ID 90.000 70.800 79.254 81.467

adversarial Original 74.829 80.067 77.359 76.567
DAMRO 76.010 84.067 79.835 78.767
VCD 81.052 80.133 79.59 80.700
M3ID 88.314 70.533 78.428 80.600

Table 10: Detailed results of POPE on different sub-datasets.
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Model Method Object-level Attribute-level Total Scores
Existence Count Position Color

LLaVA-1.5 Original 185.00 98.30 115.00 138.30 536.60
VCD 195.00 100.00 123.33 146.67 565.00
M3ID 180.00 121.67 123.33 143.33 568.33

DAMRO 180.00 131.67 128.30 153.30 593.27

LLaVA-NeXT Original 165.00 116.67 103.33 131.66 516.66
VCD 195.00 126.00 110.00 146.00 577.00
M3ID 195.00 105.00 111.67 155.00 566.67

DAMRO 190.00 123.33 140.00 133.33 586.66

InstructBLIP Original 160.00 75.00 68.30 103.3 406.60
VCD 170.00 78.30 61.67 98.33 408.30
M3ID 190.00 70.00 76.67 135.00 471.67

DAMRO 185.00 65.00 61.00 115.00 426.00

Table 11: Detailed results of MME.

with 1 tokens

with 5 tokens

with all tokens

In the image, there is a young woman wearing a green shirt holding a large, 
bright red umbrella. She is standing in the rain, protecting herself from the 
downpour. The umbrella is open, covering the entire width of the image, 
and the woman is positioned in the center of the frame.
There are other people in the scene, one to the left of the woman and 
another one to the right, but they are not the main focus of the image. 
Additionally, there are two cars visible in the background, one near the left 
edge and the other one occupying the right side of the frame. A handbag 
can also be seen close to the woman, likely belonging to her.

The image depicts a woman standing next to a little girl, both of them 
holding a large black and red umbrella over their heads. They appear to be 
in a rainy environment, as the umbrella is open, providing protection from 
the rain. They are both looking at something together, likely observing the 
surroundings or engaging in conversation.
The scene takes place outdoors, with a car visible in the background, 
parked on the street. Additionally, a handbag can be spotted close to the 
woman, likely belonging to her. The overall atmosphere suggests a 
moment of connection and shared experience between the two women 
during a rainy day

In the image, an older person and a young girl, possibly a mother and 
daughter, are walking down a rain-soaked street. The older person is 
holding an umbrella over the girl, protecting them from the rain. It appears 
to be raining quite heavily, causing the road to be wet.
In the scene, there are multiple vehicles. A car is parked on the left side of 
the street and another car is farther back, on the right side.The older 
person and the child seem to be walking across the street safely with the 
help of the umbrella.

Figure 13: A case illustrates the generative ability of tokens. We use the prompt "Please describe this image in
detail." to get answers from different. Hallucinated words are marked in red.
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with 1 tokens

with 5 tokens

with all tokens

The image depicts a large red and white bus driving down a city street, 
with several people around the bus. There are multiple people walking 
near the bus, with some standing closer to it and others further away. 
Among the pedestrians, there is a person carrying a handbag and another 
person with a backpack. Additionally, there is a bicycle parked on the side 
of the street, close to the bus. The presence of these people, the bus, and 
the bicycle create a bustling urban scene.

The image features a large red and black bus driving down a busy street. 
The bus is in the foreground, with its colorful exterior standing out against 
the background. The street is lined with several people walking and going 
about their day, with some of them carrying handbags.
In addition to the bus and pedestrians, there are several objects scattered 
along the street. There is a car parked on the side of the road, and a fire 
hydrant located further down the street. Additionally, a bicycle can be seen 
leaning against a surface in the background.

The image depicts a red cross-town bus driving down the street, passing 
by a merchant. On the sidewalk, numerous people are standing under 
various umbrellas, some are positioned under the busy street. There are 
some tents or booths set up along the sidewalk, indicating a marketplace 
or a public event. 
Additionally, several bottles are visible on the ground, possibly as a result 
of discarded items or inadvertent spills from the marketplace. The 
presence of umbrellas and the neoclassic bus in the scene suggest a 
bustling, urban environment.

Figure 14: A case illustrates the generative ability of tokens. We use the prompt"Please describe this image in
detail." to get the answers. Hallucinated words are marked in red.

GPT-4V(ision) Prompt
You are required to score the performance of two AI assistants in describing a given image. You
should pay extra attention to the hallucination, which refers to the part of descriptions that are
inconsistent with the image content, such as claiming the existence of something not present in the
image or describing incorrectly in terms of the counts, positions, or colors of objects in the image.
Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates
better performance, according to the following criteria:
1: Accuracy: whether the response is accurate with respect to the image content. Responses with
fewer hallucinations should be given higher scores.
2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count as necessary details.
Please output the scores for each criterion, containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores, please
provide an explanation of your evaluation, avoiding any potential bias and ensuring that the order
in which the responses were presented does not affect your judgment.
[Assistant 1]
{}
[End of Assistant 1]

[Assistant 2]
{}
[End of Assistant 2]

Output format:
Accuracy:
Reason:
Detailedness:
Reason:

Table 12: The prompt used for GPT-4V(ision) evaluation.
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[Input Image]

[Input Instruction] What is the man doing in the image?

[Model Reponse]

InstructBLIP

Ours

GPT-4 Evaluation

The man in the image is holding up various items, including a suit jacket, a 
husband coat, a man suit, a robe, and a doll suit. He is possibly preparing to 
pavck or hang these items up in his residence.

The man in the image is holding up two garment covers, one over a suitcase 
and the other over a dress.

Accuracy: 1 8
Reason: Assistant 1 incorrectly describes multiple items that are not present in 
    the image, such as a suit jacket, a husband coat, a man suit, a robe,
    and a doll suit, leading to a high level of hallucination. In contrast, 
    Assistant 2 accurately describes the man holding up two garment 
    covers, which is consistent with the image content. There is a minor 
    error in stating that one garment cover is over a suitcase and the other 
    over a dress; it's actually over a blue bag, not necessarily a suitcase.

Detailedness: 2 5
Reason: Assistant 1 provides a more detailed (though inaccurate) description 
    by listing various clothing items but does so incorrectly, causing 
    hallucination. Meanwhile, Assistant 2's description is concise and 
    relatively accurate but lacks in-depth detail. Hence, while Assistant 2's 
    description is more accurate, it is also less detailed.

Figure 15: DAMRO’s performance on reducing hallucinations on on InstructBLIP.
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[Input Image]

[Input Instruction] Describe the following image.

[Model Reponse]

LLaVA1.5

GPT-4 Evaluation

The scene is set in a hallway with a luggage cart, heaped with clothes, bags 
and suitcases. There's an abundance of suitcases of varying sizes placed on 
top of the cart. Two handbags can be seen among the suitcases as well.
Several people are present in the vicinity, one of whom is positioned near the r
ight side of the hallway, while others are further in the background. A TV is 
visible on the lower left side, partially hidden by the luggage cart and suitcases.
Various chairs are placed in different spots of the hall, suggesting a social or 
work environment.

The image shows a luggage cart in a lobby filled with various suitcases and 
bags, waiting for passengers to pick up their belongings. The cart is packed 
with multiple suitcases and backpacks of different sizes and shapes. Several 
people can be seen around the lobby, with some standing closer to the cart, 
while others are further away. In the background, there are TVs mounted on 
the wall, indicating the location might be a hotel lobby or a waiting area for 
travelers. A handbag is also placed on the cart among the suitcases.

Accuracy: 4 5
Reason: Assistant 1 mentioned several errors such as the presence of a TV and 
    various chairs which are not visible in the image. Furthermore, the 
    abundance of suitcases and two handbags are also hallucinations. 
    Assistant 2 made fewer errors, mainly misrepresenting the number and 
    type of bags, and imagining mounted TVs, which were not present.

Detailedness: 6 7
Reason: Assistant 1 provided more details about the setting, such as mentioning 
    the hallway and the chairs. Despite the hallucinations, the description 
    also covered many elements of the scene. Assistant 2 was relatively 
    detailed, mentioning the luggage cart and suggesting a hotel lobby or 
    waiting area. The accuracy contributed to the slightly higher score for 
    Assistant 2 in detailedness.

Ours

Figure 16: DAMRO’s performance on reducing hallucinations on LLaVA-1.5-7b.
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