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Abstract

In recent years, Large Language Models
(LLMs) have made significant strides towards
Artificial General Intelligence. However,
training these models from scratch requires
substantial computational resources and vast
amounts of text data. In this paper, we ex-
plore an alternative approach to constructing
an LLM for a new language by continually
pre-training (CPT) from existing pre-trained
LLMs, instead of using randomly initialized
parameters. Based on parallel experiments on
40 model sizes ranging from 40M to 5B param-
eters, we find that 1) CPT converges faster and
saves significant resources in a scalable man-
ner; 2) CPT adheres to an extended scaling
law derived from Hoffmann et al. (2022) with
a joint data-parameter scaling term; 3) The
compute-optimal data-parameter allocation for
CPT markedly differs based on our estimated
scaling factors; 4) The effectiveness of trans-
fer at scale is influenced by training duration
and linguistic properties, while robust to data
replaying, a method that effectively mitigates
catastrophic forgetting in CPT. We hope our
findings provide deeper insights into the trans-
ferability of LLMs at scale for the research
community.

1 Introduction

In recent years, Large Language Models (LLMs)
pre-trained on web-scale corpora have achieved
significant success in various language tasks (Rad-
ford et al., 2019; Brown et al., 2020; Achiam
et al., 2023). As the scale of pre-training increases,
LLMs have exhibited remarkable abilities, partic-
ularly in transferring knowledge across different
domains (Wei et al., 2022; Tan et al., 2018).

Training an LLM from scratch is prohibitively
expensive. To address this, some practitioners
leverage transfer learning to adapt LLMs to new

1†Work done during internship at Langboat Inc. Authors
contributed equally.

domains or tasks. This usually involves fine-
tuning the models on a small dataset within the
target domain. Previous works have showcased
multiple benefits of transfer learning in fine-tuning
when the transfer gap is small, including faster
convergence and better final performance (Zhang
et al., 2024; Hernandez et al., 2021). However, it
remains unclear if these benefits hold when fine-
tuning on massive data or across large distribution
shifts (e.g., different languages). This becomes
a crucial consideration if one aims to efficiently
build an LLM using transfer learning, especially
when there is a sufficient amount of data available
from different distributions.

To fill this gap, we investigate training LLMs
with transfer learning on large pre-training cor-
pora. To be specific, we create LLMs for a new
language by using pre-trained LLMs as initializa-
tion instead of starting from scratch. We refer to
this approach as continual pre-training (CPT). The
motivation for our work stems from the inherent
ability of meta-knowledge to transfer across vari-
ous languages (Pan and Yang, 2009; Zhuang et al.,
2020; Tang et al., 2020; Eronen et al., 2023). By
leveraging this transferability, LLMs can use exist-
ing linguistic knowledge to enable more efficient
training.

In this paper, we conduct pre-training with pa-
rameter sizes ranging from 40M to 5B, spanning
40 different sizes, to systematically study the ef-
fect of CPT at different conditions and scales.
Specifically, we use English as the source lan-
guage for the source model and Chinese as the tar-
get language for CPT. We compare two different
training strategies:

1. Training from Scratch: The pre-training of
Chinese LLM begins with completely ran-
domly initialized parameters and is trained
using Chinese language corpora.

2. Continual Pre-Training (CPT): The param-
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Figure 1: Loss curves of pre-training and continual pre-training (CPT) across different model sizes. All models
are pre-trained on Chinese text while CPT models are initialized from pre-trained English checkpoints. Dashed
lines predict optimal loss at each computation level, as estimated in Section 4.2. (Left) Overlapped loss-compute
power-law visualization, with each line representing one model. (Right) CPT LLM (2B parameters) reaches the
same loss with approximately 50% fewer FLOPs.

eters of a Chinese LLM are initialized with
those from an equivalent English LLM and
then trained using Chinese language corpora.

Figure 1 summarizes our main training results. We
find that, CPT models of different sizes exhibit a
power-law relationship between loss and compute
similar to models trained from scratch, but achieve
lower loss at each computational level. For mod-
els of a given parameter size, CPT consistently out-
performs training from scratch, particularly during
the initial stages. Throughout the whole training
process, CPT saves 25% to 50% of tokens when
achieving the same loss.

Our main focus lies in the comparative analy-
sis between the two strategies, including their scal-
ing behaviors, the robustness of scaling, and their
corresponding impact factors. We also study the
technique of data replaying (Ibrahim et al., 2024a)
to mitigate catastrophic forgetting in CPT. Data re-
playing involves replaying a portion of the source
language data during the training of the target lan-
guage model. Finally, to explain and model the
scalings under different settings, we fit a new ex-
tended scaling law for CPT, derived from Hoff-
mann et al. (2022). Our findings are outlined as
follows:

• CPT demonstrates persistent training advan-
tages even at the pre-training scale. For ex-
ample, after training on 70B tokens, the 5.5B

model with CPT reaches the same loss as a
model trained from scratch with 110B tokens.

• Our extended scaling law more accurately
captures the scaling behavior in CPT, reveal-
ing a positive multiplicative joint scaling ef-
fect between data and parameter size.

• Based on the extended scaling law, we deter-
mine the compute-optimal data-parameter al-
location for CPT, which favor larger param-
eter sizes over larger datasets compared to
training from scratch.

• The transfer scaling effect in CPT is stronger
with fewer training tokens or when the target
language is more similar to the source lan-
guage, but robust to data replaying.

• CPT is susceptible to catastrophic forgetting;
however, replaying 10% to 30% of the source
language data effectively mitigates this issue.

2 Setup

2.1 Training Framework

To compare the transfer effects in CPT versus pre-
training from scratch, we train two sets of models
with the same parameter sizes. Additionally, an-
other set of model checkpoints is trained in the
source language to serve as the initialization for
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Table 1: Training configurations for pre-training. All three sets of models are trained with identical parameter
sizes, which cover 40 sizes spanning from 50M to 5.5B. Note that the batch size is based on token counts.

Model Set Initialization
Training

Language
Parameter Size &

Batch Size (Same for Each Set)

Source Checkpoints Random English 50M-1B(23 models) ,1M
Pre-trained from Scratch Random Chinese 1B-2.5B(12 models), 2M
Continually Pre-trained Source Checkpoints Chinese 2.7B-5.5B(5 models), 4M

the continually pre-trained models. The training
configurations for the three sets of models are
shown in Table 1.

To simplify the experiments, we use identical
training strategies for all three pre-training sets, in-
cluding learning rate schedules, batch sizes and
trained token counts. All models are pre-trained
with a context length of 2048 and undergo train-
ing on tokens equivalent to 20 times the model size
(e.g., a 5B model is trained on 100B tokens). Al-
though this is far from the extensive pre-training
seen in recent practices (Touvron et al., 2023), as
outlined in Hoffmann et al. (2022), the 20x trained
token count is sufficient to demonstrate the loss-
data scaling relationship. Our learning rate (LR)
schedule features a cosine LR decay from a maxi-
mum LR of 2× 10−4 and an LR warm-up, which
increases the LR to the maximum in the first 5% of
the training session. We use different batch sizes
for different parameter sizes, as shown in Table 1.

2.2 Model and Data
Model Architecture We adopt the same
decoder-only Transformer architecture as
LLaMA2 (Touvron et al., 2023) for all pre-
training. We choose LLaMA2 because it is widely
studied and proven to scale well across different
parameter sizes. Following Muennighoff et al.
(2023), we derive architectural parameters for
models of each parameter size, which are listed in
Appendix C.

Tokenizer The tokenizer from LLaMA2 doesn’t
properly represent common Chinese characters
and tends to over-slice Chinese sentences. To pre-
vent this, our tokenizer is trained on the bilingual
pre-training corpus we used for the CPT experi-
ments. The tokenizer is trained with Sentence-
Piece (Kudo, 2018) and has a vocabulary size of
36,152, including common Chinese word pieces.

Data Sources Our English training data is pri-
marily sampled from the RedPajama dataset

(Computer, 2023), while the Chinese training
data was sampled from Common Crawl (Common
Crawl, 2007) and WuDao (Xue et al., 2022). The
raw text undergoes filtering and deduplication pro-
cesses, which is similar to RedPajama (Computer,
2023). To study langauge robustness of the CPT
strategy, we also conduct experiments on other
languages, including French and Russian. We
take their corresponding subsets from mC4 (Raffel
et al., 2019) as pre-training data. An total of 106

tokens are held out from each respective training
set as validation sets, remaining consistent across
different models.

2.3 Evaluation Tasks

Throughout experiments, we primarily use cross-
entropy loss on held-out validation sets as an in-
dicator of model performance. To further vali-
date the generalizability of CPT, we also evalu-
ate LLMs using widely adopted language mod-
eling benchmarks. To assess models in differ-
ent languages, we choose multilingual versions of
existing benchmarks, including XNLI (Conneau
et al., 2018), Multilingual Winograde (Sakaguchi
et al., 2019), Multilingual Hellaswag (Dac Lai
et al., 2023), XStorycloze (Lin et al., 2021),
XCopa (Ponti et al., 2020), and PiQA (Bisk et al.,
2019). Note that for French and Russian, we ex-
clude XCopa (Ponti et al., 2020) and PiQA (Bisk
et al., 2019) as they do not contain splits for these
two languages. All evaluations are performed un-
der zero-shot settings. We report normalized accu-
racy as the metric for each task.

3 Methodology

3.1 Scaling Law for Pre-Training from
Scratch

We follow the Chinchilla Scaling Law (Hoffmann
et al., 2022) to express cross-entropy loss (L) as
a function of parameters (N ) and training tokens
(D):
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L(N,D) = E +
A

Nα
+

B

Dβ
(1)

where {E,A,B, α, β} are learned variables. The
Chinchilla law further determines the optimal allo-
cation of compute (C) to N and D as:

Nopt(C) = G

(
C

6

)a

Dopt(C) = G−1

(
C

6

)b (2)

where G =
(
αA
βB

) 1
α+β , with a = β

α+β , b = α
α+β .

The ratio of a to b represents the optimal data-to-
parameter size allocation.

Additionally, as shown in Kaplan et al. (2020),
the optimal loss, independent of parameters and
data, also scales with compute C following a
power-law relationship:

Lopt(C) = E′ +
A′

Cγ
(3)

3.2 Scaling Law for Continual Pre-Training
The Chinchilla law assumes that LLM pre-training
is initialized with no prior knowledge, which does
not apply to continual pre-training (CPT). To ex-
tend the Chinchilla law for CPT, we incorporate
insights from Hernandez et al. (2021), introducing
an effectively transferred data term. According to
Hernandez et al. (2021), effective data transfer is
modeled as k(DF )

α(N)β , capturing the idea that
larger models store more transferable knowledge.
Thus, we extend the D term to include a multi-
plicative joint effect of both D and N , resulting in
our CPT loss function:

L(N,D) = E +
A

Nα
+

B′

Dβ′Nγ
(4)

Accordingly, we update Equation 2 for the ex-
tended scaling law:

G =

(
αA

(β′ − γ)B′

) 1
α+β′−γ

,

a =
β′

α+ β′ − γ
, b =

α− γ

α+ β′ − γ

(5)

Note that we do not update A, E, and α during
optimization for CPT. Preliminary experiments
show minimal impact of CPT on the N term, so
we keep these variables from Equation 1 to reduce
variance. Empirical experiments demonstrate that
the extended scaling law achieves a lower fitting
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Figure 2: Reduced computational resources (top) and
data consumption (bottom) with CPT. Only a subset
of models of typical sizes is displayed for simplic-
ity. (Top) Percentage reduction in FLOPs C rela-
tive to pre-training from scratch PT , as estimated by
(CPT − CCPT )/CPT at the same loss level for both
strategies. (Bottom) Effectively Transferred Data, cal-
culated by subtracting the tokens D used by CPT from
those used in pre-training from scratch at the same loss
level, i.e. DPT −DCPT .

error than the Chinchilla law for CPT. Addition-
ally, the introduced data-parameter joint term cap-
tures meaningful features in scaling behavior, as
shown in Section 4.3. We provide fitting error
comparison for both scaling laws in Appendix B,
where we show that extended scaling law performs
better for CPT. We also give more theoretical anal-
ysis and interpretation of the extended scaling law
in Appendix C.

3.3 Parametric Fit
To fit the learnable variables in Equation 4, we
minimize the Huber loss (Huber, 1992) between
predicted and observed log loss, with δ set to 10−3.
For pre-training from scratch, we minimize Equa-
tion 1:

min
a,b,e,α,β

∑

Run I

Huberδ (LSE(a− α logNi,

b− β logDi, e)− logLi)

(6)

where LSE is the log-sum-exp operator. We set
A = exp(a), B = exp(B), B′ = exp(b′), and
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Table 2: Comparison of parameter estimation and optimization coefficients for Equation 4 and Equation 5. For
Continual Pre-Training, parameters E, A, and α are fixed based on values from Training from Scratch.

(a) Estimations for Equation 4.

Model E A B α β γ

Training from Scratch 1.55 420.0 719.5 0.40 0.30 -
Continual Pre-training 1.55 420.0 433.3 0.40 0.20 0.08

(b) Approximated optimization coefficients for Equation 2.

Model Coeff. a where Nopt ∝ Ca Coeff. b where Dopt ∝ Cb

Training from Scratch 0.429 0.571
Continual Pre-training 0.385 0.615

E = exp(e). For continual pre-training, using
the fixed values of a, α, and e from the previ-
ous optimization step, we subsequently optimize
B′, β′, and γ in Equation 4:

min
b′,β′,γ

∑

Run I

Huberδ (LSE(a− α logNi,

b′ − β′ logDi − γ logNi, e)− logLi

)

(7)

We use the Optuna library for hyperparameter
search and the L-BFGS algorithm (Nocedal, 1980)
for optimal local search, yielding the best hyperpa-
rameters. The final parameter values are presented
in Table 2a, and the optimized allocation coeffi-
cients are shown in Table 2b.

4 Results

4.1 CPT Reaches Lower Loss Throughout
Training

Figure 1 reports the validation loss over train-
ing for all trained models. It can be seen that
pre-training language models from existing check-
points generally yield lower loss given certain
compute constraints. This effect exists across both
various model sizes and training stages of the same
model. At the start of training, CPT converges
significantly faster, advancing pre-training from
scratch by orders of magnitudes. The absolute dif-
ference of loss becomes smaller as training contin-
ues, but a substantial gap in loss persists. Note that
Figure 1 is presented on a logarithmic scale. This
gap may require several orders of magnitude more
iterations before it disappears.

4.2 CPT Preserves Loss-Compute Scaling
Relationship

As indicated by Equation 3, optimal validation
loss scales with compute following a power-law re-
lationship. We conducted parametric fits for CPT
and pre-training from scratch on Equation 3, us-
ing the lowest loss at each compute level. The fit
results are depicted as dotted lines in Figure 1. For
pre-training from scratch, the relationship is rep-
resented by L = 33.69907 × C−0.0579. In com-
parison, the loss for CPT is lower, described by
L = 31.9594× C−0.0575.

The results of the parametric fit indicate that
the advantage of lower loss is consistent across
each unit of compute expended. This is supported
by the significantly reduced coefficient term (from
33.69907 to 31.9594) and the nearly unchanged
exponent (from -0.0579 to -0.0575). The nearly
unchanged exponent suggests that CPT does not
alter the underlying dynamics of the loss-compute
relationship, but rather provides an advantageous
initial condition.

4.3 Extended Scaling Law Measures
Effectively Transferred Data in CPT

We conducted a further analysis to study the im-
pact of individual factors, specifically data and
model size, on loss. Table 2a compares the esti-
mated parameters for CPT with those for training
from scratch. As discussed in Section 3.2, only the
parameters in the term B′

Dβ′Nγ are updated for CPT.
For CPT, the parameters are B = 433, γ = 0.08,
and β = 0.20. The lower β and positive γ sug-
gest that in CPT, the cross-lingual transfer effect
positively correlates with parameter size.

In Figure 2, we measure the transferred train-
ing FLOPs and data during CPT to visualize the
scaling transfer effect of parameter size, which cor-
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Figure 3: Zero-shot evaluation for pre-trained and continually pre-trained (CPT) models of different languages.
CPT models of various languages are initialized from the same checkpoint (light gray).

roborates our theoretical results. We find that the
percentage of reduced training FLOPs steadily de-
creases during the individual training process, re-
sulting in 25% to 50% FLOPs saved during CPT.
On the other hand, effectively transferred data lin-
early increases with training tokens, with larger
models reducing more training FLOPs and data
during CPT, indicating a stronger transfer effect.
A plausible explanation could be that a larger op-
timization space contains more linguistic-agnostic
knowledge that can transfer more easily.

4.4 CPT Models Generalize to Downstream
Tasks

Besides validation losses, we also evaluate cross-
lingual CPT on several multi-lingual benchmarks.
Using 1.4B parameters, we continually trained
models in French (Fr.), Russian (Ru.), and Chinese
(Zh) from the same English checkpoint and com-
pared them to models trained from scratch and the
original English checkpoints. The results, shown
in Figure 3, reveal that CPT improves performance
across all languages.

Our results showed that in all three languages
tested, the models enhanced through CPT con-
sistently outperformed those trained from scratch,
demonstrating improved performance across vari-
ous languages and benchmarks.

We find that French models benefit the most
from CPT. This is likely due to the high similarity
between French and English, which share many
common words and grammatical structures, facil-
itating more effective cross-lingual transfer com-
pared to Russian and Chinese.

Key Takeaways

• Continual pre-training converges to lower
loss faster throughout training, saving 25%
to 50% of training FLOPs.

• The transfer effect is most pronounced in the
early stages and positively correlated with
parameter size.

• The effect generalizes well to downstream
evaluations, with languages more similar to
English experiencing greater benefits.

5 Discussion

5.1 What is the Compute-Optimal Allocation
between Parameter Size and Data?

When total computational resources are limited,
there exists a trade-off between model parameter
size and the amount of training data during pre-
training.

According to the framework established in Sec-
tion 3, we can determine the optimal allocation
between the model parameters Nopt and training
data Dopt by minimizing the predicted loss L with
respect to data D and parameter size N . More
specifically, by optimizing Equation 2, we esti-
mate the optimal training data and model param-
eters for pre-training from scratch to be:

Nopt(C) = 0.324C0.429

Dopt(C) = 0.514C0.571
(8)

In comparison, for continual pre-training, the
optimal allocations are:

N̂opt(C) = 4.79C0.385

D̂opt(C) = 0.035C0.615
(9)
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A visualization of the efficient frontier of model
parameter N with respect to compute over the
IsoLoss contour is shown in Figure 5. We find that
the optimal parameters for continual pre-training
differ from those for pre-training from scratch,
favoring less compute for the same model sizes.
This aligns with the nature of cross-lingual trans-
fer learning, where the model in continual pre-
training is "pre-matured" due to prior knowledge
acquired in the source language. This suggests
that, in continual pre-training, using a larger lan-
guage model is preferred over training on a larger

dataset.
It is worth noting that under our settings, larger

models not only imply higher model capacity but
also involve training on more data in the source
language. This may explain why the compute-
optimal allocation favors larger base models to
some extent. However, this preference may not
hold when a larger initialization model checkpoint
is under-trained.

5.2 Does Replaying from Source Language
Prevent Catastrophic Forgetting?

By continually pre-training a model from the
source language, its performance on the target
language can be greatly improved. However,
with straightforward pre-training strategies, the
model’s performance on the source language de-
grades significantly. For example, in a 1.4 billion
parameter model, the validation loss on English in-
creases from 2.40 to 3.68 during pre-training. This
issue is even more severe in smaller models.

To prevent catastrophic forgetting of the origi-
nal distributions during continual pre-training, we
investigate methods that replay data from the
source language during pre-training. We use the
term replaying to refer to the practice of mix-
ing data from the source language during contin-
ual pre-training on the target language. Previous
works have shown that replaying data can help pre-
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vent catastrophic forgetting in continual learning
tasks (Ibrahim et al., 2024a; Scialom et al., 2022).

For models with 1.4B parameters, we continu-
ally train several models with mixed training cor-
pora by replaying data at various ratios. We visual-
ize the training curves of these English-replaying
models in Figure 4. Note that in Figure 4, the com-
pute is specific to each language rather than the
total compute during training.

Figure 4 demonstrates that replaying data from
the source language significantly alters the scaling
behavior in an intricate manner. As shown on the
right side of Figure 4, different ratios of replay-
ing only affect the early stage of training. Mod-
els reach the same validation loss when the same
amount of compute is used, regardless of the vary-
ing ratios of original data, ranging from 1% to
80%.

The left side of Figure 4 compares the rela-
tionship between compute and validation loss on
the original distribution throughout continual pre-
training, which can be viewed as the "scaling law
of forgetting". Interestingly, the scaling behavior
depicts a power-law relationship similar to that
during pre-training from scratch. Validation losses
of models at different English replaying ratios in-
crease at the early stage of training and then de-
cline, eventually returning to a lower value than at
the start. This suggests that a large amount of orig-
inal knowledge is preserved throughout continual
training, even with a very low English replaying
ratio (1% - 5%). Above discoveries suggest that
higher levels of replaying original data are benefi-
cial, as replaying does not hinder the scaling prop-
erties on the target language while preserving the
model’s performance on the original distribution.

Key Takeaways

• Under computational constraints, a larger pa-
rameter size is preferred over pretraining on
a larger dataset in CPT.

• Continual pre-training without replaying
data from source language causes severe
catastrophic forgetting, especially in smaller
models.

• 5% - 30% of source language replaying ef-
fectively prevents forgetting while not hin-
dering efficiency of continual pre-training.

6 Related Work

Scaling Law for Large Language Models Scal-
ing laws help us understand how model perfor-
mance changes with the amount of data and the
size of the model. Kaplan et al. (2020) first
introduced a detailed scaling law for large lan-
guage models, demonstrating a clear relation-
ship between model size, training data, and per-
formance. Hoffmann et al. (2022) further ex-
plored this by emphasizing the trade-off between
the data quantity and the model size, suggest-
ing a compute-optimal allocation of data and pa-
rameters. Recent studies have examined scal-
ing laws under specific conditions. Hernandez
et al. (2022) and Muennighoff et al. (2023) fo-
cused on the diminishing returns from repeated to-
kens and excessive parameters. Tay et al. (2022)
and Frantar et al. (2023) investigated how differ-
ent model architectures impact scaling. Scaling
laws are also relevant in the context of newer pre-
training methods, such as parameter-efficient fine-
tuning (PEFT) (Kalajdzievski, 2024) and Mixture-
of-Experts (MoE) (Krajewski et al., 2024).

Cross-Lingual Transfer Learning Transfer
learning aims to enhance performance on new
tasks by adapting pre-trained models with out-
of-domain data. This process is more efficient
when the source and target domains are closely
related (Pan and Yang, 2009; Zhuang et al.,
2020). Cross-lingual pre-training leverages
language-independent knowledge embedded in
pre-trained LLMs to improve performance in
the target language (Wu et al., 2019; Yosinski
et al., 2014). Transfer learning is often studied
within the context of limited-scale post-training,
but it has been shown to be effective at a large
pre-training scale with proper techniques (Gupta
et al., 2023). A significant challenge in transfer
learning is catastrophic forgetting (Winata et al.,
2023), where the model’s ability in the original
training domain degrades during transfer learning.
Various strategies have been proposed to miti-
gate catastrophic forgetting, including modified
learning rate schedules (Ibrahim et al., 2024b;
Gupta et al., 2023; Winata et al., 2023), data
replay (Ostapenko et al., 2022), and regulariza-
tion (Farajtabar et al., 2020). Our work combines
data replay and modified learning rate schedules
to combat catastrophic forgetting.

Our research is closely related to Hernandez
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et al. (2021), which focused on meta-knowledge
transfer between English and code under self-
supervised fine-tuning settings. In contrast, we
expand continual pre-training to larger-scale and
cross-lingual settings, addressing the gap in effec-
tive transfer at scale for continual pre-training with
significant distribution shifts.

7 Conclusion

In this paper, we explored continual pre-training
(CPT), analyzing its principles, influencing fac-
tors, and best practices. Through training mul-
tiple LLMs with varying sizes, language distri-
butions, and conditions, we derived an extended
scaling law for CPT. Our results quantitatively
demonstrate that CPT achieves lower loss more
quickly, saving 25% to 50% of training resources.
However, CPT is particularly sensitive to factors
such as language type, training duration, and catas-
trophic forgetting. Based on these insights, we
provide best practices for CPT, including opti-
mal data-to-parameter allocation and replay ratios.
These findings motivate future practitioners to ap-
ply CPT, offering deeper insights into factors like
dataset distribution and training budgets.

Limitations

Language Contamination We used public
datasets for pre-training, but completely prevent-
ing English contamination is challenging, espe-
cially since languages like French often include
English words. Counting samples in each lan-
guage split to estimate computational effort may
be imprecise if other languages are present. Fu-
ture research should analyze the impact of lan-
guage contamination in multilingual pre-training
more deeply.

Hyper-Parameter Sensitivity We selected
hyper-parameters based on experience and trial
and error when training models of various scales.
Deviating from optimal hyper-parameters can
significantly harm optimization and disrupt
scaling laws. To maintain consistency, we used
constant hyper-parameters matching the model
scale, aligning with previous studies. Future
research should find optimal hyper-parameters
from the perspective of language-specific scaling
laws for more effective pre-training.

Scaling Constraints Due to computational lim-
itations, we couldn’t conduct extensive experi-

ments with large datasets or very large models,
which may limit the generalizability of our find-
ings to larger-scale scenarios. We focused on the
LLaMA2 architecture, known for its practicality
in measuring scaling properties. However, differ-
ent architectures may exhibit distinct scaling be-
haviors. Future research should investigate these
differences to better optimize and scale various
model architectures.

Vocabulary Extension We did not test the im-
pact of vocabulary extension during continual pre-
training (CPT). Instead, we used a byte-level BPE
tokenizer trained on both English and Chinese
text, keeping the model’s shape unchanged. While
this allowed us to focus on scaling properties, it
does not reflect practical scenarios where extend-
ing the vocabulary to include new tokens is neces-
sary. This omission limits the applicability of our
findings to cases where the tokenizer can not han-
dle the new language well. Future work should ex-
plore vocabulary extension effects in CPT to pro-
vide a more comprehensive understanding.

Pre-training Length Variations Our study as-
sumed source models were trained to the
Chinchilla-optimal token count. In practice, mod-
els are often "over-trained" beyond this point, such
as LLaMA2 and LLaMA3 trained with trillions
of tokens. We did not investigate how contin-
ual pre-training scales for these over-trained mod-
els. This limits the applicability of our scaling
laws to real-world scenarios where models ex-
ceed the Chinchilla-optimal training length. Fu-
ture research should examine CPT scaling for over-
trained models to determine if our conclusions
hold in such settings.

Acknowledgements

We would like to extend our special thanks to
Yadong Liu and Chunhui Liu for their invaluable
feedback and support.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piqa: Reasoning about

7733

https://api.semanticscholar.org/CorpusID:208290939


physical commonsense in natural language. ArXiv,
abs/1911.11641.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Common Crawl. 2007. Common crawl: A pub-
lic repository of web crawl data. https://
commoncrawl.org/. Accessed: 2024-09-26.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Viet Dac Lai, Chien Van Nguyen, Nghia Trung Ngo,
Thuat Nguyen, Franck Dernoncourt, Ryan A Rossi,
and Thien Huu Nguyen. 2023. Okapi: Instruction-
tuned large language models in multiple languages
with reinforcement learning from human feedback.
arXiv e-prints, pages arXiv–2307.

Juuso Eronen, Michal Ptaszynski, and Fumito Masui.
2023. Zero-shot cross-lingual transfer language se-
lection using linguistic similarity. Information Pro-
cessing & Management, 60(3):103250.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and
Ang Li. 2020. Orthogonal gradient descent for con-
tinual learning. In International Conference on Ar-
tificial Intelligence and Statistics, pages 3762–3773.
PMLR.

Elias Frantar, Carlos Riquelme, Neil Houlsby, Dan
Alistarh, and Utku Evci. 2023. Scaling laws
for sparsely-connected foundation models. arXiv
preprint arXiv:2309.08520.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim,
Mats L Richter, Quentin Anthony, Eugene
Belilovsky, Irina Rish, and Timothée Lesort.
2023. Continual pre-training of large language
models: How to (re) warm your model? arXiv
preprint arXiv:2308.04014.

Danny Hernandez, Tom Brown, Tom Conerly, Nova
DasSarma, Dawn Drain, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan
Hume, et al. 2022. Scaling laws and interpretabil-
ity of learning from repeated data. arXiv preprint
arXiv:2205.10487.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Peter J Huber. 1992. Robust estimation of a location
parameter. In Breakthroughs in statistics: Method-
ology and distribution, pages 492–518. Springer.

Adam Ibrahim, Benjamin Th’erien, Kshitij Gupta,
Mats L. Richter, Quentin Anthony, Timothée Lesort,
Eugene Belilovsky, and Irina Rish. 2024a. Simple
and scalable strategies to continually pre-train large
language models. ArXiv, abs/2403.08763.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta,
Mats L Richter, Quentin Anthony, Timothée Lesort,
Eugene Belilovsky, and Irina Rish. 2024b. Simple
and scalable strategies to continually pre-train large
language models. arXiv preprint arXiv:2403.08763.

Damjan Kalajdzievski. 2024. Scaling laws for forget-
ting when fine-tuning large language models. arXiv
preprint arXiv:2401.05605.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Jakub Krajewski, Jan Ludziejewski, Kamil Adam-
czewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz
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A Downstream Performance of
English-Replaying Models at Various
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Figure 6: Model performance on English and Chinese
benchmarks at different English data replaying ratios
with 1.4B parameters. Relative Performance refers
to accuracy relative to the highest accuracy achieved
across different training settings with 1.4B parameters.
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To further analyze the impacts of mixing orig-
inal data in continual pre-training, we evaluate
model performance on English and Chinese bench-
marks at different English data mix ratios in Fig-
ure 6. The results show that pre-training solely on
one language leads to sub-optimal performance on
the other language. However, incorporating even a
small amount of English data can effectively main-
tain performance on both original distributions. In
practice, around 30% of original data is sufficient
to keep the validation loss lower than at the start
of continual pre-training.

Models pre-trained only on English excel on
English benchmarks but perform poorly on Chi-
nese benchmarks, and vice versa. Adding English
data to models initially pre-trained on Chinese im-
proves their English performance without signifi-
cantly harming their Chinese performance. This
improvement is observed across different propor-
tions of English data (20%, 50%, and 80%).An op-
timal ratio is around 30% English data, balancing
low validation loss and high relative performance
across both languages. Beyond 50% English data,
there are diminishing returns, with marginal gains
in English performance and a slight decline in Chi-
nese performance.

B Fitting Error for Extended Scaling
Law

Table 3: Comparison of fitting errors L for the Chin-
chilla Law (Hoffmann et al., 2022) and our extended
scaling law on empirical data. The fitt error in huber
loss is denoted as Lequation. Our extended scaling law
performs better for CPT, comparable to Chinchilla in
pre-training.

Fit Data Pre-Training CPT

LChinchilla 0.0090 0.0108
LOurs 0.0094 0.0093

γ in Eq. 4 -0.005 0.080

We applied the Chinchilla Law (Hoffmann et al.,
2022) and our extended scaling law to empirical
data from both pre-training from scratch and con-
tinual pre-training (CPT) on Chinese text. The fit-
ting process minimized the average loss across all
trained models for both strategies using the same
procedures described in Section 3.3. The results,
shown in Table 3, indicate that for pre-training
from scratch, the extended scaling law performs

similarly to the Chinchilla Law, with the factor
γ close to zero. In contrast, for continual pre-
training, the joint data-parameter term in the ex-
tended scaling law significantly reduces the fitting
error, with γ = 0.080.

C Theoretical Analysis and
Interpretation of Extended Scaling
Law

First, we review the formulated scaling law pro-
posed by Hoffmann et al. (2022), where they de-
rived and fit a formula for the loss. They decom-
pose the loss L(N,D) into three terms in the ab-
stract functional space:

L(N,D) ≜ L(f̄N,D)

= L(f∗) +
(
L(f̂N )− L(f∗)

)

+
(
L(f̄N,D)− L(f̂N )

)
(10)

Here, N represents the parameters, D repre-
sents the training tokens, f∗ represents the optimal
Bayesian classifier, f̂N denotes the optimal trans-
former model under the constraint of parameters
N , f̄N,D represents the outcome obtained through
gradient descent under the constraints of parame-
ters N and training tokens D in the experiments.

This functional space decomposition includes
three parts:the Bayes risk L(f∗), which is the
smallest possible loss for predicting the next
token based on the full distribution P , also
known as the "entropy of natural text", a
term

(
L(f̂N )− L(f∗)

)
related to how well the

function approximates based on the hypothesis
space size, and a stochastic approximation term(
L(f̄N,D)− L(f̂N )

)
.

Functional space decomposition Our goal is
to modify the Equation 1 to fit the scenario of
continual pre-training. Consider Continual Pre-
training as initialization from a specific model
weight state, recalling the functional space decom-
position – Equation 10. It serves as a loss decom-
position under token and model size constraints,
discuss in the abstract functional space. This de-
composition method has no relation to the training
process (including initialization, naturally), but is
a theoretical analysis and summary, so we think
that the structure of the entire decomposition is un-
affected.

Keeping the structure of Equation 10, let’s con-
tinue to analyze the impact on the each three term.
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When considering continual pre-training as a form
of random initialization, recall the meaning of the
first two terms: the entropy of natural text and the
restrictions on the scale of the parameter space,
they are both independent of the specific training
process and only depend on the model’s architec-
ture, as well as the scale of N and D. Therefore,
different initialization will only affect The process
we implement gradient descent, which is the last
term: L(f̄N,D)− L(f̂N ).

Overall, in this scenario, we inherit Equation 10
and then fine-tuned Equation 1.

Inheriting learned variables Pay attention to
the detailed settings of our training scenario. the
dataset used for training and the details of the en-
tire training process are consistent. We will dis-
cuss the expected forms and explain the reasons
for inheriting learned variables:

(1) For the first term, L(f∗), due to the consis-
tency of the dataset, the entropy of training data
naturally maintain consistency between continual
pre-training and training from scratch. Numeri-
cally, this is equivalent to the same constant E.

(2) For the second term, L(f̂N ) − L(f∗), de-
pends entirely on the number of parameters N
that defines the size of the functional approxima-
tion space. Siegel and Xu (2020)(Siegel and Xu,
2020) analyzed this term and found it is related
to the power of N. We inherit this perspective
and believe that its estimated form is A

Nα . From
the principle of decomposition, this second term
does not involve the training phase and only repre-
sents the abstract restriction of model’s parameter
scale. When comparing to training from scratch,
the models size N and architecture are completely
consistent, so we inherits the values of A and α.
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D Model Structural Parameters

Table 4: Structural Parameters for Models of Different Sizes.

Parameter Size(M) Hidden Layer Size Intermediate Layer Attention Head Count Number of Layers

49 512 3072 8 8
66 576 3584 9 9
86 640 3584 10 10
105 640 3584 10 13
125 640 3584 10 16
137 768 4608 12 12
166 768 4608 12 15
194 768 4608 12 18
208 896 5120 14 14
234 896 5120 14 16
259 896 5120 14 18
301 1024 5632 16 16
334 1024 5632 16 18
368 1024 5632 16 20
512 1280 7168 10 18
591 1280 7168 10 21
616 1408 7680 11 18
670 1280 7168 10 24
711 1408 7680 11 21
766 1536 8704 12 19
806 1408 7680 11 24
879 1536 8704 12 22
992 1536 8704 12 25
1085 1792 9728 14 20
1239 1792 9728 14 23
1393 1792 9728 14 26
1542 2048 11264 16 22
1736 2176 11776 17 22
1743 2048 11264 16 25
1944 2048 11264 16 28
1963 2176 11776 17 25
2112 2304 12800 18 24
2191 2176 11776 17 28
2452 2304 12800 18 28
2791 2304 12800 18 32
2808 2560 13824 20 26
3227 2560 13824 20 30
3647 2560 13824 20 34
4016 2688 14848 22 34
4248 2688 14848 21 36
4657 2816 15360 22 36
5534 3072 16896 24 36
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