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Abstract

We focus on Text-to-SQL semantic parsing
from the perspective of retrieval-augmented
generation. Motivated by challenges related
to the size of commercial database schemata
and the deployability of business intelligence
solutions, we propose ASTRES that dynami-
cally retrieves input database information and
uses abstract syntax trees to select few-shot
examples for in-context learning.

Furthermore, we investigate the extent to which
an in-parallel semantic parser can be leveraged
for generating approximated versions of the ex-
pected SQL queries, to support our retrieval.
We take this approach to the extreme—we
adapt a model consisting of less than 500M
parameters, to act as an extremely efficient
approximator, enhancing it with the ability
to process schemata in a parallelised manner.
We apply ASTRES to monolingual and cross-
lingual benchmarks for semantic parsing, show-
ing improvements over state-of-the-art base-
lines. Comprehensive experiments highlight
the contribution of modules involved in this
retrieval-augmented generation setting, reveal-
ing interesting directions for future work.

1 Introduction

Text-to-SQL semantic parsing aims at translating
natural language questions into SQL, to facilitate
querying relational databases by non-experts (Zelle
and Mooney, 1996). Given their accessibility bene-
fits, Text-to-SQL applications have become popular
recently, with many corporations developing Busi-
ness Intelligence platforms.

The success of Large Language Models (LLMs)
in generalising across diverse Natural Language
Processing tasks (Ye et al., 2023; OpenAI, 2023)
has fuelled works that looked at how these multi-
billion parameter models can be best employed

†The authors contributed equally to this work.

for Text-to-SQL (Liu et al., 2023; Pourreza and
Rafiei, 2023). Recent works in this space have fo-
cused on the in-context learning ability of LLMs,
demonstrating that significant improvements can be
achieved by selecting suitable (question, SQL) ex-
ample pairs (Nan et al., 2023; Gao et al., 2023; Guo
et al., 2024; Sun et al., 2024). In spite of its under-
lying benefits, conventional solutions for example
selection are usually limited to retrieving examples
based solely on the similarity of questions (Nan
et al., 2023; An et al., 2023; Guo et al., 2024).
Other approaches resort to a preliminary round of
parsing which approximates expected SQL queries,
and directly use these approximations in few-shot
prompting (Sun et al., 2024), or to subsequently
select (question, SQL) pairs by comparing the ap-
proximated query to queries within candidate exam-
ples (Gao et al., 2023). The approach proposed by
Gao et al. transforms SQL queries into SQL skele-
tons (Li et al., 2023a) and then filters examples by
considering overlap token ratio as the similarity
between two skeletons. While incorporating SQL
skeleton similarity improves over conventional ex-
ample selection for Text-to-SQL (Gao et al., 2023),
it can result in structural information loss as ex-
emplified in Table 1, where two dissimilar SQL
queries are treated as identical. In this paper, we
propose a novel approach that selects examples
using similarity of normalised SQL Abstract Syn-
tax Trees (ASTs). We argue that considering the
similarity of such hierarchical structures can sig-
nificantly enhance LLMs’ performance for Text-to-
SQL parsing.

Apart from example selection, we refine
database context input to LLMs by dynamically
pruning schemata and selecting values. From the
perspective of LLMs, existing studies achieve im-
provements by including the full database schema
in the prompt and additionally hinting the impor-
tance of particular schema elements or values (Pour-
reza and Rafiei, 2023; Sun et al., 2024). In this pa-
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per, we show that the performance can be boosted
with schemata of reduced size.

Inspired by Gao et al. that compute an approxi-
mated query for a given input question, we further
explore how combinations of a sparse retriever with
such an in-parallel semantic parser (we would re-
fer to it as approximator) can be used to retrieve
relevant database context input to LLMs. For ef-
ficiency, we adapt the semantic parser (a decoder-
free model with < 500M parameters) proposed by
Vougiouklis et al. to process schemata in a paral-
lelised manner. Using this efficient approximator,
our schema pruning strategy selects a relevant sub-
schema in order to simplify the task for LLMs
and reduce the relevant computational workload.
Furthermore, it enables LLM-based Text-to-SQL
solutions to handle longer schemata (usually asso-
ciated with commercial use-cases) exceeding their
context window size.

To realise the above ideas, we proposed a
novel approach ASTRES that features AST-based
REranking and Schema pruning. We apply AS-
TRES on monolingual (SPIDER, SPIDER-DK,
SPIDER-REAL and SPIDER-SYN) and cross-lingual
(CSPIDER) benchmarks of different generalisation
challenges. We evaluate the applicability of our
framework across both closed- and open-source
LLMs. Our framework, comprising only a sin-
gle round of prompting, achieves state-of-the-art
performance, outperforming other baselines which
may comprise complex prompting and multiple iter-
ations, when LLMs of equal capacity are involved.
Through comprehensive experiments, we highlight
strengths and limitations. Our contributions can be
summarised as follows:

• We propose a novel approach for selecting
(question, SQL) examples using similarity of
normalised SQL ASTs.

• We take efficient approximation to the ex-
treme, presenting a schema-parallelisable
adaptation of the fastest semantic parser to
date.

• We introduce a framework for dynamically
selecting schema elements and database val-
ues, offering substantial execution accuracy
improvements over prior works while signifi-
cantly reducing the computational workload
of LLMs.

• We shed light on the benefits of database value

selection and its symbiotic relation to schema
pruning for Text-to-SQL LLM prompting.

SQL1

SELECT T2.name, T2.capacity FROM
concert AS T1 JOIN stadium AS T2 ON
T1.stadium_id = T2.stadium_id WHERE
T1.year >= 2014

Skeleton: select _ from _ where _

SQL2

SELECT name FROM highschooler WHERE
grade = 10

Skeleton: select _ from _ where _

Table 1: Two SQL queries with identical SQL skeletons.

2 Preliminaries

Let q be the sequence of tokens of a natural lan-
guage question for database D with tables t =
t1, t2, . . . , tT and columns c = c11, c

1
2, . . . , c

i
j , . . . ,

cTCT
, where cij is the j-th column of table ti and

Ci ∈ N is the total number of columns in table
ti. Furthermore, let vD =

{
vc11 , vc12 , . . . , vcTCT

}

be the set of all values associated with the database
D s.t. vc11 , . . . , vcTCT

are the DB value sets asso-

ciated with respective columns c11, . . . , c
T
CT
∈ c.

The goal of the general Text-to-SQL semantic pars-
ing is to predict the SQL query s given the (q,D)
combination, as follows:

s = argmax
s

p (s | q,D) (1)

For in-context learning, assuming a given LLM of
interest, a proxy task for satisfying the original goal
involves forming a set of suitable demonstrations,
to which we refer as X⋆ (see Section 3) that would
enable the LLM to ad hoc *learn*, how to gener-
ate the SQL query that addresses the input (q,D)
combination.

3 Example Selection using Abstract
Syntax Trees

Our goal is to identify the most suitable set of
X⋆ = {(q⋆

1, s
⋆
1) , . . . , (q

⋆
e, s

⋆
e)} question-SQL pairs

from an index of examples, X, s.t. X⋆ ⊆ X, for
maximising the probability of an LLM to predict
the correct SQL given (q,D):

X⋆ = argmax
X

p (s|q,D,X) (2)

From the perspective of ranking, we consider
the relevance score between a candidate example
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(qj , sj) ∈ X and the input (q,D). Vanilla semantic
search is usually based solely on question embed-
dings, whereas the structure of SQL queries for
similar questions is subject to target databases and
can thus differ significantly.

To incorporate database context for selecting ex-
amples, we propose to re-rank examples retrieved
by question embeddings based on normalised SQL
ASTs. Inspired by Gao et al., our framework
utilises a preliminary model to compute an approx-
imated SQL query s′, structurally similar to the
ground truth, given (q,D) s.t. s′ ∼ s.

This means that, in an idealised scenario, s′ may
be a SQL query that is identical to s, or a query
with different lexical aspects (e.g., different vari-
able names or order of GROUP BY operations) but
with very high structural similarity to s, such that
scoreAST (s

′, sj) ≃ 1. Examples are then re-ranked
by scoreAST (s

′, sj) for each candidate sj .
AST represents the hierarchical structure of code

in a tree form and can be applied to evaluation met-
rics for code generation (Tran et al., 2019; Ren
et al., 2020). The fact that SQL queries sharing
identical abstract meanings may not align with the
same syntactic structure poses a challenge for mea-
suring similarity through AST differencing.

AST Normalisation Although it is infeasible to
exhaustively transform a SQL to another equivalent
form, we can normalise ASTs to reduce undesired
mismatch. Firstly, nodes of identifiers are lower-
cased and unnecessary references are removed (e.g.
<table>.<column> is substituted with <column>
if possible). We then delete nodes that create
aliases and map each alias to a copy of the subtree
to which it references. For cross-domain settings
wherein databases at inference time are unseen in
the train set, we mask out nodes of values and
identifiers after resolving aliases. Otherwise for
in-domain settings we further sort nodes associated
with JOIN operations(s) to ensure the ordering of
tables and keys is consistent.

AST Similarity Given two normalised ASTs, we
adopt the Change Distilling algorithm (Fluri et al.,
2007) that computes a list of tree edit operations to
transform the source AST to the target AST. Types
of tree edit operations include: insert, delete,
alignment, move and update. It is essential to
note that move operation relocates a node to a dif-
ferent parent while moving a node within the same
parent is an alignment. Therefore, we calculate
the similarity between ASTs simply as the ratio of

alignments to the total number of operations within
the list. Examples of our normalisation and AST
similarity are provided in Appendix A.

4 Database Context Selection

Apart from relevant question-SQL pairs, prompting
for Text-to-SQL parsing requires the context of
database schema and values.

4.1 Schema Selection

We present a hybrid search strategy that selects
a sub-schema given a test question to minimise
lengthy and potentially irrelevant schema elements
(i.e. tables and columns) input to LLMs, while
maintaining high recall.

Let rij be a semantic representation of column cij .
We aggregate the semantic names1 of cij and the
table it belongs to, ti, and its corresponding value
set in D, vcij , as follows:

rij =
{
ti ∪ cij ∪ vcij

| i ∈ [1, T ] and j ∈ [1, Ci]
}

.

Given question q, we retrieve the most relevant
columns using scoreBM25(q, r

i
j) ∀i ∈ [1, T ] and

j ∈ [1, Ci] (Robertson et al., 1994). A table is
retrieved if any of its columns are retrieved.

4.1.1 Incorporating for Approximated Query

The semantic matching for schema selection re-
quires a comprehension of the relevance between
heterogeneous database information (e.g. values
and data types) and natural language questions, in
addition to interactions across schema elements
such as foreign key constraints. To this end, a
trained parser can inherently be employed as a
semantic matching model and elements of a sub-
schema are extracted from the approximated query
s′. We argue that a semantic parser which is per-
forming reasonably on the task, can provide us with
an s′, whose structure would assimilate the struc-
ture of the expected final query, s. Consequently,
we opt to dynamically determine the number of
columns to be retrieved by scoreBM25 as propor-
tional to the number of unique columns in s′, re-
turned by the approximator. A sub-schema is then
obtained by merging schema elements selected by
scoreBM25 with elements from the approximated
query.

1Semantic name can refer to simply to the name of a par-
ticular or to a concatenation of its name and description.
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4.1.2 Approximating for Longer Schemata

To further reduce the computational workload, we
opt for using a smaller model for computing the
approximated query, s′. However, smaller models
usually have shorter context windows (i.e. < 2k
tokens), and, as such, they cannot be easily scaled
to the requirements of larger schemata. To this end,
we propose an approach that enables transformer-
based encoders to process longer schemata, in a
parallelised manner.

We start with FastRAT (Vougiouklis et al., 2023),
which exploits a decoder-free architecture for effi-
cient text-to-SQL parsing. Given a concatenation
of the input natural language question q with the
column and table names of a database schema, Fas-
tRAT computes the SQL operation in which each
element of the input schema would participate in
the expected SQL query. We refer to these SQL
operations as SQL Semantic Prediction (SSP) la-
bels (Yu et al., 2021). SQL queries are then de-
terministically constructed from the predicted SSP
labels. We introduce a schema splitting strategy to
scale the model up to the requirements of schemata
comprising several columns.

We augment the input embedding matrix of the
model, with two special schema-completion tokens,
[full_schema] and [part_schema], which are
used for signalling cases in which a full and a par-
tial schema are provided as input respectively. Our
goal is to split a schema consisting of

∑T
j=1Cj

columns into rm splits s.t. each split includes
a maximum, pre-defined number of columns r.
Each split consists of the question tokens, a sin-
gle schema-completion token, the table names of
the input D and up to a maximum r number of
columns allocated to this particular split (see Algo-
rithm 1 for further details).

The returned schema splits along with the SSP
labels corresponding to the schema elements of
each split are treated as independent instances dur-
ing training. At test time, an input schema is split
according to Algorithm 1, and the model is input
with a batch of the resulting splits. After aggregat-
ing the results from all splits, we obtain the SSP
label for each column ∈ c. Inconsistencies across
the SSP labels of tables are resolved using majority
voting. We refer to this model as FastRAText.

4.2 Value Selection

The inference of LLMs for text-to-SQL parsing
can be augmented with column values (Sun et al.,

Algorithm 1: Algorithm for splitting a
schema into smaller splits.

Input: r : int
# concatenation of column
# name tokens
ctok ← [ctok1

1 , . . . , ctokT
CT

]
# flatten concatenation of
# table name tokens
ttok ← [ttok

1 , ttok
2 , . . . , ttok

T ]
# question tokens
q← [q1, . . . , qQ]

1 splits← [ ];
2 if len(c) > r then
3 prefix← q+ [“[part_schema]”];
4 else
5 prefix← q+ [“[full_schema]”];
6 end
7 sp← prefix; # one sp per split

8 for j ← 1 to
∑T

j=1Cj do
9 sp← sp+ ctok [j];

10 if j mod r = 0 or j =
∑T

j=1Cj then
11 sp← sp+ ttok;
12 splits.append(sp);
13 sp← prefix;
14 end
15 end
16 Return splits

2024). We select values for columns in a schema
(or a sub-schema) by simply matching keywords
in questions and values. This is based on the as-
sumption that LLMs can generalise to unseen val-
ues given a set of representative values; thus, the
recall and precision of value selection are less crit-
ical. We consider value selection providing ad-
ditional information for LLMs to discern covert
differences among columns. An example of our
resulting prompt is shown in Appendix B.

5 Experiments

We run experiments using two approximators:
FastRAText and Graphix-T5 (Li et al., 2023b).
Graphix-T5 is is the approximator used by DAIL-
SQL (Gao et al., 2023), and is included to facilitate
a fair comparison against the closest work to ours.
FastRAText is trained and tested using r = 64, un-
less otherwise stated (see Section 5.4). For all
experiments, we use 5 (question, SQL) examples.

We test our approach against both closed-
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and open-source LLMs: (i) gpt-3.5-turbo
(gpt-3.5-turbo-0613), (ii) gpt-4 (gpt-4-0613)
and (iii) deepseek-coder-33b-instruct. Re-
sults using additional models from the DeepSeek
family are provided in Appendix C.4.

5.1 Datasets
We experiment with several SQL datasets, seek-
ing to explore the effectiveness of our approach on
both monolingual and cross-lingual setups. Specif-
ically, we report experiments on CSPIDER (Min
et al., 2019) and SPIDER (Yu et al., 2018). Since
CSPIDER is a translated version of SPIDER in Chi-
nese, when it comes to the natural language ques-
tions, the characteristics of the two with respect
to structure and number of examples are identi-
cal. We focus our evaluation on the development
sets2, which are used as test sets in our experiments.
These splits consists of 1, 034 examples of ques-
tions on 20 unique databases that are not met at
training time.

We rely on the training splits to maintain an
index of (question, SQL) examples, one for each
dataset. Using these splits, we train a monolingual
and a cross-lingual version of FastRAText.

Furthermore, we use popular SPIDER variants:
(i) SPIDER-DK (Gan et al., 2021b), (ii) SPIDER-
REAL (Deng et al., 2021) and (iii) SPIDER-
SYN (Gan et al., 2021a) to evaluate zero-shot
domain generalisation in English (leveraging the
SPIDER (question, SQL) examples index).

Consistently with the relevant leaderboards3, we
report results using execution (EX) and exact match
(EM) accuracy.4 Since CSPIDER comes without rel-
evant DB content, we follow previous works, and
we focus our evaluation on EM scores (Vougiouklis
et al., 2023; Cao et al., 2023).

5.2 Baselines
We compare the performance of our approach
against several baselines. We dichotomise the land-
scape of baselines in fine-tuning- and prompting-
based baselines.

Fine-tuning-based (i) GraPPa uses synthetic
data constructed via induced synchronous context-
free grammar for pre-training an MLM on the SSP-
label classification; (ii) DG-MAML applies meta-

2Appendix D includes results on the test sets.
3https://taolusi.github.io/CSpider-explorer/

and https://yale-lily.github.io/spider
4EX and EM scores are computed using: https://

github.com/taoyds/test-suite-sql-eval.

Model EX EM

GraPPa (Yu et al., 2021) − 73.6
FastRAT (Vougiouklis et al., 2023) 73.2 69.1
FastRAText 71.5 64.2
Graphix-T5 (Li et al., 2023b) 81.0 77.1
RESDSQL (Li et al., 2023a) 84.1 80.5

deepseek-coder-33b-instruct
ASTRES (w/ FastRAText) 81.5 62.1
ASTRES (w/ Graphix-T5) 83.4 64.7

PaLM2
Few-shot SQL-PaLM (Sun et al., 2024) 82.7 −
text-davinci-003
Zero-shot (Guo et al., 2024) 73.1 −
RAG w/ Rev. Chain (Guo et al., 2024) 85.0 −
gpt-3.5-turbo
Zero-shot (Liu et al., 2023) 70.1 −
C3 (Dong et al., 2023) 81.8 −
DAIL-SQL (Gao et al., 2023) 79.0 −
ASTRES (w/ FastRAText) 82.0 65.7
ASTRES (w/ Graphix-T5) 83.0 68.8

gpt-4
Zero-shot (Pourreza and Rafiei, 2023) 72.9 40.4
DIN-SQL (Pourreza and Rafiei, 2023) 82.8 60.1
DAIL-SQL (Gao et al., 2023) 83.6 68.7
ASTRES (w/ FastRAText) 84.3 73.8
ASTRES (w/ Graphix-T5) 86.6 77.3

Table 2: EX and EM accuracies on the development split
of SPIDER. Fine-tuning-based baselines are listed at the
top part of the table. Results of our approach are shown
with both FastRAText and Graphix-T5 as approximators.
The best model is in bold, the second best is underlined,
and the best prompt-based setup is in blue.

learning targeting zero-shot domain generalization;
(iii) FastRAT incorporates a decoder-free frame-
work, by directly predicting SQL queries from SSP
labels; (iv) Graphix-T5 inserts a graph-aware layer
into T5 (Raffel et al., 2020) to introduce structural
inductive bias; (v) RESDSQL decouples schema
linking and SQL skeleton parsing using a frame-
work based on a ranking-enhanced encoder and
skeleton-aware decoder; (vi) HG2AST proposes a
framework to integrate dedicated structure knowl-
edge by transforming heterogeneous graphs to ab-
stract syntax trees.

Prompting-based (i) Zero-shot LLM prompting
has been explored by Guo et al.; Liu et al.; Pour-
reza and Rafiei; (ii) C3 introduces calibration bias
for prompting to alleviate LLMs’ biases; (iii) DIN-
SQL uses chain-of-thought prompting with pre-
defined prompting templates tailored for the as-
sessed question hardness; (iv) DAIL-SQL uses
query approximation and SQL skeleton-based sim-
ilarities for example selection; (v) SQL-PaLM
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proposes a framework for soft column selection
and execution-based refinement; (vi) RAG w/ Rev.
Chain augments the input prompt with question
skeleton-based example retrieval and an execution-
based revision chain.

5.3 Text-to-SQL Evaluation

Table 2 and 3 summarise the results of our
approach with deepseek-coder-33b-instruct,
gpt-3.5-turbo and gpt-4 against the baselines.
Our approach, comprising a single-prompting
round, surpasses other LLM-based solutions, that
incorporate several prompting iterations, for LLMs
of the same capacity. We note consistent improve-
ments over DAIL-SQL, the closest work to ours,
even when FastRAText is used as approximator
(i.e. a model consisting of < 500M vs the ≥ 3B
parameters that DAIL-SQL’s approximator is us-
ing). For the same approximator, our framework
is able to meet, performance standards of DAIL-
SQL (equipped with gpt-4 and an additional self-
consistency prompting step) using an open-source
model as backbone LLM, by achieving shorter
prompts in a single prompting step.

SPIDER results are consistent with the results
across the various Spider variants and CSPIDER5

(Table 3). Our approach levering FastRAText and
AST-based re-ranking for example selection out-
performs other prompting-based solution, and is in-
line with the scores of state-of-the-art fine-tuning-
based baselines. While gpt-4 is the most capa-
ble model within our framework (with this being
more noticeable in the case of SPIDER-SYN), we
observe surprising findings with DeepSeek with
which in many cases our approach can surpass
much more computationally expensive alternatives
based on larger closed-source LLMs. Our findings
remain consistent with (Liu et al., 2023) since the
EM scores of prompting-based methods fall behind
those of their fine-tuning based counterparts.

5.3.1 Schema Selection Evaluation
We evaluate our proposed schema selection strategy
in a two-fold manner, given that value selection is
applied for selected columns. Firstly, we use recall
and schema shortening (rate) to compute averaged
metrics across all samples showcasing the extent
to which (i) the most relevant schema elements
are successfully retrieved, and (ii) the size of the

5In CSPIDER, questions are fully translated in Chinese
while the DB content remains in English. Due to this limita-
tion, DB schema and content selection are disabled.

resulting schema, after selection, with respect to
its original size. Secondly, we explore how the
performance of the end-system changes across dif-
ferent schema pruning settings by reporting EX
and EM scores. Recall is the percentage of sam-
ples for which all ground-truth schema elements
are selected. Schema shortening is the number
of schema elements that are excluded divided by
the total number of schema elements. Results are
summarised in Table 4.

We consider results of using only gold queries
to be the upper bound. In this setup, the highest
execution accuracy is achieved while filtering out
> 70% of the original schema on average. We
note that our approach of coupling the schema el-
ements returned in the approximated query with
the ones returned by BM25 navigates a healthy
trade-off between maximising recall and reducing
processing of unnecessary schema elements. We
also notice that our strategy of dynamically deter-
mining the number of retained schema elements
per input (see Section 4.1.1) results in improve-
ments compared to static top-k determination. For
roughly the same extent of schema shortening (i.e.
by comparing scores with dynamic top-k against
top-7), the results with the former are higher across
all metrics. As discussed in Section 4.1.1, the se-
mantic matching for schema selection is non-trivial
and additional experiments illustrating the efficacy
of using an approximator in comparison to a dense
retriever are provided in Appendix E.

5.3.2 Ablation Study
Table 5 shows a comprehensive ablation study for
the efficacy of our database context selection, and
example selection methods including DAIL (Gao
et al., 2023) and AST. We consistently notice im-
provement when selecting examples using AST, for
the same approximator. Interestingly, the perfor-
mance gap is increasing the better the approximator
becomes, leading to an improvement > 2.4% in the
case of an oracle approximator. This finding is in
agreement with our hypothesis that AST re-ranking
can preserve structural information for more pre-
cise example selection when s′ ∼ s. The inclusion
of combined schema and value selection (SVS)
leads to further improvements when coupled with
example selection based on AST or DAIL.

5.4 Schema Splitting

We evaluate the effect of splitting a schema into
rm splits, using FastRAText for schema selection.
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Model
SPIDER-DK SPIDER-REAL SPIDER-SYN CSPIDER

EX EM EX EM EX EM EM

RAT-SQL + BERT (Wang et al., 2020) − 40.9 62.1 58.1 − 48.2 −
DG-MAML (Wang et al., 2021) − − − − − − 51.0
FastRAT (Vougiouklis et al., 2023) − − − − − − 61.3
FastRAText − 44.1 − 47.8 − 48.5 53.2
HG2AST (Cao et al., 2023) − − − − − − 61.0a

RESDSQL (Li et al., 2023a) 66.0 55.3 81.9 77.4 76.9 69.1 −
deepseek-coder-33b-instruct
ASTRES (w/ FastRAText) 70.5 46.4 77.4 59.3 68.7 49.5 55.9

gpt-3.5-turbo
Zero-shot (Liu et al., 2023) 62.6 − 63.4 − 58.6 − 32.6
DAIL-SQL (Gao et al., 2023) − − 67.9 − − − −
ASTRES (w/ FastRAText) 68.8 49.3 78.0 60.8 66.9 51.2 54.0

PaLM2
Few-shot SQL-PaLM (Sun et al., 2024) 66.5 − 77.6 − 74.6 − −
gpt-4
DAIL-SQL (Gao et al., 2023) − − 76.0 − − − −
ASTRES (w/ FastRAText) 72.3 59.1 80.9 66.1 74.4 61.3 64.4

Table 3: Results on SPIDER-DK, SPIDER-REAL, SPIDER-SYN and CSPIDER. Fine-tuning-based baselines are
listed at the top. The best model is in bold, second best is underlined, and the best prompt-based setup is in blue.

aWithout using question translation; 64.0 EM when question translation is used.

Figure 1 shows EX scores across different maxi-
mum number of columns per schema split (r), on
the development set of SPIDER. We see that the EX
scores of our approach remain consistent across
different r. The performance in the case where
particular schemata from the development set are
split into rm = 3 or rm = 4 splits (i.e. for r = 24
or r = 16 respectively) is identical to the scores
where schemata are split using the default r with
which FastRAText has been trained.
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Figure 1: Execution accuracy scores on on the devel-
opment set of SPIDER across different maximum num-
bers of columns per schema split, r. The results of our
approach, using gpt-3.5-turbo, are presented across
different SPIDER-query difficulty levels.

6 Discussion

Are there any theoretical performance upper
limits for example selection using AST? For
each data instance in the development set of Spider,
we compute the average AST similarity between
the approximated query and each SQL query that
is included (after example selection) in the cor-
responding prompt. In Table 6, we measure EX
scores on the development set of SPIDER, across
different AST-similarity intervals. We see an ob-
vious correlation between execution accuracy and
AST scores–execution accuracy is higher for higher
AST scores. Besides highlighting an empirical, ex-
ecution accuracy upper-bound, in the case of test
questions whose SQL structure is well-covered (i.e.
with high AST score) in the examples space, our
approach can hint data instances that might be chal-
lenging for the current configuration, without even
requiring to prompt the target LLM or executing
the resulting SQL against a database instance. Chal-
lenging data instances can be taken into consider-
ation with respect to the existence of insufficient
examples in X to support the expected SQL struc-
ture or a potentially harmful approximator.

Is the choice of approximator critical? Al-
though our AST re-ranking and schema selection
benefit from more accurate SQL predicted by a
stronger approximator, the choice of approximator

7871



Approximator Schema Selection Setup Recall Schema Shorten. EX EM

Oracle Gold Query 100.0 71.3 86.3 73.9

FastRAText N/A 100.0 0.0 79.3 63.6
FastRAText BM25 (top-10) 92.0 36.5 78.9 64.1
FastRAText BM25 (top-20) 98.3 14.1 80.7 64.9
FastRAText Approx. Query 86.8 71.3 78.4 63.8
FastRAText Approx. Query + BM25 (top-7) 93.3 50.4 81.1 65.4
FastRAText Approx. Query + BM25 (top-10) 97.0 37.3 81.2 65.6
FastRAText Approx. Query + BM25 (dynamic top-k) 97.2 49.0 82.0 65.7

Graphix-T5 N/A 100.0 0.0 79.8 65.6
Graphix-T5 Approx. Query 92.3 71.8 81.8 68.8
Graphix-T5 Approx. Query + BM25 (dynamic top-k) 97.9 49.4 83.0 68.8

Table 4: Recall, Schema Shortening, EX and EM scores (using gpt-3.5-turbo) across different schema selection
setups, on the development split of SPIDER. Value selection is enabled for the selected columns across all setups.
For the oracle setup, we report performance upper-bounds using only the schema elements from the gold query.

Approximator Selection EX EM

N/A Question Similarity 74.7 52.3

FastRAText

DAIL 78.6 61.4
DAIL + SVS 81.3 62.3
AST 79.3 63.6
AST + VS 80.4 63.8
AST + SS 78.9 63.8
AST + SVS 82.0 65.7

Graphix-T5

DAIL 77.8 61.9
DAIL + SVS 81.0 63.7
AST 79.8 65.6
AST + VS 81.4 66.4
AST + SS 80.2 66.2
AST + SVS 83.0 68.8

Oracle

DAIL 79.1 63.2
DAIL + SVS 82.5 66.0
AST 81.0 67.6
AST + VS 82.6 68.1
AST + SS 82.5 69.6
AST + SVS 84.6 71.3

Table 5: EX and EM scores on the development set of
SPIDER, with gpt-3.5-turbo, across different approx-
imators, and selection setups: example selection (with
DAIL or AST), schema selection (SS), value selection
(VS), and schema & value selection (SVS). We report
results from oracle approximator using gold queries.

depends on the desired trade-off between effective-
ness and efficiency in practice. FastRAText is over
600 times faster than Graphix-T5 (Li et al., 2023b)
on an A100 80G GPU, while the resulting differ-
ence, within our framework, in EX on the SPIDER

development set is ≤ 1% (Table 5).

Does schema selection improve the perfor-
mance? In Table 5, we noted that performing
schema selection (i.e. SS) without DB value se-
lection does not necessarily lead to performance
improvements. This is in partial agreement with

AST Interval
Approximator

Oracle Graphix FastRAText

[0.0, 1.0] 84.6 83.0 82.0

[0.95, 1.0] 90.8 88.4 88.7
[0.9, 0.95) 80.7 74.1 76.8
[0.85, 0.9) 73.0 68.3 59.4
[0.8, 0.85) 62.4 66.8 63.5
[0.0, 0.8) 50.0 54.1 58.7

Table 6: EX scores on the SPIDER development set
using gpt-3.5-turbo, across different average AST-
similarity intervals.

Sun et al. that hard column selection can be harm-
ful for the end-to-end performance, and can be
attributed to the drop of recall, when less capable
approximators are involved. Nonetheless, as we
note in Section 5.3.2, the combination of schema
and value selection (SVS) can consistently improve
EX and EM, while significantly reducing the LLM
token-processing cost due to shortened schema.

7 Related Work

Significant number of recent works have looked at
how LLMs can be employed in Text-to-SQL sce-
narios (Rajkumar et al., 2022; Chang and Fosler-
Lussier, 2023; Liu et al., 2023; Pourreza and Rafiei,
2023; Gao et al., 2023; Guo et al., 2024). More
recent works have looked at how incorporating ex-
amples in the prompt could benefit the performance
of LLMs in the end task (Pourreza and Rafiei, 2023;
Gao et al., 2023; Guo et al., 2024; Sun et al., 2024).
In spite of its underlying benefits, conventional
solutions for example selection have focused on re-
trieving pairs using question similarity (Nan et al.,
2023). Other approaches have sought to approxi-
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mate expected SQL queries, and either directly use
these approximations in the prompt, in a few-shot
setting (Sun et al., 2024) or to filter candidate (ques-
tion, SQL) pairs by taking into consideration the
similarity of their corresponding SQL query skele-
tons (Li et al., 2023a) against the skeleton of the
approximated SQL (Gao et al., 2023). We argue
that such example selection strategies can result in
information loss, and we propose an approach for
re-ranking examples using similarity of normalised
SQL ASTs.

Retrieving (question, SQL) pairs using tree-edit
distances have been recently explored in the con-
text of synthesising parallel datasets (Awasthi et al.,
2022) and few-shot settings for adapting models
to a target schema at inference time (Varma et al.,
2023). In our work, we introduce a more refined
normalisation paradigm for AST that goes beyond
conventional considerations for making the result-
ing trees invariant to the mentions of database
schema elements and values (Awasthi et al., 2022).
Furthermore, in contrast to CTreeOT by Varma
et al., we focus on the cross-domain setting, with-
out relying on the availability of a handful of in-
domain examples for the test schemata.

The benefits of schema selection for Text-to-
SQL have been highlighted across the relevant bib-
liography (Wang et al., 2020; Li et al., 2023b; Pour-
reza and Rafiei, 2023). From the LLMs perspec-
tive, pruning schema elements from the prompts
has been usually leading to performance degrada-
tion (Sun et al., 2024). Inspired by Gao et al., we
compute a preliminary query for a given (q,D) by
we adapting FastRAT (Vougiouklis et al., 2023), to
the requirements of processing longer schemata, in
a parallelised manner. We couple the resulting ap-
proximator with a sparse retriever, and we propose
a dynamic strategy for reducing the computational
cost of the task while achieving performance im-
provements.

8 Conclusion

In this paper, we propose ASTRES, a flexible yet
powerful framework that augments LLMs for Text-
to-SQL semantic parsing by selecting suitable ex-
amples and database information. We present a
novel AST-based metric to rank examples by simi-
larity of SQL queries. Our hybrid search strategy
for schema selection reuses a preliminary query to
reduce irrelevant schema elements while maintain-
ing high recall. Extensive experiments demonstrate

that our AST-based ranking outperforms previous
approaches of example selection and that a sym-
biotic combination of schema and value selection
can further enhance the end-to-end performance of
both closed- and open-source LLM solutions.

Limitations

There are limitations with regards to both of our
example selection and schema selection. Our AST-
based ranking can be biased when an approximated
SQL deviates significantly from structurally cor-
rect answers. To address the failure of approxi-
mators, a future direction is to sensibly diversify
selected examples such that LLMs can generalise
compositionally. As for schema selection, our se-
mantic search relies on an approximator which is
essentially a parser with high precision in schema
linking but lack mechanisms to control recall as a
standalone model. Therefore, it is worth extending
cross-encoder architecture such as FastRAT to sup-
port ranking schema elements while being a SQL
approximator in the meantime.

We demonstrate that schema splitting strategies
within our framework can be applied across various
numbers of splits without noticeable performance
degradation. Nonetheless, given the lack of avail-
able datasets that incorporate longer commercial
schemata, we focus our experiments on the cross-
database setting provided by CSPIDER and SPIDER

variants.

Ethics Statement

We do not make use of any private, proprietary,
or sensitive data. FastRAText is trained on pub-
licly available Text-to-SQL datasets, using publicly
available encoder-models as base. Our framework
for retrieval-augmented generation builds on-top
of large, pre-trained language models, which may
have been trained using proprietary data (e.g. in the
case of the OpenAI models). Given the nature of
pre-training schemes, it is possible that our system
could carry forward biases present in the datasets
and/or the involved LLMs.
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A SQL Similarity using Normalised
Abstract Syntax Trees

Table 7 shows the corresponding SQL queries after
each step of our AST normalisation as explained
in Section 3. An example of the similarity be-
tween normalised ASTs is provided in Figure 2,
where tables, columns and values are masked out
for cross-domain settings.

B Prompt Formulation

Table 8 shows an example of our prompt, after
example and DB context selection (i.e. schema and
value selection). This prompt is provided as input
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SQL

SELECT T1.Category, COUNT(*) AS
Num FROM Products AS T1 JOIN Orders
AS T2 ON T1.id = T2.pid GROUP BY
T1.Category ORDER BY Num ASC

1. Unify
Identifiers

SELECT t1.category, COUNT(*) AS
num FROM products AS t1 JOIN orders
AS t2 ON t1.id = t2.pid GROUP BY
t1.category ORDER BY num ASC

2. Resolve
Aliases

SELECT products.category, COUNT(*)
FROM products JOIN orders ON
products.id = orders.pid GROUP BY
products.category ORDER BY
COUNT(*) ASC

3. Reorder
JOIN

SELECT products.category, COUNT(*)
FROM orders JOIN products ON
orders.id = products.pid GROUP BY
products.category ORDER BY
COUNT(*) ASC

4. Mask
Identifiers
& Values
(cross-
domain
only)

SELECT _, COUNT(*) FROM _ JOIN _
ON _ = _ GROUP BY _ ORDER BY
COUNT(*) ASC

Table 7: An example of the effects to corresponding
SQL after each step of our AST normalisation.

to LLMs. Following the latest OpenAI example6

for Text-to-SQL parsing, we represent a schema
with CREATE TABLE statements in SQL. Semantic
names or descriptions of tables and columns are
included as COMMENT along with the corresponding
columns or tables. Note that we filter out comments
that can be obtained by simply lowercasing original
names and/or removing underscores. To maintain
a compact representation of database information,
we append selected values of columns into their
COMMENT rather than introducing additional lines
as in the work by Chen et al. (2024). Example
(question, SQL) pairs are provided in a similar
manner to DAIL-SQL (Gao et al., 2023), followed
by an instruction to prompt LLMs to generate SQL
for the test question.

C Implementation Details

We use this section to provide further details about
the implementation of our approach.

C.1 Example Selection

Following (Gao et al., 2023), we employ the pre-
trained all-mpnet-base-v2 model (Song et al.,
2020) from Sentence Transformer (Reimers

6https://platform.openai.com/examples/
default-sql-translate

SELECT T2.name, T2.capacity  
FROM concert AS T1 JOIN stadium AS T2 
ON T1.stadium_id = T2.stadium_id 
WHERE T1.year >= 2014

SELECT name FROM highschooler 
WHERE grade = 10

FROM WHEREEXPR

=

SELECT

FROM WHERE

[col] [col]

EXPR JOIN

=

>=ON

SELECT

[tab] [tab]

[col] [col]

[col] [val]

[col] [tab]

[val][col]

Normalised AST

Similarity: 0.52

Normalised AST

Figure 2: Example of how the similarity between two
different SQL queries is computed using normalised
ASTs.

and Gurevych, 2019) to compute dense
question embeddings for English datasets
including SPIDER, SPIDER-DK, SPIDER-
REAL, and SPIDER-SYN. For CSPIDER,
paraphrase-multilingual-MiniLM-L12-v2 is
used instead. SQL queries are parsed into AST
by using SQLGlot7 and are then normalised
as explained in Section 3. SQLGlot provides
an implementation of the Change Distilling
algorithm for AST differencing. We refer readers
to SQLGlot’s documentation8 for more details.
For selecting example question-SQL pairs, we first
retrieve top 500 examples by question similarity
and rerank them in terms of the similarity of
normalised SQL ASTs. For relevant experiments
in Table 5, we reproduced the implementation of

7https://github.com/tobymao/sqlglot
8https://github.com/tobymao/sqlglot/blob/main/

posts/sql_diff.md
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# Given SQLite database schema student_transcripts:

Selected

Schema
w/

Selected

Values

CREATE TABLE Departments(
department_id number,
department_name text COMMENT ’department

name (e.g. engineer, statistics, medical) ’,

...);
CREATE TABLE Degree_Programs(

degree_program_id number,
degree_summary_name text COMMENT ’degree

summary name (e.g. PHD, Master, Bachelor) ’,
...
PRIMARY KEY (degree_program_id),
FOREIGN KEY (department_id) REFERENCES

Departments(department_id));
# Your task is to translate Question into SQL.
# Some examples are provided based on similar problems:

Selected

Examples

Question: How many courses does the department of
Computer Information Systems offer?
SQL: SELECT count(*) FROM department AS T1
JOIN course AS T2 ON T1.dept_code =
T2.dept_code WHERE dept_name = “Computer
Info.Systems”
Question: ...
SQL: ...
# Complete the following SQL for schema stu-
dent_transcripts:

Test

Question

Question: How many degrees does the engineering de-
partment have?
SQL:

Table 8: An example of the resulting prompt, after ex-
ample and schema and DB content selection.

DAIL selection from the original paper (Gao et al.,
2023). The number of few-shot examples is set to
5 across all experiments.

C.2 Schema & Value Selection

Each database schema is treated as an indepen-
dent collection of columns that are analogous to
documents to be retrieved by using BM25. As men-
tioned in Section 4.1, we represent a column by
concatenating semantic names of both the column
and its table, and the column values in the database.
Semantic names and values are tokenized using
spaCy9 and preprocessed by lowercasing and stem-
ming10. At inference time, the same processing
is applied to questions. We adopt the implementa-
tion of Okapi BM25 (Robertson et al., 1994) from
Rank-BM2511. The number of columns to retrieve
is dynamically set to ⌊1.5× γ⌋ where γ is the num-
ber of unique columns in an approximated query.
We limit the resulting number to a range between
6 and 20. By retrieving at column level, a table
is selected if any of its columns are selected. We
merge retrieved schema elements with schema el-
ements from the approximated query to construct
a sub-schema. To further increase the recall, we
add additional primary keys and foreign keys that

9https://github.com/explosion/spaCy
10https://www.nltk.org/api/nltk.stem.porter.

html
11https://github.com/dorianbrown/rank_bm25

are not selected but valid based on selected tables,
except for experiments where only approximated
queries are used (see Table 4). In such cases, how-
ever, if the SQL query involves only tables (e.g.
SELECT * FROM books), primary keys of selected
tables are still included to ensure that correspond-
ing CREATE TABLE statements (see Table 8) are
meaningful and consistent.

For selecting values, similarly, we match the
input question and the set of values for each (se-
lected) column that has a non-numeric type. The
top 3 results are added to the prompt as exemplified
in Table 8. The same setting of schema and value
selection is used for all datasets we experimented
with except CSPIDER. Due to the cross-lingual
nature of CSPIDER, schema selection and value
selection are simply disabled.

Training FastRAText We follow the original
hyper-parameters provided by (Vougiouklis et al.,
2023) for training FastRAText. The monolingual
version of FastRAT is based on BERTLARGE while
its cross-lingual variant on XLM-RoBERTa-large.

C.3 OpenAI Models

We use gpt-4 (gpt-4-0613) and gpt-3.5-turbo
(gpt-3.5-turbo-0613) for our experiments. For
decoding, sampling is disabled and the maximum
number of tokens to generate is set to 256. A
single experiment, on the SPIDER development
set using our approach with FastRAText as the
approximator and dynamic database context se-
lection costs around $0.8 and $16.5 in the case
of gpt-3.5-turbo-0613 and gpt-4-0613 respec-
tively.

C.4 Experiments with Open-Source LLMs

We further conduct experiments with open-source
models from the DeepSeek family12, that specialise
in code generation. Prompting and decoding se-
tups remain consistent across all LLMs. Table 9
summarises the results. We see that our approach
can generalise even in the case of open-source
LLM alternatives. Interestingly, our scores using
deepseek-coder-33b-instruct are comparable
to the scores when using gpt-3.5-turbo-0613
across all approximators. Inference experiments
are conducted on a machine using 8×NVIDIA-
V100 32G GPUs.

12We use the implementations provided by https://
huggingface.co/deepseek-ai.
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Model
SPIDER SPIDER-DK SPIDER-REAL SPIDER-SYN CSPIDER

EX EM EX EM EX EM EX EM EM

deepseek-coder-6.7b-instruct
ASTRES (w/ FastRAText) 78.6 64.8 66.7 46.4 73.2 55.7 66.0 49.5 53.0
ASTRES (w/ Graphix-T5) 79.5 64.8 − − − − − − −
deepseek-coder-33b-instruct
ASTRES (w/ FastRAText) 81.5 62.1 70.5 46.4 77.4 59.3 68.7 49.5 55.9
ASTRES (w/ Graphix-T5) 83.4 64.7 − − − − − − −

Table 9: Execution (EX) and exact match (EM) accuracy scores of our approach using DeepSeek family models, on
the development splits of SPIDER and CSPIDER, and the SPIDER-DK, SPIDER-REAL and SPIDER-SYN test splits.
CSPIDER results are using only FastRAText as approximator.

D SPIDER and CSPIDER Experiments

We report experiments on CSPIDER (Min et al.,
2019) and SPIDER (Yu et al., 2018), which contain
database schema information and examples in Chi-
nese and English respectively. Since CSPIDER is a
translated version of the SPIDER dataset, the char-
acteristics of the two with respect to structure and
number of examples are identical. Both datasets
contain 8, 659 examples of questions and SQL
queries along with their relevant SQL schemata
(i.e. 146 unique databases). The development and
test13 sets consist of 1, 034, on 20 unique databases
and 2, 147, on 40 unique databases, respectively,
and none of the relevant databases are seen in the
training set. Due to the scarcity of works report-
ing test scores on these benchmarks, we chose
not to include our results in the main body of our
manuscript. Table 10 shows the performance of
our framework with respect to execution and exact
match accuracy scores on the test splits of SPIDER

and CSPIDER.

E Schema Selection Experiments

Table 11 includes experiments that compare the
proposed schema selection strategy against a dense
retriever to capture semantic matching signals.
We employ the pre-trained all-mpnet-base-v2
model (Song et al., 2020) from SentenceTransform-
ers (Reimers and Gurevych, 2019) to encode the
semantic names of individual columns. A vec-
tor index of column embeddings is built for each
database. A sub-schema is selected through col-
umn retrieval as explained in Appendix C.2, but
with a dense retriever by computing the cosine sim-
ilarity between the embeddings of each question
and column. Approximated queries are predicted

13Since the 1st of March 2024, the test sets of both Spider
and CSpider have become publicly available.

by FastRAText.
Our findings remain consistent with the ones we

noted in Table 4. Using a dense retriever, we fail
to achieve Recall and Schema Shortening that both
meet the standards of our proposed method (i.e.
Approx. Query + BM25 with dynamic top-k). For
roughly the same extent of schema shortening, our
method consistently yields higher schema elements
recall.
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Model
Easy Medium Hard Extra All

EX EM EX EM EX EM EX EM EX EM

SPIDER

FastRAText 86.2 81.3 72.2 66.0 60.0 51.6 48.5 33.9 68.7 60.9

deepseek-coder-33b-instruct
ASTRES (w/ Graphix-T5) 89.6 85.5 88.6 66.4 73.9 50.1 58.8 28.0 80.7 60.7

gpt-4
ASTRES (w/ Graphix-T5) 91.9 87.4 90.3 80.4 81.2 66.1 74.2 47.6 86.0 73.4

CSPIDER

FastRAText − 67.2 − 49.9 − 41.5 − 12.9 − 45.5

deepseek-coder-33b-instruct
ASTRES (w/ FastRAText) − 79.7 − 58.2 − 40.2 22.4 − 52.9

gpt-4
ASTRES (w/ FastRAText) − 81.2 − 67.7 − 53.2 − 29.9 − 61.1

Table 10: Execution (EX) and exact match (EM) accuracy scores of our framework, on the test splits of SPIDER and
CSPIDER.

Schema Selection Setup Recall Schema Shorten.

Gold Query 100.0 71.3

BM25 (top-10) 92.0 36.5
BM25 (top-20) 98.3 14.1
Dense (top-10) 78.7 37.4
Dense (top-15) 86.8 23.4
Approx. Query 86.8 71.3

Approx. Query + BM25 (top-7) 93.3 50.4
Approx. Query + BM25 (top-10) 97.0 37.3
Dense (top-6) + BM25 (top-10) 97.1 31.7
Approx. Query + BM25 (dynamic top-k) 97.2 49.0

Table 11: Recall and Schema Shortening across different schema selection setups on the development split of
SPIDER. Approximated queries are predicted by FastRAText.
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