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Abstract

When large language models are aligned via
supervised fine-tuning, they may encounter
new factual information that was not acquired
through pre-training. It is often conjectured
that this can teach the model the behavior
of hallucinating factually incorrect responses,
as the model is trained to generate facts that
are not grounded in its pre-existing knowl-
edge. In this work, we study the impact of
such exposure to new knowledge on the ca-
pability of the fine-tuned model to utilize its
pre-existing knowledge. To this end, we de-
sign a controlled setup, focused on closed-
book QA, where we vary the proportion of
the fine-tuning examples that introduce new
knowledge. We demonstrate that large lan-
guage models struggle to acquire new factual
knowledge through fine-tuning, as fine-tuning
examples that introduce new knowledge are
learned significantly slower than those consis-
tent with the model’s knowledge. However,
we also find that as the examples with new
knowledge are eventually learned, they lin-
early increase the model’s tendency to hallu-
cinate. Taken together, our results highlight
the risk in introducing new factual knowledge
through fine-tuning, and support the view that
large language models mostly acquire factual
knowledge through pre-training, whereas fine-
tuning teaches them to use it more efficiently.

1 Introduction

Pre-training Large Language Models (LLMs) on
textual corpora embeds substantial factual knowl-
edge in their parameters (Petroni et al., 2019;
AlKhamissi et al., 2022; Cohen et al., 2023), which
is essential for excelling in various downstream
applications. These models often require further
alignment to desired behaviors, typically achieved
through supervised fine-tuning on instruction-
following tasks (Wei et al., 2022; Mishra et al.,

∗Work done during an internship at Google Research.

Figure 1: Train and development accuracies as a func-
tion of the fine-tuning duration, when fine-tuning on
50% Known and 50% Unknown examples. Unknown ex-
amples are fitted substantially slower than Known. The
best development performance is obtained when the
LLM fits the majority of the Known training examples
but only few of the Unknown ones. From this point,
fitting Unknown examples reduces the performance.

2022) and preference learning from human feed-
back (Ouyang et al., 2022; Rafailov et al., 2024).

In the fine-tuning phase, the model is usually
trained on outputs created by human annotators
or other LLMs. As a result, the model may en-
counter new factual information, extending beyond
the knowledge it acquired during pre-training. This
raises the question of how LLMs integrate new
facts outside of their pre-existing knowledge. One
possibility is that the model simply adapts by learn-
ing this new factual information. However, a com-
mon conjecture posits that such exposure to new
knowledge may encourage the model to halluci-
nate factually incorrect responses, as the model
is essentially trained to generate facts that are not
grounded in its pre-existing knowledge (Schulman,
2023; Huang et al., 2023; Gao, 2021; Goldberg,
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2023; Gudibande et al., 2023).
In this work, we study how learning new factual

knowledge through fine-tuning impacts the model’s
tendency to hallucinate w.r.t. its pre-existing knowl-
edge, exploring the above conjecture.1

To study the impact of new knowledge, we must
be able to assess whether a single fine-tuning ex-
ample is consistent with the model’s knowledge.
We propose SliCK, a hierarchy of four knowl-
edge categories, derived from a continuous mea-
sure that quantifies the agreement between model-
generated answers and the ground-truth labels. In
SliCK, examples are first categorized into Known

and Unknown types, where the latter corresponds to
examples with facts that are most likely unknown
to the model. The Known examples are subse-
quently split into three categories: HighlyKnown,
MaybeKnown, and WeaklyKnown (Figure 2).

Equipped with the above method, we carefully
design a controlled study, focused on closed-book
question answering (QA), where we vary the pro-
portion of the fine-tuning examples categorized as
Unknown, while controlling for other factors.

Our study empirically demonstrates that learn-
ing from Unknown fine-tuning examples is linearly
correlated with the model’s tendency to hallucinate
w.r.t. its pre-existing knowledge (§4). Conversely,
learning from Known examples is correlated with
better utilization of pre-existing knowledge.

Through an analysis of the training dynamics,
we discover that the LLM fits Unknown fine-tuning
examples substantially slower than Known exam-
ples (top plot in Figure 1). This indicates that dur-
ing fine-tuning, LLMs struggle2 to integrate new
factual knowledge (present in the Unknown fine-
tuning examples). Instead, they mostly learn to ex-
pose their pre-existing knowledge (using the Known
fine-tuning examples).

From a practical perspective, mitigating over-
fitting using early-stopping (vertical dotted line
in Figure 1) can minimize the risk of the halluci-
nations caused by fitting the Unknown examples,
since they primarily emerge in later training stages
as a form of overfitting (as illustrated by the devel-
opment performance decline in the bottom plot of

1While we focus on supervised fine-tuning, our findings
may be relevant to offline preference optimization methods
like DPO (Rafailov et al., 2024) that may add new knowledge,
which we leave for future work.

2We use the term “struggle” to describe how LLMs con-
verge slowly for examples containing new factual knowledge.
Since this term carries emotional connotations, we note that
we do not ascribe any emotional attributes to LLMs.

Figure 1). Alternatively, we also show that filtering-
out the Unknown fine-tuning examples substantially
reduces the risk of overfitting, without sacrificing
performance.

We further evaluate the impact of fine-tuning
examples from each of our three Known knowl-
edge categories on performance (§5). Unexpect-
edly, we find that a model fine-tuned only on exam-
ples from the highest knowledge degree, denoted
HighlyKnown, does not yield the best results. Our
analysis reveals that incorporating MaybeKnown

fine-tuning examples, representing facts with lower
degrees of certainty, plays an important part in prop-
erly handling such examples in test time. This indi-
cates that the composition of fine-tuning examples
significantly influences the extent to which LLMs
effectively utilize their pre-existing knowledge.

To summarize, we study the effect of new factual
knowledge in the fine-tuning data by designing a
controlled setup that isolates this factor. We find
that fine-tuning examples that introduce new knowl-
edge are learned slowly, which suggests that LLMs
struggle to integrate new knowledge through fine-
tuning and supports the view that LLMs mostly ac-
quire knowledge through pre-training (Zhou et al.,
2023; Lin et al., 2023). However, we also find
that as the model eventually learns new knowledge
through fine-tuning, it becomes more prone to hal-
lucinations w.r.t. its pre-existing knowledge. Col-
lectively, our findings highlight the potential for
unintended consequences when introducing new
knowledge through fine-tuning, and imply that fine-
tuning may be more useful as a mechanism to en-
hance the utilization of pre-existing knowledge.

2 Study Setup

Given a fine-tuning dataset D and a pre-trained
LLM M , we denote by MD a model obtained by
fine-tuningM onD. To study how new knowledge
in D affects MD’s performance, we design a con-
trolled setup creating variants of D with varying
proportions of examples that are unknown to M .

When constructing D, our objective is to reflect
instruction tuning on diverse knowledge-intensive
tasks while maintaining control over the experimen-
tal setting. We thus focus on factual knowledge
that can be structured as (subject, relation, object)
triplets, which are converted into closed-book QA
format. In this setup, D = {(qi, ai)}Ni=1, where q
is a knowledge-seeking question corresponding to
a specific triplet (e.g., “Where is Paris located?”)
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Type Category Definition Explanation

Known

HighlyKnown PCorrect(q, a;M,T = 0) = 1 Greedy decoding always predicts the correct answer.
MaybeKnown PCorrect(q, a;M,T = 0) ∈ (0, 1) Greedy decoding sometimes (but not always) predicts the correct answer.

WeaklyKnown
PCorrect(q, a;M,T = 0) = 0 ∧
PCorrect(q, a;M,T > 0) > 0

Greedy decoding never predicts the correct answer, whereas temperature
sampling with T > 0 sometimes predicts the correct answer.

Unknown Unknown PCorrect(q, a;M,T ≥ 0) = 0
The model never predicts the correct answer, thus it seem to lack the
knowledge of the correct answer.

(a)

Category Question Gold Answer Greedy Answers Sampled Answers
HighlyKnown Who founded Science of Mind? Ernest Holmes [Ernest Holmes, .. Ernest Holmes, ..] [..., ...]
MaybeKnown What is the capital of Toledo District? Punta Gorda [Belmopan, .., Punta Gorda, ..] [..., ...]
WeaklyKnown What kind of work does Scott McGrew do? Journalist [Film director, .. Actor, ..] [Musician, .. Journalist , ..]
Unknown Where is Benedict located? Hubbard County [Louisiana, .. New Mexico, ..] [Washington, .. Texas, ..]

(b)

Figure 2: Formal definitions of the SliCK knowledge categories, based on the PCorrect measure as defined in §3
(a), accompanied with real examples from the annotated ENTITYQUESTIONS dataset used in our study (b).

and a is the ground-truth answer (e.g., “France”).
To this end, we use ENTITYQUESTIONS (Sciavolino
et al., 2021), where triplets from a diverse set of
relations from Wikidata (Vrandečić and Krötzsch,
2014) are converted to QA pairs. These relations
encompass a broad spectrum of factual knowledge,
including biographical information, geographical
data, ownership and authorship details, history and
more. We use the original development and test
splits, and we sub-sample the train split to create
different variants of D. We focus on 12 diverse
relations and reserve 7 additional relations for an
out-of-distribution test set, used (only) in §4.5.

As M , we use the PaLM 2-S base model3 (Anil
et al., 2023). We focus on exact match (EM) as our
evaluation metric.4 Full technical details are in §A.

3 Quantifying Knowledge in LLMs

To assess the effect of new knowledge in D on
the performance of MD, we have to annotate each
(q, a) pair in D w.r.t. whether M knows that the
answer to q is a.5 To estimate this, we define a con-
tinuous PCorrect measure based on samples from
M , and use it to divide (q, a) pairs into four knowl-
edge categories. We name this approach SliCK
(Sampling-based Categorization of Knowledge).

Defining PCorrect. We adopt the perspective that
M knows that the answer to q is a if it generates a

3PaLM-2 is available in five sizes: XXS, XS, S, M, L, with
the S version representing the middle size in this range.

4We validated that in our setting EM strongly correlates
with word-level F1 (Rajpurkar et al., 2016), and we choose
EM as it is more intuitive for the purposes of our analysis.

5We also considered using fake facts for introducing new
knowledge, but we were concerned that this would introduce
confounding factors into our study, as fake facts may behave
differently than real ones. We discuss this in detail in §F.

when prompted to answer q (Kadavath et al., 2022;
Manakul et al., 2023). Since M is a base model
that has not been specifically fine-tuned to follow
instructions, we prompt M using in-context learn-
ing with few-shot exemplars. Following Rubin et al.
(2022), we make sure that the few-shot exemplars
have high semantic similarity to q.6

In practice, M can predict different answers
since (1) the choice of exemplars influences in-
dividual predictions and (2) temperature sampling,
if used, introduces randomness. To reflect this, we
define PCorrect(q, a;M,T ) as an estimate of how
likely is M to accurately generate the correct an-
swer a to q, when prompted with random few-shot
exemplars and using decoding temperature T .

For the purposes of our study we approxi-
mate the value of PCorrect using Nex = 10
different random 4-shot prompts.7 For each
4-shot prompt, we predict the greedy answer
using T = 0 and 16 sampled answers using
T = 0.5. PCorrect(q, a;M,T = 0) is estimated
by the fraction of correct greedy answers, and
PCorrect(q, a;M,T > 0) by the fraction of cor-
rect sampled answers. Full details are in §C.

Deriving knowledge categories from PCorrect.
We define the Unknown category (bottom row
in Figures 2a and 2b) to represent (q, a) pairs
for which M never predicts the correct an-
swer to q. In our notations this means that
PCorrect(q, a;M,T ≥ 0) = 0. Alternatively, if
PCorrect(q, a;M,T ≥ 0) > 0, i.e. M sometimes
predicts the correct answer to q, we consider (q, a)

6In our study we achieve this by using exemplars from
the same relation. E.g., if q =“Where is Paris located?”, the
exemplars would follow the pattern “Where is {X} located?”.

7We use 4-shot simply since we found it enough for M to
output answers in the correct format.
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(a) (b)

Figure 3: Test performance as a function of the % of Unknown examples in the fine-tuning dataset D. In (a),
each line corresponds to a different (fixed) number of epochs, except the EARLY_STOP, which corresponds to early-
stopping using the development set (see §4). In (b) we present the ablation from §4.2. Full lines correspond to
fine-tuning on D and are identical to (a). Dotted lines correspond to fine-tuning on the ablated variants DKnown,
where Unknown examples are filtered-out. For 0% UnknownD =DKnown and for 100% Unknown there is noDKnown.

as Known. In this choice, we posit that if prompting
M to answer q can sometimes result with the cor-
rect answer a, then M must have some association
with the relevant fact.

Recognizing that knowledge can vary in degrees
of certainty and extent, we divide the Known (q, a)
pairs into three distinct categories (top three rows
in Tables 2a and 2b). Motivated by the principle
that M should consistently predict a if (q, a) is
Known, we put emphasis on greedy decoding out-
comes, represented with PCorrect(q, a;M,T = 0).
HighlyKnown represents (q, a) pairs for which M
always greedily predicts a. If M sometimes (but
not always) greedily predicts a, we consider (q, a)
as MaybeKnown. Lastly, if M never greedily pre-
dicts a, we classify (q, a) as WeaklyKnown.

We apply SliCK to annotate each (q, a) pair in
our dataset with its knowledge category w.r.t. M .8

We analyze the quality of our categories in §6.

4 How Harmful are Unknown Examples?

In this section we study the effect of new knowl-
edge in the fine-tuning dataset D on performance.
To isolate this effect, we vary the proportion of
Unknown examples in D, while controlling for
other factors. Specifically, we fix |D| and create
variants of D with X% of Unknown and (100 −
X)% Known examples (full details in §E). We treat
the Known categories collectively (see Figure 2a),
and provide a per-category analysis in §5. We de-

8In ENTITYQUESTIONS we have 24% HighlyKnown,
23% MaybeKnown, 17%, WeaklyKnown, and 36% Unknown.
Full per-relation statistics are in §D.

note early-stopping based on the development set
as EARLY_STOP (happens after 5-10 epochs) and 50
fine-tuning epochs as CONVERGENCE, as at this point
M always completely fits D (i.e. 100% training
accuracy). We measure test performance as a proxy
for hallucinations since we are in a closed-book QA
setup with disjoint train/test splits, where the model
has to use its per-existing knowledge to answer test
questions (see §B for further discussion).

4.1 Higher Unknown Ratio is Proportional to
Performance Degradation

Figure 3a presents the performance as a function
of the % of Unknown examples in D, for different
fine-tuning durations. Higher %Unknown leads to
performance degradation, regardless of the fine-
tuning duration, which indicates that Unknown

examples are less useful than Known. Perfor-
mance is also strongly affected by the fine-tuning
duration, with EARLY_STOP typically yielding the
best performance. Training for more epochs usu-
ally reduces performance (with the lowest perfor-
mance observed for CONVERGENCE), which can be
attributed to overfitting D. Interestingly, this ef-
fect increases with larger %Unknown (the inter-line
spacing from EARLY_STOP exhibits a monotonic in-
crease along the positive x-axis), suggesting that a
higher %Unknown increases the risk of overfitting.

4.2 Unknown Examples: Harmful or Neutral?

Since |D| is fixed, performance drops for higher
%Unknown could stem from simply the lower num-
ber of the Known fine-tuning examples. Thus, it is
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Figure 4: The state of the examples in the fine-tuning
dataset D after EARLY_STOP. For each variant of D (y-
axis), we illustrate which portion of the examples in D
the model fits (i.e. predicts the correct answer for q).

still not clear if Unknown examples are harmful or
neutral. To address this, we measure the effect of
filtering-out all the Unknown examples fromD. For
each D variant, we create a corresponding ablated
variant DKnown, consisting only from the Known ex-
amples in D. E.g., if D has 25% Unknown, we
filter them out and are left with the remaining 75%
Known examples and get |DKnown | = 0.75× |D|.

Figure 3b presents the results. Perhaps surpris-
ingly, for EARLY_STOP the results for D are almost
identical to DKnown, indicating that the Unknown

examples had a neutral effect on performance (as
their removal had minimal impact). Conversely, the
CONVERGENCE results show that with longer train-
ing, Unknown examples are actually very harmful.
In this case D under-performs DKnown, and the gap
between them is proportional to the Unknown ratio.

Interestingly, for DKnown, the gap between
EARLY_STOP and CONVERGENCE is very small (dot-
ted lines), while this gap is very large for D (full
lines). This indicates that the presence of Unknown
examples is what makes the variants with higher
Unknown ratios more prone to overfitting.

4.3 Unknown Examples are Fitted Slower
than Known Examples

We showed that Unknown examples are harmful,
but their negative effect is mostly materialized in
later training stages, and thus can be empirically
avoided using early stopping. To better understand
these trends, we analyze the training dynamics by
examining which fine-tuning examples in D were
fitted by M during various fine-tuning stages. Fig-
ure 1 presents the train accuracy of the Known and
Unknown subsets of D as a function of the fine-
tuning duration. The development accuracy is pre-
sented in a zoomed-in plot at the bottom, as it falls
within a narrower range. We include a breakdown

β0 βkn βunk R2

In-distribution (§4.4) 36.9 7.3 −8.3 0.86
Out-of-distribution (§4.5) 36.2 3.2 −3.0 0.95

Table 1: Results of our linear model for predicting the
test accuracy as defined by Equation (1).

of the train accuracy per Known category in §G.
M fits Unknown fine-tuning examples substan-

tially slower than Known. In EARLY_STOP (vertical
dotted line), M reaches peak performance on the
development set, while fitting the majority of the
Known examples but only a small fraction of the
Unknown. In Figure 4, we show that this behav-
ior is consistent across all our variants of D. This
can explain why in EARLY_STOP the Unknown ex-
amples had a neutral effect on performance (§4.2),
as at this point M still did not fit most of them.
Lastly, since Unknown examples are the ones that
are likely to introduce new factual knowledge, their
significantly slow fitting rate suggests that LLMs
struggle to acquire new factual knowledge through
fine-tuning, instead they learn to expose their pre-
existing knowledge using the Known examples.

4.4 The Influence of Unknown vs Known on
Accuracy: A Linear Model Perspective

Figure 1 demonstrates that after the development
performance peaks at EARLY_STOP (vertical dot-
ted line), it deteriorates as M gradually fits more
Unknown examples. In this section, we aim to char-
acterize this relationship more accurately by assess-
ing whether a simple linear dependency can tie the
impact of fitting Known and Unknown training ex-
amples on test accuracy. To this end we use the
following linear regression model:

Accuracy = β0 + βkn ·
Nkn

|D| + βunk ·
Nunk

|D| (1)

where NKn and NUnk are the number of the Known
and Unknown examples in D that M fits.

We estimate the coefficients9 by collecting
(Accuracy, NKn, NUnk) values after each epoch
from models fine-tuned on all D variants. Table 1
presents the results (top row). The high R2 indi-
cates a strong linear relationship between test accu-
racy and the type of training examples that are fitted.
Our model entails that fitting Unknown examples
hurts performance (βunk < 0), while fitting Known

9Full details in §H. We note that this linear model is only
valid in bounded region of Nkn ≤ |D|, Nunk ≤ |D|.
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EARLY_STOP CONVERGENCE

Full Hkn Mkn Wkn Unk Full Hkn Mkn Wkn Unk

DHighlyKnown 40.5 98.7 60.1 9.0 0.6 40.0 98.4 58.8 8.5 0.7
DMaybeKnown 43.6 98.4 69.9 12.1 1.0 43.2 97.5 68.2 12.9 1.3
DWeaklyKnown 39.2 95.0 59.2 8.6 0.4 35.4 73.5 55.8 17.2 2.2
DUnknown 37.5 95.6 52.9 6.5 0.6 25.8 55.8 36.6 12.2 3.2
DNatural 43.5 98.0 67.6 14.1 1.8 41.8 95.5 61.7 14.8 2.5

Table 2: Accuracies for the single-category variants from §5, across per-category subsets of the test set. Full

is the original test set (all the categories together). Hkn=HighlyKnown, Mkn=MaybeKnown, Wkn=WeaklyKnown,
Unk=Unknown. In each column, the best result is in bold, as well as the results for which the difference from the
best is not statistically significant with p < 0.05 (significance test details are in §J).

examples improves it (βkn > 0). The estimated
negative impact from Unknown roughly matches
the positive impact from Known (|βukn| ≈ |βkn|).

4.5 Generalization to New Relations

In the above setup, the (q, a) pairs in the test set
correspond to triplets with the same set of 12 rela-
tions appearing in D. We now investigate whether
our observed dynamics has a broader effect on the
model’s knowledge, and transfers to relations not
represented in D. To test this, we reserve a subset
of the relations for an out-of-distribution (OOD)
test set, excluding them from the train and develop-
ment splits. See §A for details and Tables 5 and 6
for in-distribution vs OOD relations.

Our results on the OOD test set reveal simi-
lar key insights: (1) Higher Unknown ratio leads
to lower OOD test performance and (2) Unknown
examples are harmful for OOD performance, but
mostly when M fits them. A linear model of the
OOD test accuracy (Equation (1)), shows similar
trends: βunk < 0, βkn > 0, |βukn| ≈ |βkn| and
R2 = 0.95 (see Table 1). More details are in §I.

Overall, our insights transfer across relations.
This essentially shows that fine-tuning on Unknown
examples such as "Where is [E1] located?", can
encourage hallucinations on seemingly unrelated
questions, such as "Who founded [E2]?". This
further supports the conclusion that the observed
effects likely stem from the model learning the be-
havior of generating answers that are not grounded
in its pre-existing knowledge.

5 Understanding Knowledge Types:
Their Value and Impact

When addressing our main research question on
the effect of Unknown fine-tuning examples, we

treated the Known categories collectively for sim-
plicity (see Figure 2a). We now examine the effect
of each category, exploring the following questions:
Q1: How training examples from each category im-
pact the test performance? Q2: What is the model’s
performance across test examples from each cate-
gory? To address Q1 we created single-category
variants of the fine-tuning dataset D. A variant of
D consisting solely of examples from the category
CAT is denoted as DCAT. For reference, we include
a variant with the natural categories distribution in
ENTITYQUESTIONS, denoted DNatural. |D| is fixed
and identical to our experiments in §4. To address
Q2, we further break down the test set performance
by category. Table 2 presents the results.

MaybeKnown Examples are Essential. Since
Unknown examples are harmful, one might expect
that it would be best to fine-tune on the most ex-
emplary HighlyKnown examples. Surprisingly,
DHighlyKnown does not obtain the best overall re-
sults, as it excels on HighlyKnown test examples,
yet its performance on the remaining categories is
inferior. DMaybeKnown yields the best overall perfor-
mance. Compared to DHighlyKnown, DMaybeKnown

enhances MD’s performance on MaybeKnown

(60.1→69.9), without compromising performance
on HighlyKnown (98.7 → 98.4). This suggests
that MaybeKnown fine-tuning examples are essen-
tial for MD to correctly handle such examples dur-
ing inference. It also demonstrates that with the
right fine-tuning examples, MD becomes more ca-
pable of utilizing its pre-existing knowledge.

Limited Knowledge Enhances Overfitting. In
§4.2, we demonstrated that Unknown fine-tuning
examples increase the risk of overfitting. We now
observe that this also applies to WeaklyKnown,
though to a lesser degree. Specifically, at
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CONVERGENCE, DWeaklyKnown and DUnknown expe-
rience significant performance drops compared
to EARLY_STOP (39.2 → 35.4 and 37.5 → 25.8).
With training to CONVERGENCE, they show a mod-
est improvement on WeaklyKnown and Unknown

but substantially degrade on HighlyKnown and
MaybeKnown. This highlights that the decrease in
performance is strongly attributed to an increased
rate of hallucinations w.r.t. facts that were already
known to M after pre-training.

Interestingly, DNatural performs on-par with
DMaybeKnown in EARLY_STOP, suggesting that the
mere presence of MaybeKnown examples in D suf-
fices for high performance on MaybeKnown, even
if D has additional examples from other cate-
gories. Yet, DNatural’s performance degrades sig-
nificantly10 after CONVERGENCE, under-performing
DMaybeKnown – indicating that it still suffers from
overfitting, most-likely due to the presence of
WeaklyKnown and Unknown examples. Taken to-
gether these results demonstrate that DMaybeKnown

stands out both in terms of top performance and
reduced risk to overfitting.

6 SliCK Knowledge Categories Analysis

Assessing a model’s knowledge remains an open
problem, particularly since evaluating the quality
of such methods is challenging due to the lack of
ground truth about what the model truly knows. In
this work we proposed SliCK (§3): a four-category
classification of facts w.r.t. the model’s knowledge.
We now further analyze and discuss our design
choices, hoping that SliCK can serve as a useful
taxonomy to guide future research on this subject.

Fine-grained Known Categories We first re-
flect on whether our choice of splitting Known into
more fine-grained categories, based on the greedy
decoding outcome, has been proven meaningful.
As shown in Table 2, HighlyKnown indeed cap-
tures facts with high degree of knowledge, as it con-
sistently exceeds 95% accuracy post fine-tuning,
while MaybeKnown and WeaklyKnown seem to rep-
resent weaker knowledge degrees. As intended,
the performance on WeaklyKnown is worse that on
MaybeKnown but better than on Unknown. Addi-
tionally, the exact categories distinction we made
was proven useful since it revealed important in-
sights on the importance of the MaybeKnown fine-
tuning examples, as discussed in detail in §5.

10See §J for details about this statistic significance test.

Figure 5: SliCK Unknown categorization vs. classify-
ing examples with P(True) < T as Unknown. The x-
axis is the % of test examples classified as Unknown

and the y-axis is the accuracy on these examples post
fine-tuning. The yellow line is P(True) for T ∈ [0, 1].
Our Unknown category is the blue circle and the blue
line corresponds to approximating PCorrect with less
than 10 random 4-shot exemplars (see §3 and §C).

Benchmarking Unknown Test Examples A de-
sired property for (q, a) pairs classified as Unknown
that appear in the test set, is that M will incorrectly
answer q post fine-tuning (otherwise they are not
truly Unknown).11 In Table 2 we can see that the
accuracy on Unknown is extremely low (3.2% or
less), which is a strong indicator that most of the
Unknown examples are actually unknown to M .

As a case study for comparison, we analyze the
P(True) approach by Kadavath et al. (2022): a con-
tinuous score that estimates the probability a model
assigns to the correctness of a specific answer.
P(True) was originally used for self-evaluating
model-generated answers, while we use it to as-
sess whether M considers the ground-truth answer
as correct.12 In Figure 5, we explore classifying ex-
amples below a P(True) threshold as Unknown and
compare this methodology to SliCK. Our results in-
dicate that, at least in our setting, our approach cat-
egorizes Unknown examples for which the model’s
performance after fine-tuning is significantly worse.
Specifically, looking at fixed values on the x-axis
shows that if we would label a similar fraction of
test examples as Unknown using both methods, the
accuracy on the P(True)-based Unknown examples
would be much higher post fine-tuning.13 Lastly,

11Since in our closed-book QA setup the train and test
sets are disjoint, the model has to rely on its pre-existing
knowledge to answer test questions.

12Given a (q, a) pair, P(True) reflects the probability that
the model assigns for a being the answer to q. It can be applied
on a model-generated answer for self-evaluation as was done
in the original study, or on the ground-truth answer to check
whether M considers it as correct, like done in our study.

13This is a preliminary analysis, and we leave a comprehen-
sive comparison for future work. More details in §K.
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the blue line shows that using samples from mul-
tiple few-shot prompts to approximate PCorrect is
crucial, as using Nex < 10 leads to higher test
accuracy on SliCK Unknown examples.

7 Fine-tuning to Abstain on Unknown

Examples

We showed that fitting Unknown fine-tuning exam-
ples negatively affects the test performance (§4.2
and §4.4). However, this negative effect manifests
as a form of overfitting. From practical perspective,
we showed that we can mitigate overfitting by ei-
ther using early-stopping or filtering-out Unknown
examples from the fine-tuning dataset.

We now explore an additional approach where
we fine-tune the model to abstain from Unknown

examples as a potential mitigation. Specifically,
we replace the label of the Unknown fine-tuning
examples with the expression “I don’t know” and
test whether this mitigates the observed overfitting.

Table 3 presents the % of the test questions
that were answered (i.e. MD did not respond
with “I don’t know”) and the accuracy on those
questions. Consistent with the findings from pre-
vious work (Zhang et al., 2023), we observe an
improved accuracy on willingly answered test ex-
amples (when comparing D vs DIDK). When we
compare EARLY_STOP vs CONVERGENCE for D we
observe a performance drop (43.0→ 38.8) which
illustrates the overfitting effect. However, we ob-
serve that re-labeling the Unknown examples with
uncertainty expression seem to reduce the risk of
overfitting. Specifically, the accuracy for DIDK re-
mains 61.8 for both EARLY_STOP and CONVERGENCE,
with a small decrease on the number of willingly
answered questions (58.7→ 55.6).

8 Discussion

Practical Implications. This work highlights
the risk in using supervised fine-tuning to update
LLMs’ knowledge, as we present empirical
evidence that acquiring new knowledge through
fine-tuning is correlated with hallucinations w.r.t
pre-existing knowledge. Additionally, this work
raises important questions for future exploration
regarding fine-tuning practices. We saw that
Unknown examples are fitted slower than the
Known ones, thus their negative effect manifests
as a form of overfitting, which emphasizes the
importance of using early-stopping instead of a
fixed number of fine-tuning steps. However, early-

EARLY_STOP CONVERGENCE

Accuracy % Answered Accuracy % Answered

D 43.0 100.0 38.8 100.0
DIDK 61.8 58.7 61.8 55.6

Table 3: Results where the label of the Unknown fine-
tuning examples is replaced with “I don’t know”. D
in this case is the variant with 50% Known and 50%
Unknown. DIDK is the variant where all the 50%
Unknown fine-tuning examples were re-labeled with “I
don’t know”. The accuracy is measured on the subset
of the test questions that were answered, i.e. MD did
not respond with “I don’t know”.

stopping may be less effective when fine-tuning
on numerous tasks with distinct optimal stopping
points. An alternative solution can be to avoid
adding new knowledge, by aligning the fine-tuning
data with the model’s knowledge through filtering-
out Unknown examples. We show initial evidence
that this can reduce the risk of overfitting without
compromising performance. A possible drawback
of filtering, is that Unknown fine-tuning examples
can still be useful to teach LLMs to express un-
certainty on Unknown test examples (Zhang et al.,
2023; Yang et al., 2023). This raises the question:
can re-labeling Unknown fine-tuning examples
with uncertainty expressions (e.g., “I don’t know”)
reduce their negative effect? Our experiment (§7)
suggests that the answer is yes, which indicates
that such approaches could be the most promising.

Superficial Alignment Hypothesis. Zhou et al.
(2023) hypothesized that the knowledge and ca-
pabilities of LLMs are mostly learned during pre-
training, while alignment is a simple process where
the model learns the style or format for interacting
with users. They substantiate this hypothesis by
showing that fine-tuning on just 1k high-quality
examples can result with a competitive assistant
LLM, named LIMA. As discussed in §4.3, we
show evidence that LLMs struggle to acquire new
knowledge present in the Unknown examples and
mostly learn to utilize their pre-existing knowledge.
We also showed that fine-tuning on HighlyKnown

examples led to sub-optimal utilization of pre-
existing knowledge, despite our task format be-
ing simpler than LIMA’s and our dataset being six
times larger. Taken together, our findings suggest
that even though most of the LLM’s knowledge
is indeed acquired through pre-training, the model
learns more than just style or format through fine-
tuning, as the selection of fine-tuning examples
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significantly influences the model’s capability to
utilize its pre-existing knowledge post fine-tuning.

9 Related Work

New knowledge and hallucinations. Schulman
(2023), Goldberg (2023) and Gudibande et al.
(2023) mention the conjecture that fine-tuning on
new factual knowledge may encourage hallucina-
tions. Huang et al. (2023) categorized hallucination
causes and formally defined this scenario as capa-
bility misalignment, also highlighting that limited
research addresses capability misalignment due to
the challenge of defining the knowledge boundary
of LLMs.

Recent work support our findings. For instance,
Ghosal et al. (2024) showed that models fine-tuned
on well-known facts exhibit enhanced factuality
compared to those fine-tuned on unpopular facts,
which can be attributed to the model’s lesser fa-
miliarity with unpopular facts. Another example
is Lin et al. (2024), who fine-tuned a model us-
ing data generated by either a pre-trained model
or a retrieval-augmented variant. They found that
the latter resulted in reduced factuality, which can
be attributed to the introduction of new factual
knowledge in the retrieved texts. Ren et al. (2024)
have also investigated the effects of introducing
new factual knowledge through fine-tuning in a
considerably different methodological setup, fo-
cusing on multiple-choice questions, conducting
relatively short fine-tuning runs, and testing only
100% known and 100% unknown mixtures. Their
results align with ours, which further reinforces our
conclusions. Lastly, these insights were also inte-
grated into the instruction-tuning phase of Llama
3 models (Dubey et al., 2024), ensuring that the
examples are aligned with pre-training knowledge.

Another line of work explores the model’s be-
havior on new knowledge in test time. Kang et al.
(2024) showed that when a fine-tuned LLM en-
counters unknown queries at test time, its responses
mimic the responses associated with the unknown
examples in the fine-tuning data. Yin et al. (2023)
showed that LLMs’ performance is not satisfactory
when they face new knowledge in their input con-
texts and Lee et al. (2023) analyzed the impact of
unknown in-context learning examples.

Quantifying knowledge in LLMs. SliCK can
be seen as a confidence elicitation method for the
ground truth label (M knows (q, a) if it is confident
that a is the answer to q). Existing work derive cali-

brated confidence from LLMs by examining agree-
ment across multiple samples (Kuhn et al., 2023;
Manakul et al., 2023; Tian et al., 2023a; Lyu et al.,
2024), probing internal representations (Azaria and
Mitchell, 2023; Burns et al., 2022), eliciting ver-
balized probability (Tian et al., 2023b) or direct
prompting (Kadavath et al., 2022). Kadavath et al.
also trained a separate P(IK) model to predict if
the LLM knows the answer to q. The label for
P(IK) was approximated by the fraction of correct
sampled answers, which is conceptually aligned
with PCorrect (§3). A key difference is that we also
define the SliCK categories, and provide evidence
that we capture meaningful and useful categories.

10 Conclusion

We study the impact of integrating new factual
knowledge through fine-tuning on the model’s ten-
dency to hallucinate. We first propose SliCK, a
categorization of facts w.r.t. LLM’s knowledge.
We then design a controlled study where we isolate
the impact of new knowledge and rigorously eval-
uate its effects. We provide multiple insights on
the fine-tuning dynamics, with the following key
findings: (1) Acquiring new knowledge via super-
vised fine-tuning is correlated with hallucinations
w.r.t. pre-existing knowledge. (2) LLMs struggle to
integrate new knowledge through fine-tuning and
mostly learn to use their pre-existing knowledge.

11 Limitations

Our experiments were conducted using a single
LLM, and thus it is unclear whether results will
vary with different LLMs. Having said that, our
study is extremely compute-heavy and thus chal-
lenging to replicate on multiple LLMs: First, our
fine-tuning is compute-heavy as its runs are very
long as we wanted to analyze the behavior during
different stages of fine-tuning (including the over-
fitting stages). Second, and most importantly, to
facilitate our study we needed to annotate a large
scale dataset w.r.t the SliCK categories. To derive
reliable conclusions, it was crucial to accurately
assess the model’s knowledge w.r.t. a single fine-
tuning example. In our case we run 170 inference
steps per example, i.e., more than 15M inference
steps to categorize our full dataset.

In addition, since we focus on closed-book QA,
the practical implications from our study such as
filtering-out Unknown fine-tuning examples still re-
quire validation in settings involving long-form
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text generation. To filter-out examples that intro-
duce new factual knowledge in long-form gener-
ation tasks, one would need to make adaptations
to SliCK and come up with an effective way to
compare the sampled answer with the ground-truth
to approximate PCorrect. We leave this for future
work. Long-form generation tasks introduce eval-
uation challenges, leading to a wide adoption of
LLM-based evaluations. Our choice to focus ex-
plicitly on closed book QA facilitates more accu-
rate evaluation that enhances the reliability of our
findings.

Lastly, we did not test the effect of adding ad-
ditional fine-tuning examples from diverse tasks
into the fine-tuning mixture. While this could
more closely approximate a typical instruction fine-
tuning scenario, such dataset extension may intro-
duce new factual knowledge in an uncontrollable
way, which will limit our findings.
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A Data Preprocessing

This section expands §2 with additional details
about our data preprocessing steps. The ENTI-

TYQUESTIONS dataset (Sciavolino et al., 2021) con-
sists of train, development and test splits and spans
24 relations. Our train, development and test sets
are curated based on the original splits from ENTI-

TYQUESTIONS. However, we use only 12 relations,
since we wanted to reserve some relations for out-
of-distribution test set. To avoid cherry-picking, the
12 relations used in our train, development and test
sets are randomly sampled. The resulting relations
are presented in Tables 4 and 5.

We reserved the remaining 12 relations for out-
of-distribution test set. However, we found that in
those 12 reserved relations, 5 were too similar to
some of the relations that we train on (Table 4),
thus we suspected that this could lead to a test set
that is not truly out-of-distribution. To address that,
we filtered out those relations and were left with
7 relations for our-of-distribution. These 7 out-of-
distribution relations are presented in Table 6. The
relations that were filtered-out are as follows:

• P276 was filtered out since it directly
overlaps with P131 since for both rela-
tions the question in ENTITYQUESTIONS is
of the form “Where is [E] located?”.
P276 stands for “location” (https://www.
wikidata.org/wiki/Property:P276) and
P131 stands for “located in the administrative
territorial entity” (https://www.wikidata.
org/wiki/Property:P131).

• P20, for which the question template is
“Where did [E] die?”, was filtered out since
it may require knowledge that relates to P19,
for which the question template is “Where
was [E] born?”. P20 stands for “place of
death” (https://www.wikidata.org/wiki/
Property:P20) and P19 stands for “place of
birth” (https://www.wikidata.org/wiki/
Property:P19).

• P106, for which the question template is
“What kind of work does [E] do?”, was filtered
out since it may require knowledge that re-
lates to P800, for which the question template
is “What is [E] famous for?”. P106 stands
for “occupation” (https://www.wikidata.
org/wiki/Property:P106) and P800 stands
for “notable work” (https://www.wikidata.
org/wiki/Property:P800).

• P413, for which the question template
is “What position does [E] play?”, was
filtered out since it may require knowl-
edge that relates to P800, for which the
question template is “What is [E] famous
for?”. P413 stands for “position played on
team / speciality” (https://www.wikidata.
org/wiki/Property:P413) and P800 stands
for “notable work” (https://www.wikidata.
org/wiki/Property:P800).

• P159, for which the question template is
“Where is the headquarters of [E]?”, was
filtered out since it may require knowl-
edge that relates to P36, for which the
question template is “What is the capi-
tal of [E]?”. P159 stands for “head-
quarters location” (https://www.wikidata.
org/wiki/Property:P159) and P36 stands
for “capital” (https://www.wikidata.org/
wiki/Property:P36).

Lastly, we perform two additional filtering steps:
(1) To simplify the process of categorizing the ex-
amples w.r.t. M ’s knowledge (§3), we filter-out
examples with more than 1 correct answer.14 (2)
We make sure that no subjects or objects overlap
between the train and test sets,15 by filtering-out
overlapping examples from the train set.16

B Hallucinations in the Context of our
Study

In general, the term “hallucinations” is not well-
defined in NLP (Venkit et al., 2024). For clarity,
in §B.1 we define the type of hallucinations we
target in this work. In addition, while our main
takeaway is that acquiring new knowledge can lead
to hallucinations, our experiments focus on mea-
suring accuracy drops on the test set. Therefore,
in §B.2 we clarify why worse performance on the
test set in our study is attributed to higher rate of
hallucinations, as defined in §B.1.

B.1 Hallucinations w.r.t. the Pre-existing
Knowledge.

Huang et al. (2023) categorized hallucinations into
two main categories: (1) factuality hallucination

144.2% and 3.9% of the ENTITYQUESTIONS train and test
set respectively.

15For example, the subject “Bruce Smith” appears with
2 different relations (P106 and P413) yielding 2 examples:
(“What kind of work does Bruce Smith do?”, “poet”) and
(“Where was Bruce Smith born?”, “Faribault”).

162.1% of the ENTITYQUESTIONS train set.
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relation question template HighlyKnown MaybeKnown WeaklyKnown Unknown Total Min

P131 Where is [E] located? 553 2529 1493 3071 7646 553
P136 What type of music does [E] play? 236 3410 1892 1978 7516 236
P17 Which country is [E] located in? 4387 2628 511 364 7890 364
P19 Where was [E] born? 369 1884 1498 4170 7921 369
P26 Who is [E] married to? 1609 1503 1087 3257 7456 1087
P264 What music label is [E] represented by? 206 1444 1854 3820 7324 206
P36 What is the capital of [E]? 4160 1634 449 572 6815 449
P40 Who is [E]’s child? 692 1467 1271 2680 6110 692
P495 Which country was [E] created in? 5459 1101 408 706 7674 408
P69 Where was [E] educated? 233 1126 1712 3650 6721 233
P740 Where was [E] founded? 1323 1618 1428 2902 7271 1323
P800 What is [E] famous for? 301 330 222 503 1356 222

TOTAL - 19528 20674 13825 27673 81700 6142

Table 4: Statistics of the ENTITYQUESTIONS train split annotated with SliCK categories. We annotate the entire
train split but always fine-tune on exactly 6142 examples (see the Min column). Refer to §E for more details.

relation question template HighlyKnown MaybeKnown WeaklyKnown Unknown Total

P131 Where is [E] located? 57 362 158 388 965
P136 What type of music does [E] play? 6 432 248 281 967
P17 Which country is [E] located in? 448 432 65 51 996
P19 Where was [E] born? 107 148 243 501 999
P26 Who is [E] married to? 177 238 158 378 951
P264 What music label is [E] represented by? 47 157 268 486 958
P36 What is the capital of [E]? 580 152 62 86 880
P40 Who is [E]’s child? 99 191 167 344 801
P495 Which country was [E] created in? 699 147 51 96 993
P69 Where was [E] educated? 27 145 227 441 840
P740 Where was [E] founded? 182 245 181 334 942
P800 What is [E] famous for? 35 50 28 76 189

TOTAL - 2464 2699 1856 3462 10481

Table 5: In-distribution test set statistics.

and (2) faithfulness hallucination. The first case
refers to factual inconsistency between the gener-
ated content and verifiable real-world facts. Com-
mon examples include wrong answers in closed-
book QA setting (Chern et al., 2023) or factual
mistakes in long-form generations of knowledge
intensive passages such as biographies (Manakul
et al., 2023; Min et al., 2023). On the other hand,
faithfulness hallucination refers to cases where the
generated content is factually inconsistent with the
context provided by the input. A common example
is when the model summarizes a document and the
resulting summary is factually inconsistent with
the input document (Honovich et al., 2022; Laban
et al., 2022; Honovich et al., 2021; Gekhman et al.,
2023; Scialom et al., 2021; Kryscinski et al., 2020).

In this work we focus on a subset of factuality
hallucinations. Our goal is to study how intro-
ducing new factual knowledge through fine-tuning
affects the utilization of the model’s pre-existing
knowledge. To reflect this, we define hallucina-

tions w.r.t the model’s pre-existing knowledge as
(q, a) pairs that were known to the model after pre-
training (as defined by SliCK), while the fine-tuned
model fails to answer q correctly post fine-tuning.17

B.2 Test performance as Proxy for
Hallucinations.

We now detail the relation between the test per-
formance in our setting and hallucinations. In our
study, poorer performance of a fine-tuned model
MD1, compared to another fine-tuned model MD2

on the test set, can be attributed to a higher rate of
hallucinations in MD1, relative to its pre-existing
knowledge, due to the following explanation.

17This can happen due to 2 main reasons: (1) The model still
encodes some knowledge regarding the answer to q but halluci-
nates. (2) The model completely forgets the answer to q during
fine-tuning. In this work, we treat these two cases collectively
as hallucinations w.r.t the pre-existing knowledge. Method-
ologically studying forgetting during fine-tuning and whether
unknown facts are still captured in the model’s weights can be
an interesting direction for future research.
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relation question template HighlyKnown MaybeKnown WeaklyKnown Unknown Total

P127 Who owns [E]? 125 383 168 314 990
P50 Who is the author of [E]? 287 193 115 372 967
P407 Which language was [E] written in? 366 153 59 45 623
P176 Which company is [E] produced by? 289 277 181 225 972
P170 Who was [E] created by? 142 284 120 304 850
P175 Who performed [E]? 94 120 103 663 980
P112 Who founded [E]? 134 116 76 140 466

TOTAL - 1437 1526 822 2063 5848

Table 6: Out-of-distribution test set statistics.

The test set can be conceptually divided into two
types of questions. First, there are questions with
answers that are unknown to M . Those questions
will remain unknown post fine-tuning, as we make
sure that the training set is disjoint from the test
set (§A). This means that both MD1 and MD2 will
fail to answer these questions. Thus, the test perfor-
mance difference betweenMD1 andMD2 is mostly
attributed to the second type of questions: ones that
are known to M , i.e. M can answer them correctly
since it posses the relevant knowledge. Thus, MD1

andMD2 must rely on their pre-existing knowledge
to answer such questions, and a lower performance
on such question can be only categorized as an
hallucination w.r.t. pre-existing knowledge.

C PCorrect Approximation

This section expands §3 with additional details
about our PCorrect approximation. In our study
we approximate PCorrect(q, a;M,T ) based on the
fraction of correct answers to q sampled from M .
We begin with randomly sampling Nex distinct k-
shot exemplars for each relation in our dataset (§A).
Then, to approximate PCorrect(q, a;M,T ), we use
M to generate answers to q using each of the Nex
exemplars from the relation corresponding to q.
We first use temperature sampling with T = 0.5
to sample Nsample answers for each of the Nex ex-
emplars. PCorrect(q, a;M,T > 0) is then approxi-
mated by the fraction of correct answers from the
total of Nex ·Nsample predictions. We also generate
the greedy decoding prediction (T = 0) for each
of the Nex exemplars. PCorrect(q, a;M,T = 0) is
then approximated by the fraction of correct an-
swers from the total of Nex predictions.18

We use k = 4 in our study, simply since we
found it enough for M to output answers in the

18Since we can only have one greedy prediction for every
k-shot exemplars.

Wrong Answer Paraphrase Higher Granularity Lower Granularity

90% 6% 2% 2%

Table 7: Error Analysis of 100 Predictions of the Pre-
trained Model, for Which Exact Match is False.

correct format. We use Nex = 10 and Nsample =
16. The Nsample = 16 samples using T = 0.5 are
sampled from Top 40.

The k exemplars are sampled from the develop-
ment split. We sample Nex different samples since
we found that even when the few-shot exemplars
are sampled per-relation, their exact choice still
affects the prediction. In §6 and Figure 5 we show
evidence that this also improves the quality of our
categories.

Below is an example of our 4-shot prompt for-
mat, from real example from ENTITYQUESTIONS with
the relation P106 representing occupation.19 The
question in this case is “What kind of work does
Ron Konopka do?” and the ground truth asnwer is

“geneticist”.

Q: What kind of work does Nicolas Roeg do?
A: film director
Q: What kind of work does Crystal Geoffré do?
A: actor
Q: What kind of work does Maurice Blondel do?
A: philosopher
Q: What kind of work does Javier de Burgos do?
A: politician
Q: What kind of work does Ron Konopka do?
A:

To decide whether a sampled answer is correct,
we use the Exact Match (EM) metric to compare it
with the ground truth answer. The main advantage
in this choice is that when EM is True, we know
that the answer is correct for 100%. The main
potential risk associated with this choice is that we
may wrongly classify answers as incorrect due to
paraphrases or answers with different granularity

19https://www.wikidata.org/wiki/Property:P106
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levels (Wang et al., 2023; Kamalloo et al., 2023;
Yona et al., 2024)). To address this, we perform
an error analysis on 100 predictions for which
EM was False. We randomly sample 50 greedy
predictions (T = 0) and 50 samples with T = 0.5.
The results are in Table 7. This analysis suggest
that in 90% of the cases where EM is False, the
predicted answer is indeed incorrect. Which is a
reasonable performance for our purpose, especially
considering that when EM is True the answer is
100% correct.

D Data Annotation

we first calculate PCorrect(q, a;M,T = 0) and
PCorrect(q, a;M,T > 0) for each (q, a) pair in
our preprocessed dataset (§2 and §A), using our
PCorrect(·) approximation (§3 and §C). We then
use these values to categorize each (q, a) pair into
one of our four categories (§3 and Figure 2). We
provide the full statistics of the categories on the
train and test set, as well as the out-of-distribution
test set in Tables 4, 5 and 6.

E Fine-tuning Details

Fine-tuning Data. In §4 we examine the effect
of new knowledge in the fine-tuning dataset D on
the performance of MD, by varying the propor-
tion of Unknown examples in D. When we create
variants of D with exactly X% of Unknown and
(100−X)% Known examples, we make sure that
the relation distribution remains consistent. To
achieve that we sample X% of Unknown from each
relation.

In §5 we create single-category variants of D.
Since we want to work with a fixed |D| across all
variants, we want to make sure that we have |D|
examples from each category. To ensure this, we
measure the size of the smallest category in each re-
lation (see the “Min” column in Table 4) and define
|D| as their sum. In other words, for each relation
we calculate the size of the smallest category and
sum these values. This leads to |D| = 6142, as
illustrated by the last column in Table 4. More
formally, for each relation r in the training split,
and for each category CAT from our 4 SliCK
categories, we define CATr to be the examples
from category CAT and relation r. Consequently
size(CATr) is the number of the examples in CATr.
For example size(HighlyKnown P131) = 553 (see

Table 4). We then define:

|D| =
∑

r∈RTrain

min





size(CATr)|

CAT ∈ {
HighlyKnown,
MaybeKnown,
WeaklyKnown,
Unknown}





where RTrain are the 12 relations from the training
set.

Below is an example of our data format in the
train, development and test sets, from real example
from ENTITYQUESTIONS with the relation P106 rep-
resenting occupation.20 The question in this case is

“What kind of work does Ron Konopka do?” and the
ground truth asnwer is “geneticist”.

Answer the following question.
What kind of work does Ron Konopka do?

Fine-tuning Regime. In this work, we focus on
full fine-tuning, where all model parameters are up-
dated. An interesting direction for future research
is to investigate similar questions within parameter-
efficient fine-tuning regimes (Han et al., 2024),
such as LoRA (Hu et al., 2022). For instance, Bi-
derman et al. (2024) demonstrated that, compared
to full fine-tuning, LoRA better preserves the base
model’s performance on tasks outside the target do-
main, though at the cost of diminished performance
within the target domain. It could be interesting
to check if this also holds to hallucinations w.r.t.
the models pre-existing knowledge as we define it
in this work (§B). Another interesting avenue for
future research is to explore how new knowledge is
acquired during continual pre-training (Jiang et al.,
2024; Parmar et al., 2024; Ibrahim et al., 2024) as
one of the key objectives in continual pre-training is
to inject new (up to date) knowledge to the model.

Fine-tuning hypeparameters. We fine-tune ev-
ery model for 50 epochs for all our model variants
to completely fit the training set, so we can examine
all stages of fine-tuning. We evaluate the models ev-
ery epoch on the development set. The EARLY_STOP

stopping criteria is defined to be the epoch with the
maximum accuracy on the development set. We
use learning rate of 1e-5, a batch size of 128, and
a dropout rate of 0.05. Our experimental design
intentionally utilized a fixed learning rate, which is
the standard for supervised fine-tuning, as opposed
to the dynamic learning rate strategies typically

20https://www.wikidata.org/wiki/Property:P106

7781

https://www.wikidata.org/wiki/Property:P106


Figure 6: Performance on the test set with a slower
learning rate of 1e-4. This plot is equivalent to Fig-
ure 3a, and the results are similar, except that the exper-
iment were run with a learning rate of 1e-4 instead of
1e-5.

employed in continual pre-training. We have exper-
imented with both slower and faster fixed learning
rates (1e-4 and 1e-6) to ensure the robustness of
our conclusions. These experiments consistently
supported our findings. For instance, in Figure 6
we present the performance as a function of the %
of the Unknown examples in D (i.e. similar plot
to Figure 3a) when using a learning rate of 1e-4
instead of 1e-5.

F The Case for Avoiding Fake Facts

One limitation of using the Unknown examples
in our study is that SliCK only approximates the
LLM’s knowledge. This means that some exam-
ples can be incorrectly classified as unknown to
M . As we discuss in §6, our results indicate that
this happens in at most 3% of the cases, meaning
that the vast majority of the examples classified as
Unknown are actually unknown to M .

Alternative approach could be to simply use fake
facts as unknown fine-tuning examples. We con-
sidered this in early stages of the project and were
concerned that this would introduce confounding
factors into our study, as fake facts may behave
differently than real ones; In our setup where the
knowledge is represented with (subject, relation,
object) triplets, there are 2 main ways to generate
fake facts: (1) creating triplets where both the sub-
ject and the object are fake (Yin et al., 2023). (2)
Creating triplets where the subject is real and the
object is fake (Zhu et al., 2020; Meng et al., 2022,
2023; Zhong et al., 2023). Focusing exclusively on
(1) will capture only a small subset of the cases of
new factual knowledge, as in the majority of the

Figure 7: Training accuracy as a function of fine-tuning
duration, evaluated on the variant with 50% Unknown

fine-tuning examples. For reference, we also include
the accuracy on the development set, accompanied by
a zoom-in plot within a narrower range, to provide a
more visible and clear view.

cases the subject will be familiar to the pre-trained
model. E.g., the model may know that there is a per-
son named “Barack Obama” but not know where
he was born. If we consider (2), using real subjects
with fake objects may compromise our study as
in many cases this will introduce knowledge up-
dates and not new knowledge. To illustrate this,
let’s consider the triplet (“Barack Obama”, “place
of birth”, “Honolulu”), and let’s assume that we
generate the fake triplet (“Barack Obama”, “place
of birth”, “London”). Now, since the original
(correct) triplet may be known to the model we
essentially do not simulate introducing new fac-
tual knowledge but updating existing knowledge.
Considering the above, we decided that using real
world facts will make our findings more reliable.
We then invested a considerable effort to ensure
that the examples that are classified as unknown are
truly unknown to the model (as discussed above).

G Train Accuracy on Different Known
Categories

In §4.3 we analyze the fine-tuning dynamic and
present the training accuracy as function of the
fine-tuning duration in Figure 1. For simplicity
we treated the Known categories collectively. For
reference we also include the plot with the full
per-category breakdown in Figure 7.
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(a) (b)

Figure 8: Performance on the out-of-distribution (OOD) test set as a function of the % of Unknown examples in
the fine-tuning dataset D. This plot is the OOD version of Figure 3. Everything is similar to Figure 3, except that
y-axis is the accuracy on the OOD test set. We note that the development set did not change (not OOD), thus it
does not necessarily reflects the optimal stopping point for OOD.

H Linear Model

In §4.4 and §4.5 we use a linear model (Equa-
tion (1)) that predicts that test accuracy and the
out-of-distribution test accuracy. We estimate the
parameters of this linear model based on results
from all our variants of D used in §4. For all these
variants, we measure the test accuracy and the num-
ber of Known and Unknown fine-tuning examples
that M fits during different fine-tuning stages. This
way we collect a dataset with examples of the form
(Accuracy,NKn, NUnk), which we use to fit a lin-
ear regression model.

I Out-of-distribution (OOD) Evaluation

In §4.5 we discuss out-of-distribution (OOD) re-
sults. In these experiments we simply used our
OOD test set consisting of 7 relations unseen dur-
ing fine-tuning (see §A). When we perform the
analysis discussed in §4.1 and §4.2, we addition-
ally evaluated the models on the OOD test set. For
completeness, we add here Figure 8, which is the
out-of-distribution version of Figure 3. Figure 8a
presents the OOD test performance as a function
of % of Unknown examples in D for different fine-
tuning duration. The corresponding in-distribution
results (Figure 3a) were discussed in §4.1. Fig-
ure 8b presents the OOD test performance for the
ablation where we filter-out Unknown fine-tuning
examples. The corresponding in-distribution re-
sults (Figure 3b) were discussed in §4.2. We no-
tice that similar trends, just with a smaller overall
magnitude of the performance drop, up to 6 points

drop compared to up to 14 for in-distribution. This
smaller drop magnitude is also reflected in smaller
values of |βukn| and |βkn| (Table 1).

J Statistic Significance Tests

In §5 we present Table 2. As mentioned in the
caption, we perform statistic significance tests for
each column. To this end we compare all the values
to the maximal value in this column.

For each subset of the test set, we randomly
shuffle all the examples in it, split them up into 100
approximately equally sized subsets, and compute
accuracy for each of them for all the models of
interest. We then apply paired-sample t-test with
p < 0.05 and p < 0.01.

In Table 2, the best result is in bold, as well as all
the results with statistically non-significant differ-
ence from the best with p < 0.05. We additionally
include a copy of Table 2 where all the statistical
tests outcomes are annotated, see Table 8. We can
see that in almost all cases the difference is statis-
tically significant with p < 0.01, except two cases
where it is only with p < 0.05 (DNatural Unk and
DMaybeKnown Mkn).

Since we also discuss “horizontal” comparisons,
where we compare EARLY_STOP to CONVERGENCE,
we additionally run significance tests (not anno-
tated in Table 2) for All, comparing EARLY_STOP to
CONVERGENCE. The difference for DMaybeKnown was
not statistically significant while for all others (in-
cluding DNatural) it was significant with p < 0.01.
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EARLY_STOP CONVERGENCE

Full Hkn Mkn Wkn Unk Full Hkn Mkn Wkn Unk

DHighlyKnown 40.5∗∗ 98.7 60.1∗∗ 9.0∗∗ 0.6∗∗ 40.0∗∗ 98.4 58.8∗∗ 8.5∗∗ 0.7∗∗

DMaybeKnown 43.6 98.4 69.9 12.1∗∗ 1.0∗∗ 43.2 97.5∗ 68.2 12.9∗∗ 1.3∗∗

DWeaklyKnown 39.2∗∗ 95.0∗∗ 59.2∗∗ 8.6∗∗ 0.4∗∗ 35.4∗∗ 73.5∗∗ 55.8∗∗ 17.2 2.2∗∗

DUnknown 37.5∗∗ 95.6∗∗ 52.9∗∗ 6.5∗∗ 0.6∗∗ 25.8∗∗ 55.8∗∗ 36.6∗∗ 12.2∗∗ 3.2
DNatural 43.5 98.0∗ 67.6∗∗ 14.1 1.8 41.8∗∗ 95.5∗∗ 61.7∗∗ 14.8∗∗ 2.5∗

Table 8: A copy of Table 2 with detailed notation of the statistic significant test results. In each column, statistically
significant differences from the best result are indicated using ∗ and ∗∗ for p < 0.05 and p < 0.01 respectively.

K The P(True) Case Study

In §6 we used the P(True) metric from Kadavath
et al. (2022) as a case study for comparison. In
Figure 5 we compare our Unknown category vs
classifying as Unknown based on a threshold of
P(True). We calculated P(True) for every (q, a)
pair in the test set using Kadavath et al. (2022)’s
prompt:

Question: Where is Paris located?
Proposed Answer: France
Is the proposed answer:

(A) True
(B) False

The proposed answer is:

We then treated (q, a) pairs with P(True) below a
threshold as Unknown. We experimented with each
possible threshold T in [0, 1], according to our test
set. For each threshold T we then measured (1)
how many examples were classified as Unknown
out of the test set, (2) what was the accuracy on
these examples after fine-tuning. We plot the re-
sults in Figure 5, where P(True) is represented with
the yellow line and our Unknown is represented
with the blue circle. As discussed in §C, it was
approximated using 10 defferent samples of 4-shot
exemplars (Nex = 10). We also check smaller val-
ues of Nex and plot the results with the blue line.
The accuracy after fine-tuning for all the results is
measured after fine-tuning with DNatural (§5).
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